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Abstract— In this paper, we present a multimodal mobile tele-
operation system that consists of a novel vision-based hand pose
regression network (Transteleop) and an IMU-based arm track-
ing method. Transteleop observes the human hand through a
low-cost depth camera and generates not only joint angles but
also depth images of paired robot hand poses through an image-
to-image translation process. A keypoint-based reconstruction
loss explores the resemblance in appearance and anatomy be-
tween human and robotic hands and enriches the local features
of reconstructed images. A wearable camera holder enables
simultaneous hand-arm control and facilitates the mobility of
the whole teleoperation system. Network evaluation results on
a test dataset and a variety of complex manipulation tasks that
go beyond simple pick-and-place operations show the efficiency
and stability of our multimodal teleoperation system.

I. INTRODUCTION

Teleoperation is a crucial research direction in robotics
with many applications such as space, rescue, medical
surgery, and imitation learning [1]. And it is still superior
to intelligent programming when it comes to making fast
decisions and dealing with corner cases. However, teleoper-
ation of an anthropomorphic robotic hand to perform dex-
terous manipulation is still challenging. Markerless vision-
based teleoperation offers strong advantages as it is low-
cost and less invasive. For instance, Dexpilot [2] recently
demonstrated the abilities of vision-based methods which
can compete with other teleoperation methods using tactile
feedback. Since the robot hand and the human hand occupy
two different domains, how to compensate for kinematic dif-
ferences between them plays an essential role in markerless
vision-based teleoperation.

To tackle this issue, we introduce an image-to-image
translation [3]–[5] concept for vision-based teleoperation
methods. Image-to-image translation, which aims to map a
representation of a scene into another, is also a prevalent
research topic widely used in collection style transfer, object
transfiguration, and imitation learning. The key to image-to-
image translation is to discover the hidden mapping feature
between two representations. In our case, we would like to
find a method that can thoroughly comprehend the kinematic
similarity between the human hand and the robot hand.
We assume that if a robot could translate the observed
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Fig. 1. Our multimodal teleoperation system is built on a vision-based
method, Transteleop, which predicts the joint angles of an anthropomorphic
hand, and an IMU-based arm control method. Transteleop gains meaningful
pose information from depth images of a human hand IH based on an
image-to-image translation structure and predicts the joint angles Jhand of
the robot hand. Through this multimodal system, we implement different
manipulation tasks such as pick and place, cup insertion, object pushing,
and dual-arm handover tasks on a PR2 robot with a Shadow hand installed
on its right arm.

scene (such as the human hand) to its scene (such as the
robot hand), the robot would have perceived valuable hidden
embeddings that represent the resemblance of pose features
between two image domains.

To this end, we propose a novel vision-based teleoperation
method called Transteleop, which extracts coherent pose
features between the paired human and robot hand based on
image-to-image translation methods. Transteleop takes the
depth image of the human hand as input, then estimates
the joint angles of the robot hand, and also generates the
reconstructed image of the robot hand. In the spirit of
supervised learning, to enhance the richness of the features
extracted from the image translation structure, we design
a keypoint-based reconstruction loss to focus on the local
reconstruction quality around the keypoints of the hand.

One problem of current vision-based methods is that the
hand of the teleoperator should stay inside the limited view
range of the camera system. This restriction impedes the
operators from completing manipulation tasks that need a
wide working area. To achieve a truly mobile hand-arm tele-
operation system, we develop a camera holder to mount the
camera on the arm of a human. Additionally, we implement
IMU-based teleoperation to control the movements of the
robot arm.

In conjunction with the Transteleop method, a camera
holder, and IMU-based arm teleoperation, this multimodal
system can not only maintain the natural motion of the
human fingers but also allow for flexible arm motion. Fig. 1
illustrates the framework of our proposed method for hand-
arm teleoperation.

The main contributions are summarized below:
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1. We set up a novel and multimodal hand-arm teleop-
eration system for a PR2 Robot equipped with a 19 DoF
Shadow hand.

2. A novel vision-based deep learning method,
Transteleop, is proposed to estimate the joint angles
of the robot and to bridge the kinematic disparities between
the robot hand and the human hand. The idea is inspired by
image-to-image translation methods.

3. Thanks to a self-designed camera holder, the teleoper-
ator is not limited to a fixed workspace anymore.

4. The demonstration of the teleoperation system across
three trained human demonstrators on several subtle and
dexterous tasks suggests the reliability of our system.

II. RELATED WORK

A. Markerless vision-based teleoperation

Markerless vision-based teleoperation [6], [7] of robots
offers the advantages of allowing for natural, unrestricted
limb motions and of being less invasive. Especially mark-
erless methods are suited to dexterous teleoperation, which
requires capturing all the essence of finger motions. With
the rapid expansion of deep learning methods, leveraging
image processing algorithms like hand pose estimation or
object segmentation is becoming a new trend in the robotic
community. Michel et al. [8] tracked human body motion
from markerless visual observations, then mapped human
motions to a NAO humanoid robot by the inverse kinematics
process. Antotsiou et al. [9] proposed a hand pose estimator
and a task-oriented retargeting method to achieve the tele-
operation of an anthropomorphic hand in simulation. Similar
to [10], they put one neural network, HandLocNet, in charge
of detecting the hand in the RGB image and used the network
HandPoseNet to accurately infer the three-dimensional posi-
tion of the joints, retrieving the full hand pose. Nevertheless,
these methods strongly depend on the accuracy of the hand
pose estimation or the classification and spend much time on
post-processing. In our previous work [11], we proposed the
end-to-end neural network TeachNet, which was used with
a consistency loss function to control a five-fingered robotic
hand based on simulated data. Although this method was
efficient, we only demonstrated this method by simplistic
grasping and did not show a high level of dexterity. As
TeachNet only focused on finger motions, all experiments
were employed by a robot hand fixed in the same position.
The learning models in [2] provided hand pose and joint
angle priors using a fused input point cloud coming from
four cameras at fixed positions. Although the teleoperation
results were quite impressive, the two-phased data collection
procedure they used was hard to replicate. In addition, this
system cannot carry out manipulation tasks that require a
large motion range because of the restricted workspace of
the pilot.

B. Wearable device-based teleoperation

Robotic teleoperation has usually been implemented
through different types of wearable devices such as marker-
based tracking [12], inertial measurement units (IMU) [13],

electromyography (EMG) signal sensors [14], virtual/mixed
reality devices [15] and highly promising haptic devices [16].
Regarding dexterous teleoperation, glove-based methods
must be customized and easily obstruct natural joint mo-
tions, while IMU-based and EMG-based methods provide
less versatility and dexterity. On the other hand, regarding
teleoperation of a multiple degree of freedom (DoF) robotic
arm, contact-based methods are convenient to implement and
efficient enough. For instance, Fang et al. [17] established a
multimodal fusion algorithm of a self-designed IMU device
to deduce the orientations and positions of the human arm
and hand. The robot experiments demonstrated a smooth
arm control of the UR5 robot and the SCHUNK arm but a
shallow grasping and releasing ability of the Barrett robotic
hand. Motion capture systems provided accurate tracking
data but can be expensive, and the correspondence problem
between markers on the fingers and cameras still needs to
be solved. Zhang et al. [18] presented a motion capture
system and a myoelectric device for teleoperative control
over a hand-arm system. The system worked convincingly
well as a prosthetic HMI, but experiments did not reveal
how well the system works for intricate in-hand manipulation
tasks. Besides that, tactile feedback is essential in contact-
rich dexterous manipulation tasks [19], [20]. Haptic devices
are widely investigated in surgical robots and are used to
collect training data in virtual reality applications [21].

In this paper, to attain natural human finger motion,
we will further explore a markerless method to discover
appearance and anatomy of human and robotic hands and to
verify the performance of our approach regarding dexterous
manipulation. To create a complete robotic hand-arm system,
we will develop an arm tracking system using an IMU setup,
which is easy to implement and suitable to achieve accurate
control.

C. Image-to-image translation methods

Image-to-image translation has been widely researched on
different generative models such as restricted Boltzmann ma-
chines [22], auto-encoder models [23], generative adversarial
networks (GANs) [24], and several variants of these models.
In the robotic field, image-to-image translation methods
have been employed to map representations from humans to
robots. Simith et al. [25] converted the human demonstration
into a video of a robot and generated image instructions of
each task stage by performing pixel-level image translation.
They constructed a reward function for a reinforcement
learning algorithm through translated instructions and eval-
uated the proposed method in a coffee machine operation
task. Sharma et al. [26] decomposed third-person imitation
learning into a goal generation module and an inverse control
module. The goal generation module translated observed goal
states from a third-person view to contexts of the robot by
translating changes in the human demonstration images. All
the above methods indicate that image-to-image translation
methods are capable of learning shared features between
mapping pairings. Hence, we will study how to use this
method to extract shared features between depth images of



the human hand and the robot hand.

III. PROBLEM FORMULATION

Our goal is to build a mobile robotic hand-arm teleop-
eration system in which the teleoperator is in an unlimited
workspace and performs natural hand motion for a series of
manipulation tasks. To set up such a system, we formulate
a novel vision-based method to teleoperate the anthropo-
morphic hand and utilize an IMU-based device to control
the arm simultaneously. Let IH be the image of a human
demonstrating hand poses of manipulation tasks as observed
by a depth camera. The vision part aims to train a neural
model that feeds IH and predicts joint angles Jhand of the
robot while the IMU part intends to map the absolute motion
of the human arm to the robot arm. The robot system used
in this work is a PR2 robot with a 19 DoF Shadow hand
mounted on its right arm, as shown in Fig. 1. Unlike the 7
DoF left arm of PR2, the right arm of PR2 only has 5 DoF
due to the attached Shadow hand.

IV. TRANSTELEOP: VISION-BASED TELEOPERATION BY
IMAGE-TO-IMAGE TRANSLATION

We propose a novel network Transteleop to discover the
kinematic resemblance between the human hand and the
robot hand and to predict the joint angles of the robot hand
using the image-to-image translation method.

A. Transteleop
Imagine that we have an image IR of a robotic hand

from a fixed viewpoint and an image IH of a human hand
in random global orientation, while the robotic hand in the
image acts exactly the same as the human hand. Even though
the bone length, the global pose, and the joint range of these
paired hands are distinct, the pose feature Zpose such as
the skeletal shape and the whole silhouette will reveal the
similarity between them. We believe that it would be very
favorable to predict Jhand from the shared pose feature Zpose

rather than the bare IH . In order to attain an instructive
feature representation Zpose, we adopt a generative structure
that maps from image IH to image IR and retrieves the
pose from the bottleneck layer of this structure as Zpose.
Although conditional GANs have led to a substantial boost
in the quality of image generation, the discriminator pursues
the high reality of reconstructed images but does not fully
concentrate on the pose feature of the input. For this reason,
we choose an auto-encoder structure to sustain our pipeline,
as visualized in Fig. 2.
Encoder-decoder module. The encoder takes a depth image
of a human hand IH from various viewpoints and discovers
the latent feature embedding Zpose between the human
hand and the robot hand. We use six convolutional layers
containing four downsampling layers and two residual blocks
with the same output dimension. Thus, given an input image
of size 96×96, the encoder computes an abstract 6×6×512
dimensional feature representation ZH .

Similar to [5], we connect the encoder and the decoder
through fully-connected layers instead of convolutional lay-
ers because the pixel areas in IH and IR in our dataset are

not matched. This design results from the fact that a fully-
connected layer allows each unit in the decoder to reason
on the entire image content. In contrast, a convolutional
layer cannot directly connect all locations within a feature
map. Through the embedding module, we extract the useful
feature embedding Zpose from the 8192-dimensional feature
representation ZH .

The decoder aims to reconstruct a depth image of the robot
hand ÎR from a fixed viewpoint from the latent pose feature
Zpose. One fully-connected layer connects the feature from
the Zpose to robot feature vector ZR. Four up-convolutional
layers with learned filters and one convolutional layer for
image generation follow.

Unlike common image-to-image translation tasks, the gen-
erated image ÎR should care more about the accuracy of
local features such as the position of fingertips instead of
global features such as image style. This is because the
pixels of the joint keypoints possess more information about
the hand pose. Regarding the Shadow hand, as depicted
in Fig. 2, each finger has three keypoints. Therefore, we
designed a keypoint-based reconstruction loss to capture the
overall structure of the hand and concentrate on the pixels
around the 15 keypoints of the hand. The scaling factor of
each pixel error is determined by how close this pixel is
to all keypoints. We regard the eight neighboring pixels of
each keypoint as important as these keypoints themselves.
The reconstruction loss Lrecon is an L2 loss that prefers to
minimize the mean pixel-wise error but does not encourage
less blurring, defined as:

Lrecon =
1

N

N∑
i=1

αi · (IR,i − ÎR,i)
2 (1)

where N is the number of pixels and αi ∈ [0, 1] is the
weighting factor of the i-th pixel.
Joint module. The joint module focuses on deducing 19-
dimensional joint angles Jhand from the latent feature em-
bedding of the decoder. We choose ZR instead of Zpose

because ZR has richer features depicting the pose feature of
the robot hand. Three fully-connected layers are employed
in the joint module. The joint module is supervised with a
mean squared error (MSE) loss Ljoint

Ljoint =
1

M
‖Jhand − J‖22 (2)

where M is the number of joints and J denotes the ground
truth joint angles.

Overall, the complete training objective:

Lhand = λrecon · Lrecon + λjoint · Ljoint (3)

where λrecon, λjoint are the scaling factors.

B. Paired dataset

We trained Transteleop based on a recently released
dataset of paired human-robot images from [11]. This dataset
contains 400K pairs of simulated robot depth images and
human hand depth images. The ground truth are 19 joint
angles of the robot hand, which correspond to the middle,
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Fig. 2. Transteleop Architecture. Left: Examples of paired human-robot hand datasets used to train Transteleop. Center: The encoder-decoder structure is
an image-to-image translation branch, which feeds depth images of a human hand IH and produces reconstructed depth images of the robot hand IR. The
joint module takes the pose embedding from the encoder-decoder structure and predicts the robot’s joint angles Jhand. The preprocess module is a spatial
transformer network which explicitly permits the spatial manipulation of input images. Right: Examples of reconstructed robot images are generated from
Transteleop, whose inputs are the dataset examples shown on the left.

Fig. 3. The heatmap of scaling matrix α. The darker color illustrates how
important these pixels are.

proximal, and the metacarpal joints of five fingers plus
one additional joint for the little finger and the thumb,
respectively. This paired dataset records nine depth images
of the robot hand from different viewpoints simultaneously,
corresponding to one human pose. Considering to abstract
an explicit kinematic configuration from the robot image,
we only use the robot images taken in front of the robot, as
shown on the left side of Fig. 2.

One challenge of training Transteleop is that the poses
of the human hand vary considerably in their global ori-
entations. Thus, we applied a spatial transformer network
(STN) [27], which provides spatial transformation capabil-
ities of input images, before the encoder module. Due to
the invariance of the outputs JR and IR to the spatial
transformation of the input image, we do not need to modify
the ground truth.

V. HAND-ARM TELEOPERATION SYSTEM

However, the hand of the teleoperator easily disappears
from the field of view of the camera if the arm movement
is relatively large. Even though a multicamera system could
be one of the solutions for this, we solve this problem by
a cheap 3D-printed camera holder, which can be mounted
on the forearm of the teleoperator, as shown in Fig. 4.

Consequently, the camera will move along with the arm. The
whole weight of the camera holder is 248 g, and the camera
used in our experiments is the Intel RealSense SR300 depth
sensor, whose weight is 108 g.

Fig. 4. The camera holder is used to mount the camera on the human arm.

Due to the uncertainty of the camera position, we use
the Perception Neuron (PN) device [28] to control the arm
of the robot, and thus extend this teleoperation system to
the hand-arm system. Perception Neuron is an IMU-based
motion capture device that is popular in the fields of body
tracking and VR / Game interaction. Regarding single-arm
tracking, three IMU elements are sufficient to capture the
motion of the palm, upper arm, and forearm. We set the
global frame of PN to be parallel to the robot base frame.
Depending on the rotation data from PN and the link length
of the robot arm, we calculate the wrist pose of the robot.
Then we compute the joint angles of the robot arm by feeding
this pose to the BioIK solver [29]. After this, we set the
angular velocity Vt of each joint by calculating and scaling
the feedforward joint difference between the desired joint
angles of the current frame J ik

t and of the previous frame
J ik
t−1 and the feedback joint difference between the desired

joint angle of the current frame J ik
t and of the current robot

joint state Jrobot
t .

Vn,t = δ1 · (J ik
n,t − J ik

n,t−1) + δ2 · (J ik
n,t − Jrobot

n,t ) (4)

where n is the n-th joint of the arm, δ1, δ2 account for the
scaling factor of each velocity term.



(a) (b) (c)

Fig. 5. (a) and (b): The fraction of frames whose absolute maximum joint angle/distance error is below a threshold between the Transteleop approach
and different baselines on our test dataset. (c): Comparison of the absolute average angle error on the individual joint between the Transteleop approach
and different baselines on our test dataset. F means the first finger, L means the little finger, M means the middle finger, R means the ring finger, T means
the thumb. 2, 3, 4, 5 mean the n-th joint of the finger.

VI. NETWORK EVALUATION

A. Optimization and inference details

The input depth images are extracted from the raw depth
image as a fixed-size cube around the hand and resized
to 96 × 96. To optimize our networks, we use minibatch
stochastic gradient descent and apply Adam optimizer with
a learning rate of 0.002 and momentum parameters β1 =
0.5, β2 = 0.999. We add a batch normalization (BN) layer
and a rectified linear unit (ReLU) after each convolution
layer. ReLU is also employed as an activation function
after all FC layers except for the last FC layer. We use
λrecon = 1, λjoint = 10. At inference time, we only run
the encoder module and the joint module for joint angle
regression.

B. Transteleop evaluation

To evaluate whether Transtelop could learn indicative
visual representations, we compared the Transtelop method
with two network structures: TeachNet [11] and GANteleop,
which adds a PatchGAN discriminator and an adversarial
loss based on the “pix2pix” framework [3]. Additionally, to
show the regression results from the robot’s own domain,
we trained a model that removes the decoder module in
Transteleop and only feeds the images of the robot hand.
This baseline is referred to as Robotonly. All images fed
into Robotonly are taken from a fixed third-person viewpoint.
To examine whether the STN module learns invariance to
the hand orientation and rotation, we also trained Transtelop
without using STN baseline, which has the same structure
as Transtelop but without the preprocess module.

We evaluated the regression performance of Transteleop
and four baselines on our test dataset using standard metrics
in hand pose estimation: 1) the fraction of frames whose
maximum joint angle errors are below a threshold; 2) the
fraction of frames whose maximum joint distance errors are
below a threshold; 3) the average angle error over all angles
in Θ.

In Fig. 5, the Robotonly model significantly outperforms
other baselines over all evaluation metrics because of the

matched domain and the identical viewpoint. Transtelop and
GANteleop both show an average 10.63% improvement of
the accuracy below a maximum joint angle, which is higher
than that of TeachNet. We infer that both image-to-image
translation methods seize more pose features from the robot
than TeachNet because these methods have to generate a
whole image of the robot hand. Examples of generated robot
images by Transteleop are visualized in the right part of
Fig. 2. Even if the reconstructed images are blurry, they are
rather similar to the ground truth in the left of Fig. 2, which
explicitly proves that the pose feature zR in the embedding
module could contain enough pose information. Moreover,
the reason why GANteleop worse than Transteleop is that
the discriminator in GANteleop focuses on pursuing realistic
images and weakens the supervision of Ljoint. Comparing
Transtelop and Transtelop without using STN, there is no sig-
nificant improvement due to the STN module. This suggests
that the additional spatial transform brings a little appearance
normalizing effect to this task, but does not significantly
promote the hand pose transform to a canonical pose.

As illustrated in Fig. 5(c), the absolute average error of the
joint regression of all methods is lower than 0.05 rad. The
highest error happens on thumb joint 5 because there is a
big discrepancy between the human thumb and the Shadow
thumb.

VII. MANIPULATION EXPERIMENTS

The multimodel teleoperation approach was systematically
evaluated across four types of physical tasks that analyze
precision and power grasps, prehensile and non-prehensile
manipulation, and dual-arm handover tasks. For the control
of the arm, we set δ1 = 0.7, δ2 = 0.1. The frequency of
the arm’s velocity control is 20 Hz. The starting poses of the
human arm were always consistent with the starting pose
of the robot arm. Meanwhile, the arms of the robot always
started and ended at almost similar poses over every task. The
frequency of the hand’s trajectory control is set to 10 Hz.
One female and two male testers have participated in the
following robotic experiments, and each task was randomly
performed by one of them.



(a) (b)

Fig. 6. (a) The PR2 robot picks a Pringles can and places it in a bowl. The Pringles and the bowl are set on the same table. (b) The PR2 robot picks a
wooden cube on the table and places it on a rectangular brick on a box. The height of the box is 325 mm.

(a) (b)

Fig. 7. (a) The PR2 robot inserts three cups into each other. (b) The PR2 robot hands a roll of paper from its left gripper over to its right hand.

Fig. 8. The PR2 robot pushes a rectangular brick to a specified goal. The red rectangular on the table represents the target pose of the brick.

1) Pick and place. We prepared two testing scenarios: pick
a Pringles can and place it in a red bowl on the same table;
pick a cube on the table and place it on top of a brick. The
first scenario requires the power grasp skills of the robot,
and the second scenario needs the precision grasp skills of
the robot and a wide-enough workspace for the teleoperator.

2) Cup Insertion. Three concentric cups are to be inserted
into each other. This task examines the abilities of precision
grasp and releasing.

3) Object pushing. We set random initial poses of a brick
then push the brick into a designated pose. This task contains
the challenges of pushing, sliding, and precision grasping.

4) Dual-arm handover. The left arm will hand a roll of
paper over to the right hand. The operator also exploits the
PN setup to control the left arm and left gripper of PR2. This
task tests the coordination ability of the whole teleoperation
system. Owing to the mobility of our system, the human can
sit face to face instead of parallel to the robot to get a clear
view of it.

Similar to [2], the operators performed a warm-up training
phase for each task with five non-consecutive attempts before
the real testing trials. For easier tasks such as pick and
place, after three trials, the operators could complete the task
well. But for the handover task, the teleoperator took more
trials to adapt to the opposite operating direction of the arm.

TABLE I
AVERAGE COMPLETION TIME AND SUCCESS RATE OF EACH TASK

pick1 pick2 cup pushing handover
Ave. time 18.5 37.2 25.5 62.0 36.33

Ave. success rate 100% 100% 100% 80% 60%

Each task was conducted five times by one demonstrator.
The Figs. 6, 7, 8 qualitatively demonstrate the experimental
results of our hand-arm system.

Table I numerically shows the average completion time a
teleoperator took to finish a task, and the success rate. The
completion time was calculated when the robot started to
move until it went back to the starting pose. The high success
rate and short completion time of two pick and place tasks,
and the cup insertion task indicate our system has the ability
of precision and power grasps. Compared to two pick and
place tasks shown in Fig. 6, the brick is much smaller than
the bowl so that the robot needed a longer time to find a
precious place to land the cube. During the pushing task,
the robot could quickly push the brick close to the target
position using multiple fingers. Nevertheless, the operator
took a long time to deal with the orientation of the brick
in order to make the pushing error lower than 5 mm. The
handover task achieved a relatively low success rate, mainly
because of the imprecise control of the left gripper, so the



robot accidentally lost the object. These results reflect the
fact that the visual-based method is more suitable for multi-
finger control than the IMU-based method.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presents a hand-arm teleportation system
by combining a vision-based joint estimation approach,
Transteleop, and an IMU-based arm teleoperation method.
Transteleop aims to find identical kinematic features be-
tween the anthropomorphic robot hand and the human
hand based on a human-to-robot translation model. The
control connection between the hand and the arm is
achieved by a self-designed camera holder, which makes
this whole system mobile and less unrestricted. A series
of robotic experiments, such as pushing a brick, dual-
arm handover, and network evaluation on the test dataset
verify the feasibility and reliability of our method. More
implementation details, videos, and code are available at
https://Smilels.github.io/multimodal-translation-teleop.

Although our method performs well in real-world tasks, it
still has some limitations. First, the camera holder is an extra
burden for the operator, which is not comfortable during
long-term teleoperation. We would like to implement real-
time hand tracking by a camera mounted on a robot arm
to achieve an unlimited workspace for the novice. Second,
due to the lack of hand poses, which are commonly used in
dexterous manipulation in our dataset, some high-precision
tasks such as bottle opening and screw tightening are still
intractable to the current system. Therefore, we plan to
collect a hand dataset which focuses more on the subtle poses
of the thumb, the first finger, and the middle finger. Third,
slip detection and force estimation could be implemented
to reduce the control burden on the user and to avoid
unintentional collisions of the robot.
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