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Globally optimal consensus maximization for robust visual inertial
localization in point and line map
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Shoudong Huang4 and Rong Xiong1

Abstract— Map based visual inertial localization is a crucial
step to reduce the drift in state estimation of mobile robots.
The underlying problem for localization is to estimate the pose
from a set of 3D-2D feature correspondences, of which the
main challenge is the presence of outliers, especially in changing
environment. In this paper, we propose a robust solution based
on efficient global optimization of the consensus maximization
problem, which is insensitive to high percentage of outliers. We
first introduce translation invariant measurements (TIMs) for
both points and lines to decouple the consensus maximization
problem into rotation and translation subproblems, allowing
for a two-stage solver with reduced search space. Then we
show that (i) the rotation can be estimated by minimizing
TIMs using only 1-dimensional branch-and-bound (BnB), (ii)
the translation can be estimated by running 1-dimensional
search for each of the three axes with prioritized progressive
voting. Compared with the popular randomized solver, our
solver achieves deterministic global convergence without re-
quiring an initial value. Furthermore, ours is exponentially
faster compared with existing BnB based methods. Finally,
our experiments on both simulation and real-world datasets
demonstrate that the proposed method gives accurate pose
estimation even in the presence of 90% outliers (only 2 inliers).

I. INTRODUCTION

Visual inertial navigation system is popular for state
estimation of mobile robots, autonomous vehicles and aug-
mented reality applications. Many efforts have been paid
to build accurate, consistent and efficient visual inertial
odometry [1]. However, its inherent drift is unacceptable in
long-term operation, requiring absolute pose estimation for
correction. Map based visual inertial localization is therefore
an important component in a complete navigation system,
of which the goal is to estimate the absolute pose from a
set of corresponding 2D image feature points and global
3D map points. In this problem, one main challenge is the
robustness of the solver against outliers, i.e. incorrect feature
correspondences. When high percentage of correspondences
is outlier, the performance of the general pose estimator may
be severely degenerated.
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Fig. 1: The projected map points on the map image (left
column) and the detected image key points on the query
image (right column), with inlier correspondences in red
and outliers in blue. The initial correspondences found by
feature descriptor matching (top), and the consensus set cor-
respondences searched by RANSAC (middle) and proposed
consensus maximization algorithm (bottom).

Pose estimation with outliers is often stated as a consensus
maximization problem. One popular solution is random sam-
ple consensus (RANSAC), which has lots of variants [2] [3]
and has been employed in many visual localization methods
[4] [5]. The advantage of RANSAC is the simplicity for
implementation, and the effectiveness in many scenarios with
moderate percentage of outliers. However, RANSAC cannot
tolerate extreme percentage of outliers, say 90%. In addition,
it cannot guarantee the deterministic global optimality due
to the probabilistic convergence.

In contrast to RANSAC, another solution to consensus
maximization is global optimization based methods. It gives
globally optimal solution without relying on an initial value
[6] [7], while it cannot perform in real-time due to the consid-
erable computation time. Most existing global optimization
methods aim at general pose estimation problems. They
employ branch-and-bound (BnB) as the basic framework to
reduce the search space [8], or mixed integer programming
for further acceleration [9]. But the computational cost is
still unsatisfactory as the pose space SE(3) is coupled.
Even inertial measurement is provided, it cannot be easily
substituted into the problem for decoupling.

In this paper, we propose a deterministic visual inertial lo-
calization solution to achieve global convergence with much
higher efficiency. The key idea is to divide SE(3) search
space into multiple 1-D search spaces. Specifically, inspired
by the decoupling idea in [10], we build intermediate cost
function for both point and line features, translation invariant



measurements (TIMs), to decouple consensus maximization
into two cascaded subproblems only related to rotation
SO(3) and translation R3 respectively. Based on TIMs, the
globally optimal rotation is then searched by 1-dimensional
BnB in [−π, π] with the aid of inertial measurements. For the
translation, R3 search is replaced with three 1-dimensional R
search for each axis using prioritized progressive voting. To
the best of our knowledge, this is the first solver for visual
inertial localization with deterministic global optimality. In
summary, our contributions include
• TIMs based formulation of visual inertial localization

that decouples the problem and enables 1D BnB based
global optimization of the rotation.

• Prioritized progressive voting method that replaces R3

space search with three R search for global optimization
of the translation.

• Experiments on simulation and real-world cross-session
datasets that validate the effectiveness and efficiency of
the proposed method against comparative methods.

The remainder of the paper is organized as follows: Sec-
tion II reviews the related literatures. Section III presents the
decoupling of the consensus maximization problem. Section
IV introduces the solutions of the subproblems. Section V
demonstrates the experimental settings and results, followed
by Section VI concluding the paper.

II. RELATED WORKS

A. Random sample consensus

Visual localization and navigation for mobile robots has
been studied extensively in the robotics and computer vision
communities in the recent decade [11] [12]. For robust local-
ization given the feature correspondences containing outliers,
RANSAC is the most popular solution employed in many
visual navigation system. In [13] [14], point feature corre-
spondences based RANSAC are studied. In [15], RANSAC
is extended to line features. When inertial measurements
are provided, the DoF of the problem is reduced, which
is utilized by RANSAC to improve the robustness in [16],
and extended to both point and line correspondences in [5].
As RANSAC is developed on randomized sampling theory,
it is simple to implement and has good performance on
scenarios with moderate outliers. But its disadvantage is also
obvious, including low tolerance against extreme outliers,
local convergence and no guarantee of the optimality [17].

B. Outlier resistent estimator

Another branch to reject outliers is to refer other forms
of cost functions instead of the squared error [18]. In
[19], Geman-McClure cost function is utilized for 3D-3D
registration, which is insensitive to outliers. In [20], M-
estimators in several typical robotics problems are presented.
Switchable cost function is employed to solve pose graph
optimization with outlier loop closures [21]. A more compact
solver for such cost function is dynamic covariance scaling
which is introduced in [22]. More recently, in [23], several
forms of robust cost functions are unified and solved using
graduated non-convexity without an initial guess, which

demonstrates good performance in 3D-3D registration, pose
graph optimization, and is extended to non-minimal solver
for shape reconstruction from an image in [24]. Alternatively,
in [25], the outlier rejection is solved by adaptively removing
the measurements with large errors, which is simple but
show superior performance than RANSAC. These methods
achieve deterministic convergence, while some of them offer
certifiable optimality (or sub-optimality guarantees).

C. Global optimization method

Global optimization methods are proposed to achieve
the global optimality and deterministic convergence. In this
branch of literatures, Branch-and-Bound (BnB) is mostly
used, which gradually prunes the solution space by coarse-
to-fine division. In [6], BnB is used to solve the 2D-2D reg-
istration problems. In [8], a general framework for point, line
and plane features is proposed to solve 3D-3D registration
via BnB. Integrated with mixed integer programming, the
BnB optimization can converge faster [9]. In [17], the linear
matrix inequality constraints are introduced to mixed integer
programming, resulting in a general-purpose faster BnB for
all 2D-2D, 2D-3D and 3D-3D geometric vision problems.
In the works mentioned above, the rotation is modeled as
a rotation matrix with matrix level constraints. Thus it is
unclear about the incorporation of inertial measurements.
In addition, there are also specialized globally optimal al-
gorithms focusing on one class of problem. In [26] [27],
pairs of features are used to decouple the 3D-3D registration.
In [10], TEASER is proposed to decoupled scaled 3D-3D
registration, achieving a fast three-stage optimization. These
works show that it is possible to have superior performance
with specialized algorithms rather than only the general-
purpose framework, even also accelerated.

In this paper, we follow the idea of specialized solver
to bridge the gap of globally optimal deterministic solution
for visual inertial localization, which is a robust 3D-2D
pose estimation problem with inertial measurements. To
the best of our knowledge, this is the first work to study
this problem in the context of global optimality. And the
solution is accurate and efficient which is demonstrated in
later experiments.

III. DECOUPLING TRANSLATION AND ROTATION

The underlying problem of visual inertial localization is
the pose estimation from 3D-2D correspondences with out-
liers. Formally, given a set P consisting of correspondences
between 3D global points pi ∈ R3 and 2D visual points
ui ∈ R2, they satisfy

ui = π(Rpi + t,K) + oi + ei (1)

where R ∈ SO(3) and t ∈ R3 is the camera pose to
be estimated, π is the camera projection function with
known intrinsic parameters K, |ei| < ni is assumed to be
bounded random measurement noise, oi is zero for inlier
while an arbitrary number for outlier. To deal with outliers,
the robust pose estimation generally begins with consensus
maximization problem as



maxR,t,{zi}
∑
zi (2)

s.t. zi|ui − π(Rpi + t,K)| ≤ ni, i ∈ P (3)

where zi is binary, indicating whether oi is zero. To solve
the problem in global, general BnB algorithms search in
SE(3), which is a coupled space of SO(3) and R3. But
this probably leads to exponential computational complexity
in bad cases. For local techniques like RANSAC, inliers may
be estimated conservatively, i.e. inliers regarded as outliers,
especially when the noise is unavoidable.

A. Translation invariant measurements

1) Point-TIM: Inspired by the minimal solution in
RANSAC, we develop an intermediate measurement which is
invariant to the translation of the pose. Mathematically, given
an image key point ui, we have an un-normalized direction
vector from the camera center as

ũi ,

 ũi,x
ũi,y
1

 = K−1
(
ui
1

)
(4)

Then the corresponding world point pi is transformed to the
camera coordinates and satisfies

R1pi + tx
ũi,x

=
R2pi + ty
ũi,y

= R3pi + tz (5)

where R , (RT1 , R
T
2 , R

T
3 )
T and t , (tx, ty, tz)

T . Based
on (5), we have two constraints from a correspondence.
Naturally, given another correspondence uj and pj , we can
have two more constraints as

R1pj + tx
ũj,x

=
R2pj + ty
ũj,y

= R3pj + tz (6)

According to (5) and (6), we have linear constraints of the
translation t. With proper variable substitutions among the
constraints, and the globally observable pitch and roll angles
from inertial measurements, we can eliminate t, reduce
SO(3) to [−π, π], and derive TIM as

dp(α) = dp,1 sinα+ dp,2 cosα+ dp,3 (7)

where α is the unknown yaw angle, dp,1, dp,2, dp,3 and the
derivation details are presented in the Appendix I-A1. Now
we substitute the constraints which are related to both R and
t in (2) with the TIM, leading to

maxR(α),{zij}
∑
zij (8)

s.t. zij |dp,ij(α)| ≤ nij , i, j ∈ P (9)

where nij = min(ni, nj), zij = 1 indicates the i-th and j-th
correspondence derived the constraint are inliers.

2) Line-TIM: Similar to a pair of point correspondences,
given a set of line correspondences L, it is also possible to
develop TIM. Given the end points of the image line segment
uk1 and uk2, we have two un-normalized directions as (4),
denoted as ũk1 and ũk2.

Then following the fact that the point pk on the world line
lies on the plane spanned by the rays from camera center

1The appendix is available on https://arxiv.org/abs/2002.
11905

along direction ũk1 and ũk2, we have

(ũk1 × ũk2)T (Rpk + t) = 0 (10)

which is a constraint for both rotation and translation. Since
arbitrary number of points can be sampled from a line, we
sample another point on the same world line to formulate
the constraint as (10). Then only one line correspondence
can lead to line-TIM after proper substitution as

dl(α) = dl,1 sinα+ dl,2 cosα+ dl,3 (11)

where the line-TIM has the same form as point-TIM in (7),
but the coefficients are different. The derivation details are
presented in the Appendix I-B1.

TIMs based rotation only problem. Note that either (7)
or (11) is only related to the yaw angle. By combining them
together, we have a general consensus maximization problem
with TIM constraints only related to rotation compatible to
the map having both point and line features as

maxR(α),{z∗}
∑
z∗ (12)

s.t. zij |dp,ij(α)| ≤ nij , i, j ∈ P (13)
zk|dl,k(α)| ≤ nk, k ∈ L (14)

B. Two-stage consensus maximization solver

With TIMs for both point and line correspondences, we
decouple the original consensus maximization problem into
rotation only problem, and translation only problem when
the rotation is fixed. Accordingly, the proposed solver has
two stages in cascade:
• We estimate the rotation R̂ by R(α̂) based on the

TIMs in (12). This estimator solves a 1D optimization
problem and is described in Section IV-A.

• We estimate the translation t̂ based on the original
consensus maximization in (2) where the rotation is as-
signed with R̂. This estimator solves a R3 optimization
problem and is described in Section IV-B.

IV. ESTIMATORS OF ROTATION AND TRANSLATION

A. BnB based optimization for rotation

We employ BnB strategy to solve problem (12). The cost
function in (12) relates to α and z∗. But it is obvious that
when α is determined, {z∗} is simply derived by evaluating
the constraints. So we denote the cost function as E(α) that
is explained as the number of inliers given a yaw angle α.

Upper bound of cost function. We then derive the upper
bound of E(α) on the subset A, denoted as E(A), where
α ∈ A ⊆ [−π, π]. Recall (7) and (11), as the forms of point-
TIM and line-TIM are the same, we denote them as d(α).
The lower bound of |d(α)| on A, denoted as d(A), is

d(A) = min |a1 sin(α+ a2) + d3| (15)

where the derivation of the coefficients are in Appendix I-C1.
Note that d(A) can be solved analytically without iterations.
Now we formulate a consensus maximization problem as

maxR(α),{z∗},α∈A
∑
z∗ (16)

s.t. zijdp,ij(A) ≤ nij , i, j ∈ P (17)
zkdl,k(A) ≤ nk, k ∈ L (18)



where the problem is defined on A, and the TIMs constraints
are replaced with tight lower bounds, relaxing the constraints
and yielding an optimistic estimation of ẑ∗. We then have

E(α) ≤ E(A) =
∑

ẑ∗, α ∈ A (19)

as a tight upper bound. The equality exists when all con-
straints give the same α with dp,ij(α) = dp,ij(A) and
dl,k(α) = dl,k(A), which is only possible in noise-free
condition.

Accelerate BnB optimization. With (12-19), we have
the BnB search for globally optimal rotation, of which the
pseudo code is listed in Algorithm 1. Note that the main
idea of BnB is to prune the solution space A when its upper
bound E(A) is smaller than the current best estimates E∗.
Therefore, if we have a fast solution to initialize a good
E∗, most solution spaces can be pruned at early stage,
significantly improving the search efficiency. To implement
this idea, we use RANSAC [5] to generate a rough initial E∗.
In addition, we introduce a heuristics to balance the global
optimality and the efficiency. The best M estimated α during
RANSAC is utilized to initialize M subsets among [−π, π].
Each subset centers at each estimated α with a width w.
When w is large, global optimality is emphasized and vice
versa. Another implementation trick is to store the respective
inliers when evaluating (16) on each subset A. When A is
further divided into smaller subsets, only the stored inliers
within A are evaluated, instead of all constraints, saving
lots of computational cost. These techniques are all shown
to accelerate the search in the experimental ablation study
without drop of accuracy.

Algorithm 1: Globally Optimal Rotation Search
Input: 3D-2D feature correspondences P, L
Output: Optimal α∗

1 Initialize partition of [−π, π] into subsets {Ai}.
2 Initialize best estimation E∗, α∗.
3 Insert {Ai} into queue q.
4 while q is not empty do
5 Pop the first subset of q as A.
6 Compute E(A) as (16).
7 if E(A) > E∗ then
8 Assign center of A as αc.
9 Compute E(αc) as (12).

10 if E(αc) > E∗ then
11 Update E∗ ← E(αc), α∗ ← αc.

12 Subdivide A into subsets and insert into q.

B. Prioritized progressive voting for translation

As the translation has 3DoF, it will take exponentially
higher time if we still apply BnB-based method. Inspired
by the polynomial-time algorithm adaptive voting in [10], we
present the novel prioritized progressive voting for translation
in the following.

Fig. 2: The voting illustration of t̂x. Each t̂ij,x derived by i-th
and j-th correspondence votes for the interval if [ωi, ωi+1] ⊆
[tij,x, tij,x], which means the corresponding consensus set
contains i and j.

When R(α̂) is estimated, the co-linear and co-planar
constraints (5) and (10) are all linear constraints for t. Thus
we can transform the consensus maximization problem with
point and line constraints as

maxt,{zi}
∑
zi (20)

s.t. zi|Ait+ bi| ≤ ni, i ∈ P ∪ L (21)

where Ai ∈ R1×3 and bi ∈ R are the coefficients for linear
constraints derived from (5) or (10) with estimated R(α̂).
However, this problem still has coupled constraints for t so
that R3 search is indispensable.

Decoupled linear constraints. Note that for a point
correspondence constraint (5), we have two linear equations,
while for a line correspondence constraint (10), we have one.
Therefore, given a pair of correspondences including at least
one point correspondence, say the i-th point correspondence
and the j-th point or line correspondence, it is sufficient to
solve t̂ij for this small linear system (see Appendix II1 for
details), then we have

maxt,{zij}
∑
zij (22)

s.t. zij |t̂ij − t| ≤ nij , i ∈ P, j ∈ P ∪ L (23)

Now we find that the constraints are decoupled for each
dimension of t. Set the x-dimension as example, we have

maxtx,{zij}
∑
zij (24)

s.t. zij |t̂ij,x − tx| ≤ nij,x, i ∈ P, j ∈ P ∪ L (25)

arriving at the resultant three dimension-wise linear con-
strained consensus maximization problems.

Dimension-wise voting algorithm. We use a voting algo-
rithm to solve the problem. We first specify the noise bound
nij,x in (24). Given the noise bound ni in (20), we have the
noise bound for t following the techniques in [28] as

tij ≤ t̂ij ≤ tij (26)

The details can be found in Appendix II1.
Still taking x-dimension as example, each estimated t̂ij,x

defines an interval [tij,x, tij,x]. If the real tx lies in this inter-
val, then the real inlier set contains the two correspondences
deriving t̂ij,x. According to [10], the insight is that the inlier
set only changes its membership when real tx enters a new
interval. Besides, given K estimations, the maximum number
of possible consensus sets, i.e. the cardinality of the solution
space, is 2K−1, where K is in quadratic w.r.t the number of



(a) (b)

Fig. 3: The rotation accuracy and computation time over the
increasing outlier rate. BnB2 denotes the BnB with RANSAC
initialization. BnB3 denotes the BnB with both RANSAC
initialization and the implementation trick.

correspondences. This complexity enables a voting algorithm
for all 2K−1 sets. By counting the unique correspondences
of the votes in each set, we get the corresponding consensus
set. Then the maximal consensus set can lead to an estimation
of t̂x. An illustrative case is shown in Fig. 2 and the pseudo
code is listed in Algorithm 2 with x-dimension as example.
For simplicity, we replace t̂ij,x with t̂k,x in the pseudo code.
Following the similar idea in [10], by repeating the voting
algorithm for three times, t̂ is estimated as [t̂x, t̂y , t̂z]T .

Algorithm 2: Voting

Input: {t̂k,x}, {tk,x}, {tk,x}, k = 1..K
Output: Consensus sets S

1 Initialize key-value map S.
2 ω = sort([t1,x, t1,x, t2,x, t2,x, .., tK,x, tK,x]).
3 for i = 1..2K − 1 do
4 S([ωi, ωi+1]) = ∅.
5 for k = 1..K do
6 if [ωi, ωi+1] ⊆ [tk,x, tk,x] then
7 S([ωi, ωi+1]) = S([ωi, ωi+1]) ∪ k.

Prioritized progressive voting algorithm. When the
number of inliers is high, independent voting along three
dimensions is possible. But when the number of inliers is low
and outlier rate is high, independent dimension-wise voting
may lead to failure. The reason is that, though it is almost
impossible that there are more outliers than inliers having
the similar t, it is possible that there are more outliers than
inliers having the similar tx. In such scenario, search along
x-dimension leads to incorrect t̂x, which cannot be corrected
in the successive voting along y or z-dimension.

To deal with such scenario while keeping a low com-
putational complexity, we propose a prioritized progressive
voting for translation in Algorithm 3. The main idea is that
we progressively vote on the three dimensions, but there is
a priority, i.e. number of votes, for early termination. The
experimental results show that the computational complexity
of prioritized progressive voting is almost similar to the
dimension-wise voting. Otherwise, it is also possible to use
3D BnB translation search for better accuracy, but it is slower

(a) (b)

Fig. 4: Computation time comparison over increasing (a)
outlier rate (b) number of points. Ours denotes the proposed
method with prioritized progressive voting, while Ours-DV
denotes the dimension-wise voting.

because of the coupled multi-dimensional solution space.
Finally, we apply nonlinear refinement to achieve the best
accuracy when the maximum consensus set is found.

Algorithm 3: Prioritized Progressive Voting

Input: {t̂k}, {tk}, {tk}, k = 1..K
Output: Maximum consensus set t̂

1 Initialize best estimation E∗ = 0.
2 Sx = V oting({t̂k,x}, {tk,x}, {tk,x}).
3 Sort Sx in decreasing cardinality.
4 for each key [i] in Sx do
5 if |Sx([i])| < E∗ then
6 break;

7 Sy = V oting({t̂k,y}, {tk,y}, {tk,y}, k ∈ Sx([i])).
8 for each key [j] in Sy do
9 if |Sy([j])| < E∗ then

10 break;

11 Sz = V oting({t̂k,z}, {tk,z}, {tk,z}, k ∈
Sy([j])).

12 if maxSz([m]) |Sz([m])| > E∗ then
13 Update E∗ ← maxSz([m]) |Sz([m])|.
14 Update S∗ ← argmaxSz([m]) |Sz([m])|.

V. EXPERIMENTAL RESULTS

In the experiments, we evaluate the proposed consensus
maximization solver on (i) the feasibility and effectiveness
of the subproblem solvers, (ii) the accuracy and robustness
compared with existing methods, and (iii) the performance
in real world visual inertial localization applications. We
implement the proposed solver in MATLAB on a desktop
with CPU Intel i7-7700 3.60GHz and 8G RAM.

A. Ablation study

We build the synthetic world consisting of 3D points
and lines in the cube [−1, 1]3. The 2D image projections
are generated with randomly sampled camera poses in
[−2, 2]3 × [−π, π]3, as well as their inlier correspondences.
All the projected 2D image points are added with bounded
random noise ei with the bound ni = 2. Each outlier



Fig. 5: The sensitivity experiment result using proposed
algorithm with dimension-wise voting (solid) and prioritized
progressive voting (dash).

correspondence is generated from other randomly sampled
camera pose different to ground truth pose. The total number
of correspondences is fixed as 50. Specifically, there are 50
point correspondences when evaluating point only methods,
while 25 point and 25 line correspondences for the point and
line methods. We vary the outlier percentage from 10% to
90% with a step of 10%. Statistic performance indicators are
evaluated with an average of 100 Monte Carlo runs. Denoting
the ground truth pose as [Rgt|tgt], we compute the translation
error as 4T = |t̂ − tgt| in meter and the rotation error as
the angle of 4R = R̂RTgt in degree.

BnB heuristics. We first evaluate the heuristics introduced
in Section IV-A from the aspect of accuracy and efficiency.
As shown in Fig. 3, with the heuristics, the efficiency is
improved while the accuracy stays similar. Since the final
pose is refined by nonlinear optimization, slight rotation
error after BnB can be ignored. As a baseline, we also
show the error of estimated rotation giving the most inliers
in RANSAC, of which the performance is much worse,
indicating inconsistency between the identified inliers and the
real inliers. In following experiments, heuristics are applied
with BnB as default setting.

Translation voting. We then compare the voting strategies
introduced in Section IV-B. Now we can evaluate the final
accuracy after nonlinear refinement. In addition to efficiency
and accuracy, we also evaluate the consistency between the
estimated consensus set and the real inlier set (CCI) using
precision and recall. As shown in Fig. 4, the computation of
the prioritized progressive voting is slightly higher than the
dimension-wise voting. More importantly, the increased time
keeps almost consistent w.r.t outlier rate and correspondences
number, which might be explained as no complexity growth
for prioritized progressive voting. The CCI and accuracy are
shown in the right columns in Tab. I. We see that all variants
achieve perfect CCI, naturally leading to high accuracy.

Sensitivity to noisy inertial measurements. As inertial
measurements are noisy, it’s necessary to evaluate the sensi-
tivity. We add Gaussian noise with zero mean and increasing
standard deviation up to 5 degree on both pitch and roll angle.
The threshold to judge a successful localization is 0.1m for
translation error and 0.5 degree for rotation error as in [5].
The result is shown in Fig. 5, indicating the algorithm can
achieve over 90% success rate when the noise increases to 5
degree. This level of noise is far more than the pitch and roll
estimations in practice [29]. In addition, the performance is

Fig. 6: (a) The number of inliers in the estimated maximal
consensus set w.r.t increasing outliers of successful estima-
tion. (b) The number of inliers in the estimated maximal
consensus set for 100 runs when the outlier rate is 80%.

better when employing prioritized progressive search.

B. Comparison on synthetic datasets

The comparative methods include the RANSAC-based
methods EPnP [14], P3P [13], 2-Entity [5] and globally
optimal method LMI [17]. We use the OpenCV [30] imple-
mentation of EPnP and P3P. For LMI, we modify their open
source code in MATLAB following the paper, since only
code for 3D-3D registration is released. The M and ε are
set to 104 and 10−2, respectively. In addition, we control the
evaluation data having rotation angle less than 60◦ and add it
as the constraint of LMI, as suggested in [17]. The 2-Entity
RANSAC is implemented in MATLAB and we select the
mixed sampling strategy which utilize both points and lines
for pose estimation. For all RANSAC-based method, 100
iterations are performed and the threshold of reprojection
error for counting inliers is 8 pixel [5]. All methods are
followed by nonlinear refinement on the identified consensus
set. We still use the synthetic dataset as in the ablation study.

Efficiency of globally optimal methods. We first compare
the efficiency between the proposed method and the LMI. We
evaluate the computational cost with respect to the number
of feature correspondences and the percentage of outliers.
The result is shown in Fig. 4, the computational cost of LMI
is significantly higher than the proposed methods both for
increasing number of correspondences, and the percentage
of outliers. The growing gap may also indicate that the
complexity of LMI is higher than ours.

Deterministic convergence. The vital difference between
RANSAC and globally optimal method is the convergence.
We compare the number of inliers in the estimated maximal
consensus set with respect to increasing outliers when the
final pose estimation is successful. The result is shown in
Fig. 6, which indicates that the proposed solution achieves
deterministic perfect CCI, while RANSAC gives conserva-
tive estimations with less inliers and LMI finds optimistic
estimations by incorrectly regarding outliers as inliers. In
addition, both RANSAC and LMI fail when the outlier rate is
90%. The results for all 100 runs when the outlier rate is 80%
are also shown in Fig. 6. We can see that the proposed algo-
rithm deterministically finds the globally optimal consensus,
while RANSAC achieves global optimality probabilistically.

Note that the BnB-based methods are usually be used
at the worst cases where RANSAC-based methods cannot
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Fig. 7: Success rate with respect to threshold on the whole three sessions 0827 (left), 0828 (center) and 0129 (right).

TABLE I: Accuracy and CCI comparison.
Outlier Method P3P EPnP 2-Entity LMI Ours-DV Ours

60%

4T(m) 0.0010 0.0009 0.0008 0.0128 0.0005 0.0006
4R(◦) 0.0196 0.0170 0.0059 0.0083 0.0019 0.0020
Precision 1.00 1.00 1.00 0.96 1.00 1.00
Recall 0.99 0.99 1.00 0.98 1.00 1.00
Success% 100 100 100 65 100 100

70%

4T(m) 0.0013 - 0.0011 0.0209 0.0005 0.0006
4R(◦) 0.0213 - 0.0211 0.1059 0.0017 0.0028
Precision 1.00 0 1.00 0.93 1.00 1.00
Recall 0.98 0 0.99 0.93 1.00 1.00
Success% 100 0 100 54 100 100

80%

4T(m) 0.0017 - 0.0017 0.0246 0.0007 0.0006
4R(◦) 0.0267 - 0.0257 0.4778 0.0050 0.0032
Precision 1.00 0 1.00 0.46 1.00 1.00
Recall 0.49 0 0.93 0.58 1.00 1.00
Success% 52 0 96 37 100 100

90%

4T(m) - - 0.0027 - 0.0007 0.0007
4R(◦) - - 0.0411 - 0.0073 0.0043
Precision 0 0 1.00 0.27 1.00 1.00
Recall 0 0 0.70 0.35 1.00 1.00
Success% 0 0 86 0 100 100

1 The accuracy is evaluated for successful trials, the precision and recall of CCI are for all test trails.
2 Ours-DV denotes the proposed method with dimension-wise voting.

handle, due to the high computation time (tens of seconds to
minutes). These cases are those with high outlier rate. While
in [17], the absolute pose estimation algorithm is only tested
under conditions with 50%-60% outlier rate where RANSAC
can also perform well. The cases with higher outlier rate
(say higher than 80%) are not presented. According to the
algorithmic property, the computational complexity of BnB
grows exponentially on the outlier rate. Therefore, the high
time consuming of LMI is reasonable.

Robustness and accuracy. We finally show the perfor-
mance of all methods on the synthetic data, including accu-
racy, precision and recall to measure the CCI, with respect
to percentage of outliers ranging from 60% to 90%. Note
that we only evaluate the accuracy for successful trials, since
result on incorrectly identified consensus set can lead to very
large error, disturbing the accuracy. The result in Tab. I first
confirms that CCI is highly related to the accuracy, validating
the feasibility of maximizing consensus set. RANSAC gives
consistent conservative estimations, as the precision remains
at a higher level compared with the recall. For LMI, the
estimation is prone to regard the outliers as inliers, thus the
recall is higher compared with precision. Considering that
LMI, P3P and EPnP are designed for general visual local-
ization, the better performance achieved by 2-Entity and the
proposed method, designed for visual inertial localization, is
reasonable. But we can still summarize that superior result
can be found by specialized globally optimal method.

TABLE II: Performance on selected cases in real world.
ExpID |ζP |/NP 1 |ζL|/NL1 ExpID |ζP |/NP |ζL|/NL

01 9/18 0/0 02 15/39 0/0

Method 4T/4R
(m/◦)

Inliers2

|ζ∗|/|ζ|
Time

(s)
4T/4R

(m/◦)
Inliers2

|ζ∗|/|ζ|
Time

(s)
EPnP 0.99/0.80 7/12 0.15 0.90/1.33 11/21 0.15
P3P 0.82/0.63 7/11 0.08 1.98/0.60 10/20 0.09
2-Entity 0.67/0.44 8/10 0.10 0.57/0.34 12/21 0.10
LMI 0.16/0.20 9/13 8.45 0.28/0.22 14/19 344.9
Ours-DV 0.12/0.13 9/09 1.73 0.18/0.16 14/14 22.89
Ours 0.12/0.13 9/09 2.28 0.17/0.13 15/15 53.37

ExpID |ζP |/NP |ζL|/NL ExpID |ζP |/NP |ζL|/NL
03 21/65 0/2 04 23/48 7/15

EPnP 0.45/0.97 10/29 0.13 0.55/0.78 19/28 0.11
P3P 0.32/0.88 13/27 0.11 0.37/0.41 19/27 0.09
2-Entity 0.31/0.46 15/27 0.11 0.14/0.21 27/33 0.12
LMI 0.30/0.38 19/44 1724.78 0.28/0.17 22/28 1163.82
Ours-DV 0.14/0.17 21/23 83.14 0.03/0.16 28/29 67.43
Ours 0.13/0.17 21/23 135.21 0.03/0.15 30/30 116.68

ExpID |ζP |/NP |ζL|/NL ExpID |ζP |/NP |ζL|/NL
05 21/38 8/13 06 96/134 3/4

EPnP 1.09/0.81 13/25 0.14 0.27/0.52 93/112 0.13
P3P 1.09/0.81 13/25 0.13 0.17/0.52 90/98 0.10
2-Entity 0.17/0.27 27/29 0.11 0.12/0.46 95/108 0.10
LMI 0.76/0.64 16/28 712.93 0.09/0.28 96/102 2454.3
Ours-DV 0.16/0.11 29/29 27.06 0.08/0.27 99/99 128.46
Ours 0.16/0.11 29/29 62.69 0.08/0.27 99/99 202.79
1 NP denotes the total number of points in the case, |ζP | denotes the number of point inliers, while
NL and |ζL| are numbers for lines.

2 |ζ| denotes the number of identified inliers, while |ζ∗| the true inliers.

C. Comparison on visual inertial localization

Finally, we evaluate all the methods on a real world
cross-session visual inertial localization task. The dataset
employed is YQ-dataset [31]. In the dataset, there are three
sessions collected in summer 2017, denoted as 2017-0823,
2017-0827 and 2017-0828, and one session in winter 2018
after snow denoted as 2018-0129. The 3D map is built
with 2017-0823 session and the other three sessions are
used to evaluate the localization performance, indicating the
changing environment. The details to obtain the 3D-2D point
and line correspondences can be found in Appendix III1.
For evaluation, we compute the ground truth relative pose
between the query camera and the map by aligning the
synchronized LiDAR scans. For the pitch and roll angle, we
use the estimation of visual inertial odometry [32].

Selected cases performance. We first select several typi-
cal examples as in [17] and the results are shown in Tab. II.
The Exp01, Exp02 and Exp03 are cases with pure point
features where Exp03 has lines as disturbance and the outlier
rate in these three cases are all more than 50%. One thing
to note is that in real world dataset, dimension-wise voting
brings slight performance drop, but still achieves superior
performance against comparative methods. Also note that
in Exp03, the proposed method gives optimistic results by



regarding 2 outliers as inliers, which may be caused by
unknown noise bound thus inappropriate threshold in real
world data. In Exp04, Exp05 and Exp06, the utilization of
good line features promotes the performance of point line
methods obviously (2-Entity and ours). Overall, the results
still confirm the conclusions in simulation.

Full dataset performance. Finally, we arrive at the suc-
cess rate on the whole three sessions as shown in Fig. 7.
As LMI is too slow to finish all the dataset, here we only
show the result of ours and RANSAC methods. We first
see that the proposed globally optimal methods consistently
outperform the RANSAC methods on all three sessions. The
other fact is that progressive prioritized voting brings the best
accuracy over the one with dimension-wise voting, because
of the consideration on extremely low number of inliers.

VI. CONCLUSIONS

In this paper, we propose a robust solver designed for
visual inertial localization, achieving global optimization
of the consensus maximization problem, even when the
percentage of outliers is very high, say 90%. The key
step in our solver is the derivation of translation invariant
measurements for both points and lines, thus decoupling the
problem into two smaller subproblems. Then we propose
1D BnB and prioritized progressive voting to find globally
optimal rotation and translation respectively, accelerating the
search efficiency. The effectiveness of the proposed method
is validated on both synthetic and real world dataset.
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