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Abstract— We present ProxEmo, a novel end-to-end emotion
prediction algorithm for socially aware robot navigation among
pedestrians. Our approach predicts the perceived emotions of a
pedestrian from walking gaits, which is then used for emotion-
guided navigation taking into account social and proxemic con-
straints. To classify emotions, we propose a multi-view skeleton
graph convolution-based model that works on a commodity
camera mounted onto a moving robot. Our emotion recognition
is integrated into a mapless navigation scheme and makes no
assumptions about the environment of pedestrian motion. It
achieves a mean average emotion prediction precision of 82.47%
on the Emotion-Gait benchmark dataset. We outperform cur-
rent state-of-art algorithms for emotion recognition from 3D
gaits. We highlight its benefits in terms of navigation in indoor
scenes using a Clearpath Jackal robot.

I. INTRODUCTION

Recent advances in AI and robotics technology are grad-
ually enabling humans and robots to coexist and share
spaces in different environments. This is especially common
in places such as hospitals, airports, and shopping malls.
Navigating a robot with collision-free and socially-acceptable
paths in such scenarios poses several challenges [1]. For
example, in the case of a crowded shopping mall, the robot
needs to be aware of the intentions of an oblivious shopper
coming towards it for friendly navigation. Knowing the per-
ceived emotional state of a human in such scenarios allows
the robot to make more informed decisions and navigate in
a socially-aware manner.

Understanding human emotion has been a well-studied
subject in several areas of literature, including psychology,
human-robot interaction, etc. There have been several works
that try to determine the emotion of a person from verbal
(speech, text, and tone of voice) [2], [3] and non-verbal (fa-
cial expressions, walking styles, postures) [4], [5] cues. There
also exist multi-modal approaches that use a combination of
these cues to determine the person’s emotion [6]–[8].

In our work, we focus on emotionally-aware robot navi-
gation in crowded scenarios. Here, verbal cues for emotion
classification are not easily attainable. With non-verbal cues,
facial expressions that are often occluded from the egocentric
view of the robot and might not be fully visible. Besides,
emotion analysis from facial features is a topic of debate
in several previous works: these features are inherently
unreliable caused by vague expressions emerging from a
variety of psychological and environmental factors [9], [10].
As such, in our work, we focus on using “walking styles”
or “gaits” to extract the emotions of people in crowds.

Obtaining perceived emotions from gaits is a challenging
problem that has been well documented in the past. More
recently, various machine learning solutions [11], [12] have
been proposed to tackle this problem. However, these ap-
proaches suffer from the following drawbacks:

Fig. 1: ProxEmo: We present a gait-based emotion and proxemics
learning algorithm to perform socially-aware robot navigation. The
red arrow indicates the path of the robot without social awareness.
The green arrow indicates the new path after an angry emotion
is detected. Observe the significant shift away from the pedestrian
when an angry gait is detected. This form of navigation is especially
useful when the robot is expected to navigate safely through crowds
without causing discomfort to nearby pedestrians.

• The training datasets used are singular in direction,
i.e., there is motion capture only when a person is
walking in a straight line towards the camera. This is a
significant disadvantage for our task of socially-aware
crowd navigation, where the robot often encounters
people walking from several directions towards or away
from the camera.

• Some approaches that are tailored towards using emo-
tion for enhancing the task of robot navigation assume
a static overhead camera that captures the trajectories of
pedestrians. This is not ideal, as the overhead camera
might not always be available in all scenarios.

To overcome these challenges, we propose ProxEmo, a
novel algorithm for realtime gait-based emotion classification
for socially-guided navigation. ProxEmo is tailored towards
working with commodity RGB egocentric cameras that can
be retrofitted onto moving platforms or robots for navigating
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Fig. 2: Overview of our Pipeline: We first capture an RGB video from an onboard camera and extract pedestrian poses and track them
at each frame. These tracked poses over a predefined time period are embedded into an image, which is then passed into our ProxEmo
model for classifying emotions into four classes. The obtained emotions then undergo proxemic fusion with the LIDAR data and are finally
passed into the navigation stack.

among pedestrians. The major contributions of our work
can be summarized as follows:

• We introduce a novel approach using group convolu-
tions to classify pedestrian emotions from gaits, which
drastically improves accuracy compared to SOTA.

• Our method explicitly takes into consideration pedes-
trian behavior in crowds as we train our model on
skeletal data of people approaching the robot from
multiple directions, as opposed to approaching from a
single view from the front.

• We present a new navigation scheme using Proxemic
Fusion that accounts for pedestrian emotions.

• Finally, we introduce a Variational Comfort Space,
which integrates into our navigation scheme, taking into
account varying pedestrian orientations.

We note that identifying the true nature of a person’s
emotion via only a visual medium can be difficult. Therefore
in this work, we focus only on the perceived emotions from
the point of an external observer as opposed to actual internal
emotion.

II. RELATED WORK

In this section, we present a brief overview of social-
robot navigation algorithms. We also review related work
on emotion modeling and classification from visual cues.

A. Social Robotics and Emotionally-Guided Navigation
As robots have become more commonplace, their impact

on humans’ social lives has emerged as an active area of
research. Studies from multiple domains [13]–[16] have tried
to quantify this impact in several ways. In [1], Kruse et
al. present a comprehensive survey on navigation schemes
for robots in social scenarios. They describe various social
norms (interpersonal distances, human comfort, sociability)
that the robot must consider not to cause discomfort to
people around it. Michaid et al. [17] discuss about how
robots can attain artificial emotions for social interactions.
Several classical [18]–[20] and deep learning [21] approaches
tackle the problem of navigation through highly dynamic
environments. More recently, reinforcement learning meth-
ods [22], [23] have been described for collision avoidance

in such environments. For pedestrian handling, in particular,
Randhavane et al. [24] make use of a pedestrian dominance
model (PDM) to identify the dominance level of humans
and plan a trajectory accordingly. In [25], Rios-Martinez et
al. present a detailed survey on the proxemics involved with
socially aware navigation. In [26], Kitazawa et al. discuss
ideas such as Information Process Space of a human. In [27],
Pandey et al. discuss a strategy to plan a socially aware path
using milestones.

B. Emotion Modeling and Classification

There exists a substantial amount of research that focuses
on identifying the emotions of humans based on body pos-
ture, movement, and other non-verbal cues. Ruiz-Garcia et al.
[28] and Tarnowski et al. [29], use deep learning to classify
different categories of emotion from facial expressions. The
approach by [8] uses multiple modalities such as facial
cues, human pose and scene understanding. Randhavane et
al. [30], [31] classify emotions into four classes based on
affective features obtained from 3D skeletal poses extracted
from human gait cycles. Their algorithm, however, requires
a large number of 3D skeletal key-points to detect emotions
and is limited to single individual cases. Bera et al. [32],
[33] classify emotions based on facial expressions along
with a pedestrian trajectory obtained from overhead cameras.
Although this technique achieves good accuracy in predicting
emotions from trajectories and facial expressions, it explicitly
requires overhead cameras in its pipeline.

C. Action Recognition for Emotions

The task of action recognition involves identifying human
actions from sequences of data (usually videos) [34]. A
common task in many of these models is recognizing gait-
based actions such as walking and running. Thus, the task of
gait action recognition is closely related to the task of emo-
tion recognition from gaits, as both perform classification
on the same input. Bhattacharya et al. [12], [35] use graph
convolutions for the emotion recognition task, in a method
similar to the action recognition model used in Yan et al.
[36]. Ji et al. [37] propose a CNN-based method that gives



state-of-the-art results on gait based action recognition tasks.
Their model is invariant to viewpoint changes.

III. OVERVIEW AND METHODOLOGY

We propose a novel approach, ProxEmo, for classifying
emotions from gaits that works with an egocentric camera
setup. Our method uses 3D poses of human gaits obtained
from an onboard robot camera to classify perceived emo-
tions. These perceived emotions are then used to compute
variable proxemic constraints in order to perform socially
aware navigation through a pedestrian environment.
Figure 2 illustrates how we incorporate ProxEmo into an
end-to-end emotionally-guided navigation pipeline.

The following subsections will describe our approach in
detail. We first discuss the dataset and the augmentation
details we used for training. Then, we briefly discuss our
pose estimation model, followed by a detailed discussion
of our emotion classification model, ProxEmo. Finally, we
describe how socially-aware navigation can be performed
using the obtained emotions.

A. Notations

In our formulation, we represent the human with 16 joints
as shown in figure 4. Thus, a pose P ∈ R16×3 of a human is
a set of 3D positions of each joint ji, where i ∈ {0, 1, ..., 15}.
For any RGB video V , we represent the gait extracted using
3D pose estimation as G. The gait G is a set of 3D poses
P1, P2, ..., Pτ where τ is the number of frames in the input
video V .

B. Dataset Preparation

We make use of two labeled datasets by Randhavane et
al. [38] and Bhattacharya et al. [12], containing time-series
3D joints of 342 and 1835 gait cycles each (a total of 2177
gait samples). Each gait cycle has 75 timesteps with 16 joints
as shown in Figure 4. Thus, each sample in this new dataset
has a dimension of joints× time× dimensions = 16 ∗ 75 ∗
3 = 3600. These samples are labeled into 4 emotion classes:
angry, sad, happy, and neutral with 10 labelers per video (to
capture the perceptual difference between different labelers).
In order to train our network for prediction from multiple
views, we augment the dataset as follows. First, we consider
a camera placed at a particular distance from the human,
as shown in Figure 3. Then for different camera positions
oriented towards the human, we perform augmentation by
applying transformations given in equation 1.

jaug =

cosθ 0 −sinθ
0 1 0

sinθ 0 cosθ

×
xy
z

+

TxTy
Tz

 (1)

where jaug are the coordinates of the augmented joints,
Tx, Ty, Tz are the translation vectors, and θ is the rotation
along Y axis. For our experiments, we attain 72× 4 = 288
augmentations for each sample by considering θ at gradients
of 5◦, with 4 translations of [1m−4m] along the Z axis (Tz).
Thus, after augmentation, we have a total of 288× 2177 =
626, 976 gaits in our dataset.

Fig. 3: Data Augmentation: By applying specific translations and
rotations, we augment the data into different camera views. We
divide the viewpoints into four view-groups based on the angle of
approach to categorize the direction in which the person is walking.
The augmentations also take into consideration varying distances
of the camera from the origin point of the gait sequence.

C. Human-Pose Estimation
A pose estimation strategy for humans walking in a

crowded real-world scenario has to be robust to noise coming
from human attire or any items they might be carrying. To
account for this, we employ a robust approach described in
[39] for this task. Their paper describes a two-step network
trained in a weakly supervised fashion. First, a Structure-
Aware PoseNet (SAP-Net) trained on spatial information
provides an initial estimate of joint locations of people in
video frames. Later, a Temporal PoseNet (TP-Net) trained
on time-series information corrects this initial estimate by
adjusting illegal joint angles and joint distances. The final
output is a sequence of well-aligned 3D skeletal poses P.
Figure 4 is a representation of the skeletal output obtained.

Fig. 4: Skeleton Representation: We represent a pedestrian by 16
joints (ji). The overall pose of the pedestrian is defined using these
joint positions.

D. Generating Image Embeddings
We observe that 2D convolutions are much faster and

efficient as opposed to graph convolutions [37]. Hence, we
embed the spatial-temporal skeletal gait sequence G as an
image I , using the equations described in 2.

I = {R(x,y) = Z(t,j);G(x,y) = Y(t,j);B(x,y) = X(t,j)}
(2)

Here, R, B, and G are image color channels, x, y are the
co-ordinates of image, and X(t,j), Y(t,j), Z(t,j) are the co-



Fig. 5: ProxEmo Network Architecture: The network is trained on image embeddings of the 5D gait set G, which are scaled up to
244×244. The architecture consists of four group convolution (GC) layers. Each GC layer consists of four groups that have been stacked
together. This represents the four group convolution outcomes for each of the four emotion labels. The group convolutions are stacked in
two stages represented by Stage 1 and Stage 2. The output of the network has a dimension of 4 × 4 after passing through a softmax
layer. The final predicted emotion is given by the maxima of this 4×4 output.

ordinates of skeletal joint j at time t.This image I is finally
upscaled to 244× 244× 3 for training our ProxEmo model.

E. ProxEmo: Classifying Emotions from Gaits
Figure 5 illustrates the architecture of our model for emo-

tion classification. The image embedding I obtained from the
gaits are passed through two stages of group convolutions to
obtain an emotion label.

1) Group Convolutions: We take inspiration from [40]
and make use of group convolutional layers in designing our
ProxEmo architecture. Group Convolution Layers (GC),
in essence, operate just like 2D convolution layers, except
that they fragment the input into ng groups and perform
convolution operations individually on them before stacking
the outputs together. The advantage of doing this is that the
network learns from different parts of the input in isolation.
This is especially useful in our case because we have a
dataset that varies based on two factors, view-group and
emotion labels. The variation in the view-groups is learned
by the different convolution groups GC, and the emotions are
learned by the convolutions taking place within each group.
Group convolutions increase the number of channels in each
layer by ng times. The output (hi) of each group in the con-
volution layer is hi = xi ∗ki and hout = [h1|...|hng

]. where,
hout is the output of the group convolution, xi represents
the input, and ki represents the kernel for convolution. The
output [h1|...|hng

] is a matrix concatenation of all the group
outputs along channel axis. In our case, we choose ng as 4
because we have 4 view-groups.

2) ProxEmo Architecture: The network consists of seven
convolution layers. The initial layer is a traditional 2D con-
volution layer, which performs channel up-sampling for the
forthcoming group convolution operations. These operations
take place in two stages -
Stage 1: This consists of two GC layers, each having 128
convolution filters (32 per group × ng).
Stage 2: This consists of two convolution GC layers, how-
ever, unlike stage 1, each GC 256 convolution filters (64 per
view-group × ng).
Both traditional 2D convolution and GC layers are passed
through a ReLU non-linear activation and max pooling layer.
The outputs from Stage 1 and Stage 2 are represented by
hs where s = 1, 2. We also perform batch normalization.

The output of each both the group convolution stages, hs
are given by,

p∗s = GC(xs, k
1
s)

ps =MaxPool(ReLU(p∗s))

h∗s = GC(ps, k
2
s)

hs = BatchNorm(MaxPool(ReLU(h∗s))) (3)

where, s represents the two group convolution stages as
described before, xs is the input to the group convolution
stage ‘s’, k1s and k2s represent convolution kernels for first
and second GC layers within a stage, p∗s and h∗s are the
first and second GC layer outputs determined using equation
above.

After performing the group convolutions, the output
h2 is passed through two 2D convolution layers. These
convolution layers help in gathering the features learned by
the GC layers to finally predict both the view-group and
emotion of the gait sequences.

Rather than using fully-connected layers for predicting the
view-group, our method utilizes convolution layers to predict
the nk × ng output, where nk is the number of emotions
and ng is the number of view-groups. This makes our model
considerably lighter (number of model parameters) and faster
(run-time performance), compared to other state-of-the-art
algorithms.

The final output of the classifier consists of multi-class
softmax prediction, Ei,j , given by the equation 4. Here
ei,j refers to the final hidden layer output of the network,
where i = 0, 1, . . . (nk − 1) is the emotion class and j =
0, 1, . . . , (ng − 1) is the view-group class.

Ei,j =
exp (ei,j)∑nk−1

i=0

∑ng−1
j=0 exp (ei,j)

(4)

Ei,j can be considered as a 4 × 4 matrix containing 16
values corresponding to different view-groups and emotions.

F. Emotion-guided Navigation using Proxemic Fusion
We use the emotions Ei,j predicted from ProxEmo to

compute the comfort space (c) of a pedestrian, which is
the socially comfortable distance (in cm) around a person.



We combine c along with the LIDAR data (L) to perform
“proxemic fusion” (III-F.3), obtaining a set of points where
it is permissible for the robot to navigate in a socially-
acceptable manner. This is illustrated in figure 6.

1) Comfort Space Computation: In order to model the
predicted emotions Ei,j from ProxEmo into a comfort space
distance c, we use the following equation:

c =

∑4
j=1 cj ·max (Ej)∑4

j=1Ej
· vg (5)

Here, Ej represents a column vector of the softmax output,
which corresponds to the group outcomes for each individ-
ual emotion. cj is a constant derived from psychological
experiments described in [41] to compute the limits on
an individual’s comfort spaces and is chosen from a set
{90.04, 112.71, 99.75, 92.03} corresponding to the comfort
spaces (radius in cm) for {happy, sad, angry, neutral}
respectively. We acknowledge that these distances depend on
many factors, including cultural differences, environment, or
a pedestrian’s personality, and restrict our claims to variations
in comfort spaces due to the emotional difference. These
distances are based on how comfortable pedestrians are while
interacting with others. vg is a view-group constant defined
in the following subsection.

Fig. 6: Variational Comfort Space: We consider a varying comfort
space c around a person based on their position (defined by the
view-group g) in front of the robot. In scenario 1, the pedestrian
approaches the robot from the front. Here, as the pedestrian is
aware of the robot’s presence, it needs to be more respectful of
the proxemic comfort space and take action Vcomfort represented
by the green arrow. In scenario 2, the robot is approaching the
person from behind. An unaware pedestrian need not be disturbed
by the robot, due to which it can be more liberal with its actions.
The violet arrow representing the safe action Vsafe coincides with
Vcomfort in this case.

2) Variational Comfort Space (vg): We take inspiration
from the Information Process Space defined by Kitazawa et
al. [26] to define our own Variational Comfort Space constant

vg . This constant acts as a scaling factor in the comfort space
based on the orientation of the pedestrian in the robot’s view.
This orientation is easily obtainable as ProxEmo also gives
us a view-group output along with the emotion.
vg is chosen from a set of {1, 0.5, 0, 0.5} based on the view
group g predicted. This is chosen based on the fact that
people have varying personal space with respect to their
walking direction, i.e., a pedestrian will care more about
his/her personal space in front as compared to the sides. Also,
the pedestrian might not care about personal and comfort
space behind them since it does not lie in their field of
view [42].
In figure 6, we look at two scenarios to illustrate how the
robot handles pedestrians considering variational comfort
spaces:

• Scenario 1: The robot is positioned in front of the
person walking towards it. This is classified as view-
group 1, having a vg value of 1. As the robot is visible
to the person, in this case, it should be more precautious
in safely maneuvering around the person. The comfort
space around the pedestrian is larger in this case, and
the robot takes a more skewed trajectory.

• Scenario 2: The robot is approaching the pedestrian
from behind. This gait is classified as view-group 3 and
has a vg value of 0. As the robot is not in the person’s
field of vision, in this case, it can afford to safely pass
around the fixed space Fs of the person.

At any time instant, the velocity of the robot will be
directed towards the goal, and if there is an obstacle, it will
lead to a collision vcoll. If an obstacle avoidance algorithm
is used, the navigation scheme avoids it with an action
vsafe. However, for socially acceptable proximally-aware
navigation, this is not sufficient, as this requires the robot to
follow certain social norms. In order to adhere to these social
norms, we incorporate the emotions predicted by ProxEmo
to navigate in a socially acceptable manner represented by
Vcomfort.

3) Proxemic Fusion: We fuse the LIDAR data to include
proxemic constraints by performing a Minkowski sum (M )
of the set of LIDAR points L and a set containing the points
in a circle Z defined by a radius r. The Minkowski sum
M provides us with a set of all the admissible points where
the robot can perform emotionally-guided navigation. This
is formulated using the following equations.

L = {a | a− a0 = dlidar} (6)
Z = {b | dist(a, b) ≤ r}
M = L+ Z = {a+ b | a ∈ L, b ∈ Z}

Here, a0 is a reference point on the LIDAR, and dlidar
is the distance measurement (in metres). r is the inflation
radius and is defined using the comfort space c as:

r = c− [max(dh)−min(dh)] (7)

where dh ∈ L is a set of the LIDAR distances only for
points where a human was detected. The maximum value of
dh corresponds to the farthest distance from the person from
their fixed inner space Fs, while the minimum value of dh
corresponds to the closest distance of the person from this
space. Fs is represented by the blue circle around the person
in the figure 6. In terms of mathematical morphology, the



outcome of proxemic fusion is similar the dilation operation
of the human, modelled as a obstacle, with the comfort space.

Fig. 7: Emotionally-Guided Navigation: We use the emotions
detected by ProxEmo along with the LIDAR data to perform
Proxemic Fusion. This gives us a comfort distance c around a
pedestrian for emotionally-guided navigation. The green arrows
represent the path after accounting for c while the violet arrows
indicate the path without considering this distance. Observe the
significant change in the path taken in the sad case. Note that the
overhead image is representational, and ProxEmo works entirely
from a egocentric camera on a robot.

IV. EXPERIMENTS AND RESULTS

A. Evaluation Metrics
We evaluate our model using two metrics:
• Mean Accuracy (%) - 1

nk×ng

∑nk

i=0

∑ng

j=0
TPi,j

Ni,j

• Mean F1 score - 2
nk×ng

∑nk

i=0

∑ng

j=0
Pri,j∗Rci,j
Pri,j+Rci,j

where, nk (= 4) is the number of emotion classes, ng (= 4)
is the number of view-groups, TPi,j is the number of true
predictions for ith emotion class and jth view-group, Ni,j is
the total number of data samples for ith emotion class and
jth view-group, Pri,j and Rci,j is the precision and recall
for ith emotion class and jth view-group. All the metrics
mentioned are derived from a confusion matrix generated by
comparing actual vs predicted emotion and view-group for
the data samples.

B. Implementation Details
For training, our dataset (III-B) has a train-validation split

of 90%-10%. We generate a set of angles and translations
that are different from the original dataset to formulate the
test set.

We perform training using an ADAM [43] optimizer, with
decay parameters of (β1 = 0.9 and β2 = 0.999). The
experiments were run with a learning rate of 0.009 and
with 10% decay every 250 epochs. The models were trained
with softmax multi-class cross-entropy loss, L, represented
in equation 8. The training was done on 2 Nvidia RTX 2080

Ti GPUs having 11GB of GPU memory each and 64 GB of
RAM.

L =
1

m

M∑
m=1

nk,ng∑
i=0,j=0

−ym,i,j log(Em,i,j) (8)

where, ym,i,j is the target one-hot encoded label repre-
senting emotion class i{= 0, 1, ..nk} and view-group j{=
0, 1, ...ng} for the data sample m{= 0, 1, ..,M}. Em,i,j is
the predicted softmax output probability for data sample m
being emotion class i and view-group class j.

C. Comparing ProxEmo with other Emotion Classifiers
We evaluate the performance of our ProxEmo network,

against two other emotion classification algorithms [12] [38].
Since the other emotion classification algorithms don’t con-
sider the arbitrary view scenario, we compare our results with
just single-view data, i.e., skeletal gaits that are directly ap-
proaching the RGB-D camera. Table I presents these results.
The accuracy metrics reported are generated by modifying
the equations in IV-A, for a single view-group (i.e., ng = 1).

Method Accuracy (%)
Venture et al. [44] 30.83
Daoudi et al [45] 42.5

Li et al. [46] 53.7
Baseline (Vanilla LSTM) [38] 55.47

Crenn et al [47] 66.2
STEP [12] 78.24

ProxEmo (ours) 82.4

TABLE I: Comparison of ProxEmo with other state-of-the-
artemotion classification algorithms: We compare the accuracy
(%) of our ProxEmo network with existing emotion classification
algorithms on single-view (facing the camera) data samples. We
observe that our network outperforms the current state-of-the-
art algorithm by 4%. Furthermore, our network outperforms the
state-of-the-art algorithm across each emotion class. The accuracy
numbers reported for [38], [12] and ProxEmo are evaluated on
the same dataset discussed in section III-B. The other methods are
evaluated on different datasets.

D. Comparing ProxEmo with Action Recognition Models
As mentioned in section II-C, action recognition models

and emotion recognition models that have inputs as gaits
are closely related tasks. Thus, we can evaluate ProxEmo on
pre-existing action recognition models by fine-tuning them
on the emotion recognition task. We compare our model
with two existing state-of-the-art action recognition models,
(i) Spatial-Temporal Graph convolution networks (ST-GCN)
[36], and (ii) VS-CNN [37]. These architectures were trained
using the datasets [12], [38] (discussed in Section III-B).

1) ST-GCN: The spatial-temporal graph convolution net-
works [36] perform skeletal action recognition using undi-
rected spatial-temporal graphs for hierarchical representation
of skeleton gait sequences. In the original implementation,
the spatial-temporal graphs are used in a graph convolution
network to detect the action performed through the sequence.

We fine-tune ST-GCN to predict human emotion instead
of the actions. The human emotions modeled as a class label
for the implementation.



Fig. 8: Comparison of ProxEmo with other arbitrary view algorithms : Here we present the performance metrics (discussed in section
IV-A) of our ProxEmo network compared to the state-of-the-art arbitrary view action recognition models. We perform a comprehensive
comparison of models across multiple distances of skeletal gaits from the camera and across multiple view-groups. It can be seen that
our ProxEmo network outperforms other state-of-the-art network by 50% at an average in terms of prediction accuracy.

Fig. 9: Confusion Matrix: We show the percentage of gaits
belonging to every emotion class that were correctly classified by
our algorithm, ProxEmo.

2) VS-CNN: One of the major drawbacks of ST-GCN
is that it is not tuned for multi-view/arbitrary-view skeletal
gait sequences. View-guided Skeleton CNN (VS-CNN) [37]
approaches this problem by building a dataset that multiple
view-points with respect to the human reference frame.
The multiple views are combined into four groups, each
consisting of the one-quarter (90 degrees) of the view-points
sequences. The action recognition is performed in three
stages: (i) a view-group predictor network that predicts the
view-group C (of 4 view-groups) of the sequence. (ii) a
view-group feature network that consists of four individual
networks, based on SK-CNN [48], for each view-group, and
finally, (iii) a channel classifier network that combines (i) and
(ii) to predict the action label for the skeletal gait sequence.

The VS-CNN also steers away from graph convolutions
with an aim to increase the run-time performance of the
network. 2D convolutions were observed to be much faster
and efficient as opposed to graph convolutions. Hence, the
spatial-temporal skeletal gait sequences are transformed into
images. In our experiment, we tweak the final output of
VS-CNN architecture using equation 4 to predict human
emotions as opposed to actions. The network was trained
with a softmax cross-entropy loss function, represented in
equation 8.

The table I and figure 8 present a comparison of our
model against VS-CNN and ST-GCN. We can observe that
ProxEmo outperforms the state-of-the-art action recognition
algorithms in both single-view and arbitrary-view skeletal
gait sequences. Also, observe that in table II, ProxEmo takes
up the least number of model parameters. This is because we
perform group convolutions and eliminate Fully Connected
layers in our network. Figure 9 is a confusion matrix of
the predicted vs actual emotion classes of ProxEmo. We

can infer from this matrix that our model performs fairly
well across all emotion classes with a high accuracy. Since,
the evaluation metrics for socially acceptable is not well-
defined, we don’t report any evaluation on our emotion-
guided navigation planning.

View-Groups Model Parameters
ST-GCN [36] VS-CNN [37] ProxEmo(ours)

4 1.4M 63M 0.33M
6 1.4M 65M 0.5M
8 1.4M 68M 0.69M

TABLE II: Comparison of model parameters: Our ProxEmo model
has significantly fewer parameters compared to ST-GCN [36]
and VS-CNN [37]. This is due to the fact that we use Group
Convolutions (GC) and eliminate Fully Connected (FC) layers in
our network.

V. CONCLUSION, LIMITATIONS AND FUTURE WORK

We present ProxEmo, a novel group convolution-based
deep learning network that takes 3D skeletal gaits of a
human and predicts the perceived emotional states {happy,
sad, angry, neutral} for emotionally-guided robot navigation.
Our model specifically takes into consideration arbitrary
orientations of pedestrians and is trained using augmented
data comprising of multiple view-groups. We also present a
new approach for socially-aware navigation that takes into
consideration the predicted emotion and view-group of the
pedestrian in the robot’s field of view. In doing this, we
also define a new metric for computing comfort space, that
incorporates constants derived from emotion and view-group
predictions. The limitation of our model during inference
time is that it is reliant on real-time 3D skeletal tracking.

In the future, we plan to look at multi-modal cues for
emotion recognition. We intend to dynamically compute
proxemic constraints using continual feedback in a reward-
based training scheme. We also plan to add higher-level
information, with regards to the environmental or cultural
context that are known to influence human emotions, which
can further improve our classification results.
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