
Optimal Motion Planning for Multi-Modal Hybrid Locomotion

H.J. Terry Suh1, Xiaobin Xiong2, Andrew Singletary2, Aaron D. Ames2, Joel W. Burdick2

Abstract— Hybrid locomotion, which combines multiple
modalities of locomotion within a single robot, can enable
robots to carry out complex tasks in diverse environments.
This paper presents a novel method of combining graph
search and trajectory optimization for planning multi-modal
locomotion trajectories. We also introduce methods that allow
the method to work tractably in higher dimensional state
spaces. Through the examples of a hybrid double-integrator,
amphibious robot, and the flying-driving drone, we show that
our planner tractably gives full-state trajectories that are
probabilistically optimal and dynamically feasible.

I. INTRODUCTION

A hybrid locomotor combines multiple movement modal-
ities into a single platform. Examples of hybrid locomotion
(HL) include amphibious vehicles with the ability to swim
and drive, or flying cars with the ability to drive and
fly. Hybrid locomotion can allow robots to tackle more
complex tasks in complicated environments, while achieving
greater performance, such as improved energy efficiency. For
instance, a flying-car can readily fly over obstacles or uneven
terrain via aerial mobility, while driving when possible to
improve energy-efficiency. Prior works on hybrid locomotion
[1], [2], [3], [4], [5], [6], [7] have often investigated the
design and feasibility of hybrid locomotion strategies, and
examples of such robots are given in Fig. 1.

Fig. 1. Top Row: A ”Drivocopter” Drone (developed by the au-
thors) which can fly and drive. Video of operation can be accessed at
https://www.youtube.com/watch?v=QZyuvXfifvQ. Bottom Row: ”Ambot”
Amphibious Robot [1] capable of ground and marine locomotion.

1Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA, hjsuh@mit.edu

2Deptartment of Mechanical and Civil Engineering, California Institute
of Technology, Pasadena, CA 91125, USA, {xxiong,asinglet,
ames}@caltech.edu, jwb@robotics.caltech.edu

Fig. 2. Different paths that a flying-driving robot could take between
building rooftops. The vehicle flies along the purple trajectory, drives as
much as possible along the red trajectory, and alternates between flying and
driving on the green trajectory.

However, realizing the full potential of these robots not
only depends on clever design, but also on autonomous
planning of their complex motion strategies. For instance,
Fig. 2 illustrates different paths that a flying-driving robot
(such as the Drivocopter of Fig. 1) could use to traverse
between two building rooftops. The different paths have
entirely different energy-costs, travel times, and robustness,
which ultimately dictate robot performance in this task.

Unlike conventional motion planning problems, the path
cost depends not only on the optimality of the trajectory seg-
ments in each modality, but also on the switching sequence,
time, and state coordinates. The problem of achieving com-
binatorial optimization of the switching sequences, as well
as optimization of trajectories within each modality, makes
this problem particularly challenging, as illustrated by the
different paths in Fig. 2.

Many existing motion planning strategies cannot directly
address the difficulty of multi-modal planning. Graph-based
motion planning approaches (PRM [8], RRT [9], RRT* [10])
excel at discrete optimization in sampled coordinates, but
suffer from the curse of dimensionality. They are unable to
produce full-state trajectories for high-dimensional systems
and do not readily incorporate costs that are not functions of
sampled coordinates.

Motion planning algorithms based on trajectory optimiza-
tion (e.g., via direct collocation [11], [12]) either assume
smooth dynamics, or use multi-phase optimization with pre-
specified domain sequences [13]. This is due to the fact that
standard nonlinear programming frameworks cannot handle
the combinatorial optimization of discrete locomotion mode
switches. Mixed-Integer Programming methods [14], [15]
transcribe these problems well, but do not scale well enough
to handle switching sequences and coordinates of realistic
high-dimensional problems.

ar
X

iv
:1

90
9.

10
20

9v
1

 [
cs

.R
O

]
 2

3
Se

p
20

19

https://www.youtube.com/watch?v=QZyuvXfifvQ

Existing works in multi-modal planning often bypass this
problem by only considering discrete graph-based planning
([16],[17],[18]). By ignoring the continuous dynamics of the
robot, these planners often ignore dynamic feasibility in a
single modality, and how the dynamic constraints affect the
cost. In addition, although energy expenditure is often the
most important cost in hybrid locomotion, direct calculations
of this cost from change in position is not possible without
making vast simplifications, such as using Cost of Transport
(COT) to linearly map distance to energy ([16],[18]).

To address this problem, we present a novel motion-
planning method for hybrid locomotion that considers the
problem as a graph-search with local trajectory optimization
on the continuous dynamics between connected nodes. In
low-dimensions, we propose a graph construction strategy
on the modality-partitioned state-space such that no edge
crosses the guard between partitions. The cost of traveling
between sample points is found using optimal trajectory gen-
eration for the corresponding modality, and a graph-search
determines the nearly optimal state-space path. To make the
method tractable in higher dimensional state spaces, we also
propose constraining some subspace of the state-space to
be a function of sampled states via virtual constraints, and
learning the cost function from offline trajectory optimization
batches.

To the best of our knowledge, we present the first motion
planner for multi-modal locomotion that considers direct
representation of the energy cost as well as dynamic con-
straints, while retaining probabilistic optimality. The pro-
posed method is primarily implemented in simulation: the
hybrid double-integrator with viscous friction is shown as
a low-dimensional case (Sec.IV). Then, example trajectories
for more-realistic systems are given by considering amphibi-
ous (Sec.V) and flying-driving locomotion (Sec.VI).

II. PROBLEM FORMULATION

A. The Hybrid Locomotion System

We define a hybrid locomotion system as a type of hybrid
control system [13] with additional constraints. We define
the hybrid locomotion system H L as a tuple

H L = (FG,D,U ,S,∆)

In the below description of each element, i denotes the
index of the locomotion mode (i.e. flying or driving):

• FG = {(fi, gi)} describes the dynamics associated
with each locomotion mode. The dynamics are assumed
to take a control-affine form: ẋ = fi(x) + gi(x)u .

• D = {Di} is the set of domains, or state-spaces,
associated with the continuous dynamics of each mode.

• U = {Ui} is the set of admissible control inputs
associated with each mode.

• S = {Si,j} is the set of guard surfaces that describes
the boundaries between domains of mode i and j.

• ∆ = {∆i→j} is the set of reset maps that describe
discrete transformations on the guard surface Si,j

We additionally assume that each state x ∈
⋃
Di belongs

to a single mode i. I.e., the domains disjointly partition the
reachable state-space.

B. Optimal Trajectories in the Hybrid Locomotion System

To define an optimal hybrid trajectory, we formulate a cost
for each mode’s control-affine system in Bolza form:

Ji = Φi(x(t0), t0, x(tf), tf) +
tf

∫
t0

Li(x(t), u(t), t)dt

There also exists a constant switching cost J(∆i→j) to tran-
sition from one modality i to j. We formulate the problem of
finding the optimal trajectory for a hybrid locomotion system
as the following two-point boundary value problem.

min
u

∑
Ji + J(∆i→j)

s.t. ẋ = fi(x) + gi(x)u ∀x ∈ Di u ∈ Ui ∀i,
x(t0) = x0, x(tf) = xf

In words, we want to find a trajectory that is dynamically
feasible within each modality, while optimizing the cost
functional throughout the entire trajectory, which would also
require optimizing the order of discrete modes to visit.

III. PLANNING METHODOLOGY

Section III-A reviews our basic planning concept that
combines sampling-based planning with local trajectory opti-
mization. Because this approach may not scale well to prac-
tical situations, Section III-B introduces virtual constraints
and off-line learning to improve real-time performance.

A. Dynamic Programming with Continuous Optimization

1) Graph Structure: First, we discretize the problem by
sampling coordinates in each domain Di. The vertices, V , of
a digraph, G(V,E), are constructed from these samples. The
edges represent locally optimal paths between the vertices.
Each edge is weighted with the optimal transport cost. To
avoid the situation where the two vertices of an edge lie in
different locomotion modalities, we additionally impose the
following constraints on the graph:

1) e = (xi → xj) ∈ E, xi, xj ∈ Dk for some mode k.
I.e., edges only connect states in the same mode.

2) We explicitly sample the guard surface and only allow
paths to cross a guard through a guard sample point.

Fig.3. A and B illustrate these conditions. The shortest-path
search is tackled by Djikstra’s algorithm [19] once the locally
optimal trajectory costs are known.

Fig. 3. A) red edges cross a guard surface between domains D1 and D2,
violating the constraint on edges. B) By sampling on the guard surface and
allowing no edges between D1 to D2, all graph edges are constrained to a
single mode. C) Node augmentation to handle modality switching costs.

2

If there exists a switching cost to go from one modality to
another, we augment the sample on the guard surface x with
two connected nodes x1 and x2 that shares the same state-
space coordinates, and assign switching cost to the edge cost
between the two samples, as illustrated in Fig. 3.C.

2) Continuous Optimization of Trajectory Segments: As
each edge connects states in a single mode, we estimate the
edge weight by solving the optimization problem:

w(x1 → x2) = min
u

Ji

s.t. ẋ = fi(x) + gi(x)u, x ∈ Di, u ∈ Ui,
x(t0) = x1, x(tf) = x2

where x1, x2 ∈ Di. This standard trajectory optimization
problem can be tackled using existing methods, such as direct
collocation [12].

3) Final Path Smoothing: The path(s) returned from
graph-search are smoothed via trajectory optimization, know-
ing the switching sequence and the guard surface points.
Given a path of samples P = (x1, x2, · · · , xk) resulting from
graph search, we partition the state space samples using their
modalities, such that⋃

Pi =

{
P1 = {xi|0 ≤ i ≤ k1,∀xi ∈ Dj1} ∪ · · · ∪
Pn = {xi|kn−1 ≤ i ≤ kn,∀xi ∈ Djn}

where ji denotes the mode of each partition, and xki
denotes

the sample on the guard surface where the trajectory crosses
during a mode switch. The optimal trajectories between
boundary points is then found by solving the following
optimization problem for each partition:

min
u

Jji

s.t. ẋ = fi(x) + gi(x)u, x ∈ Dji , u ∈ Uji ,
x(tki) = xki , x(tki+1) = xki+1

The total trajectory is reconstructed by concatenating the
trajectories x∗ = (x∗1, x

∗
2, · · · , xn)∗ induced by the optimal

control inputs u∗i for each partition.

B. Extension to High Dimensions

Although dynamic programming with segment-wise tra-
jectory optimization shows good promise for hybrid loco-
motion, it is computationally expensive, requiring O(|V |2)
instances of trajectory optimization. In high dimensions, the
number of samples increases exponentially if the resolution
is maintained, and trajectory optimization methods scale
poorly. The two methods introduced in this section aim to
make this method tractable for high-dimensional systems.

1) Reduced-Order Coordinates via Virtual Constraints:
We can reduce the dimensionality of the sample space by
introducing virtual constraints that fix some coordinates as
a function of the sampled-coordinates. The state-space is
divided into sampled coordinates (xs) and auxiliary coor-
dinates (xa). The full state is recovered from samples in the
reduced space, xs, by appending auxiliary coordinates:

x = (xs, xa)T = (xs, v (xs))
T (1)

The state partioning into xs and xa are problem-dependent,
but can be understood in the context of model-order re-
duction and bisimilarity: if the original system and the
virtually-constrained system show bounded difference in
their evolution, it indicates a good choice of coordinates and
constraints. Rigid body coordinates of position and velocity,
or differentially flat coordinates [20] can be good choices.
Eliminating the sampling of the subspace xa can significantly
reduce computation, making the method tractable.

2) Learning the cost function from offline optimization:
To find the weight between two sampled coordinates xs1
and xs2 in the graph, let us first define a function J :
Rdim(xs) × Rdim(xs) → R, which is described by the
following optimization problem:

J(xs1, x
s
2) = min

u
Ji

s.t. ẋ = fi(x) + gi(x)u, x ∈ Di, u ∈ Ui,

x0 =

(
xs1
v(xs1)

)
, x(tf) =

(
xs2
v(xs2)

)
(2)

where (xs1, v(xs1))T , (xs2, v(xs2))T ∈ Di. Since this optimiza-
tion problem has to be solved O(|V |2) times, we choose to
learn this function off-line for faster evaluation online.

Using (xs1, x
s
2) as feature vectors, and J(xs1, x

s
2) as label,

we first produce a batch ((xs1, x
s
2) , J (xs1, x

s
2)) from multiple

trajectory optimization runs. Then, function approximators
from supervised learning algorithms such as Support Vector
Regression (SVR) [21] or Neural Nets are used to ap-
proximate J(xs1, x

s
2). Denoting the approximated function

as J̃(xs1, x
s
2), the weights on the graph are assigned by

w(xs1 → xs2) = J̃(xs1, x
s
2).

Since J̃ is learned from data, its evaluation does not
require a full instance of nonlinear programming, greatly
reducing on-line computation. Yet, as J̃ is learned from
trajectory optimization, all costs in Bolza form can be
utilized, and dynamic constraints can be incorporated.

IV. CASE STUDY: HYBRID DOUBLE INTEGRATOR

This section first verifies our low-dimensional method for
1D problem of a thrust-vectored mass on a linear rail. While
the rail is lubricated and frictionless at p < 0, viscous drag
appears p ≥ 0. This can be formulated as a simple hybrid
locomotion system with the following dynamics:

p̈ = u if p < 0 , p̈ = u− ṗ if p ≥ 0

In addition, consider that we have the input constraint |u| ≤
1 for both domains. Converting this to a first-order system
x =

(
p, v
)T

, the system can be described as:

H L =



FG = {(f−, g−), (f+, g+)},
D = {{x|p < 0} , {x|p ≥ 0}}
U = {{u||u| ≤ 1} , {u||u| ≤ 1}}
S = {S+,− = {x|p = 0}} ,
∆ = {∆+,− = x+ → x−}

3

where the dynamics are described by

f− =

(
0 1
0 0

)
, f+ =

(
0 1
0 −1

)
, g+ = g− =

(
0
1

)
Then, let us find a trajectory from xi to xf while minimizing
the input

J− = J+ =

∫ tf

t0

u2dt

Using our framework, we first place a graph structure
on the state-space using knowledge of the domains Di,
then optimize each continuous trajectory using GPOPS-II
[12] with IPOPT [22] solver. The trajectory obtained using
graph-search, and the final smoothened trajectory using the
knowledge of the switching sequence and the boundary
points on the guard surface is displayed in Fig.4.

Finally, since the switching sequence is trivial to guess for
this example, we utilize multi-phase optimization in GPOPS-
II with IPOPT, which puts an equality constraint from the
end of the first phase in D+ and the beginning of the second
phase in D− and compare the results. The trajectory using
multi-phase optimization is displayed in Fig.4.

In addition, to show probabilistic convergence, we run
the algorithm 10 times with different inter-sample distances
(controlled by Poisson sampling [23] on state-space), and
show convergence in Fig. 5. Fig. 5 shows that our method
probabilistically converges, with a lower cost compared
to multi-phase optimization using GPOPS-II with IPOPT.
IPOPT is only local optimal, while a PRM framework
searches more globally over the domain. Our final cost
shows that we can produce probabilistically optimal and
dynamically feasible trajectories with inter-sample distance
as large as 0.3.

Fig. 4. Optimal Trajectories from xi = (0.8, 0.2)T to xf =
(−0.8,−0.6)T (left), and from xi = (0.7,−0, 1)T to xf = (−0.5, 0.2)T
(right). Red trajectories are obtained using graph search, green trajectories
are results of final smoothened path, and the pink trajectory is result
of Multi-phase optimization in GPOPS-II. The edges represent optimal
trajectories between each sample.

Fig. 5. Probabilistic convergence with decreasing intersample distance.

V. 2D CASE STUDY: AMPHIBIOUS TANK (AMBOT)

This section describes optimal trajectories for the amphibi-
ous vehicle introduced in [1], which uses tank treads for
ground locomotion (skid-steer), and marine locomotion (pad-
dles). After describing the vehicle dynamics in both modes,
we obtain optimal trajectories for a model environment.

A. Dynamics

1) Ground and Marine Dynamics: We derive the New-
tonian mechanics for planar operation, and incorporate first-
order armature motor dynamics. The ground states, xg ∈ R6,
and marine states, xm ∈ R8, are defined as{

xg = (pwb , v
b, θwb , ω

b)T

xm = (pwb , v
b, θwb , ω

b, φL, φR)T

where pwb ∈ R2 is the body position with respect to (wrt) a
world frame, vb ∈ R2 is the velocity in the body frame, and
θwb , ω

b ∈ R denote the orientation and angular velocity wrt
a world frame. Finally, φL, φR ∈ R denote the left and right
motor speeds. In both locomotion modes, the control action
ug = um = (uL, uR)T ∈ [−1, 1]2 correspond to commanded
motor speeds via fraction of applied motor voltage.

We model a no slip constraint for ground operation. A
1st-order motor model relates motor torque (which generates
tractive forces on the vehicle) to command inputs. A drag
force proportional to the square of vehicle speed and a similar
1st-order motor model are used in the aquatic domain.

2) Hybrid Dynamics: The governing dynamical systems
for each mode are represented by the hybrid dynamics

FG =

{
ẋg = fg(xg) + gg(xg)ug x ∈ Dg

ẋm = fm(xm) + gm(xm)um x ∈ Dm

where g,m denotes ground and marine modes, the domains
and guard surfaces Dg,Dm,Sm,g are obtained from terrain,
and Ug = Um = [−1, 1]2 for both inputs. We apply the
identity map to ∆m→g and ∆g→m.

3) Cost Function: We minimize the robot’s total energy
expenditure, modeled as:

Jg = Jm =

∫ tf

ti

[∑
i=L,R

Vccui ·
kt
R

(Vccui − ktφi) + Pd

]
dt

(3)
where Vcc is the battery voltage, kt is the motor torque-
constant, R the internal resistance, and Pd the constant power
drain. The first term models motor power dissipation, and
the latter term models constant power drainage. We assume
no switching costs associated with the discrete reset map,
J(∆m→g) = J(∆g→m) = 0

B. Cost Learning

For ground operation, we divide the state-space xg ∈ R6

into sampled and auxiliary coordinates

xsg = (pwx , p
w
y , v

b
x, θ)

T , xag = (vby, ω)T = (0, 0)T (4)

This division of coordinates recognizes that side-slip is
constrained for skid-steer vehicles, and angular velocity is

4

Fig. 6. Left: 11520 ground trajectories colored by their cost. Right: xy-
energy contour for vbx = 1.0m/s, θ = π/2. The heatmap corresponds to
the energy cost to go from xsi = [0, 0, 0, 0]T to xsf = [x, y, 1.0, π/2]T

small. For marine operation, xm ∈ R8 is divided into{
xsm = (pwx , p

w
y , v

b
x, θ)

T

xam = (vby, ω, φL, φR)T = (0, 0, φn, φn)T

where track forces equal water drag at equilibrium speed φn.
The cost function J(xsi , x

s
f) in Eq. (2) is learned from

multiple offline optimizations. Using 11520 samples, the
function J(xsi , x

s
f) is evaluated using GPOPS-II [12], and

SVR with Gaussian kernel trains the function J̃ with Se-
quential Minimal Optimization [24]. The process is repeated
for both ground and marine locomotion. Fig.6 shows the
generated trajectories and the contour of the learned function.

C. Results
We sample position using the method of Sec.III.A, and

grid the states vx, θ to create xs. The edge weights are
estimated from the learned function J̃ . Finally, the shortest
path is found by Djikstra’s algorithm [19]. Fig. 7 illustrates
this process. The final smoothed trajectory is shown in Fig.8.

The final trajectories differ noticeably from those produced
by a shortest-path planner due to the differences in Costs of
Transport. Since the robot expends more energy in water, it
drives further on the ground until it switches to swimming.
This example shows that our method can autonomously
decide switching sequences and switching points.

Fig. 7. A: Model Environment. B: Graph Generation. C. Result of shortest
path search.

Fig. 8. Final trajectories for example of river crossing (left), and island
crossing (right). The Robot outline is displayed at equal time differences.

VI. 3D CASE STUDY: DRIVOCOPTER

This section models the Drivocopter flying-driving drone
of Fig. 1. It uses skid-steer driving and quadrotor flight.

A. Dynamics

We use the ground model of Sec.V with different param-
eters, while the flight dynamics are based on [25] and [26].

1) Flight Dynamics: Standard rigid-body dynamics [27]
describe flight motions driven by four rotor forces, which use
a speed-squared-dependent lift term and 1st-order armature
motor dynamics. The state vector xf ∈ R16 is

xf = (pwb , v
b,Θw

b , ω
b, φi)

T

where pwb ∈ R3 is the vehicle position wrt a world frame,
vb ∈ R3 is the 3D velocity in the body frame, Θw

b ∈ R3

denotes vehicle orientation wrt world frame parametrized by
ZYX Euler angles, ωb ∈ R3 is the body angular velocity, and
φi = (φ1, φ2, φ3, φ4) ∈ R4 are the motor rotational speeds.

2) Hybrid Dynamics: Again, the two modalities of ground
and flight are represented by a hybrid dynamical system

FG =

{
ẋf = ff (xf) + gf (xf)uf xf ∈ Df

ẋg = fg(xg) + gg(xg)ug xg ∈ Dg

where f, g denotes flight and ground modes, the domains
and guard surfaces Df ,Dg,Sf,g are obtained from knowl-
edge of the ground surface. The motor inputs are Uf =
(u1, u2, u3, u4) = [0, 1]4 with Ug = (uL, uR) = [−1, 1]2.
Finally, ∆f→g (landing) and ∆g→f (takeoff) are discrete
transitions:{

∆f→g = (pwx , p
w
y , p

w
z , 0

9, φn)→ (pwx , p
w
y , 0

4)

∆g→f = (pwx , p
w
y , 0

2, θwb , 0)→ (pwx , p
w
y , p

w
z , 0

9, φn)

where φn is the motor speed needed to provide hovering
lift. During takeoff, we set pwz to be a meter higher than the
ground surface of the ground sample.

3) Cost Function: We use the same ground energy cost
as Eq.(3), and formulate the same energy for flight with dif-
ferent motor parameters. The costs for reset maps J(∆f→g)
and J(∆g→f) are constant takeoff and landing energy costs
obtained via trajectory optimization.

B. Cost Learning

Fig. 10. Left: 17016 trajectories produced to learn the flight energy
function. Right: xz-projection of the learned function J̃(0, x).

5

The ground states are divided into sampled / auxiliary
coordinates via Eq. (4). Flight states are divided by:{

xsf = (pwb , v
b)T

xaf = (Θw
b , ω

b, φi) = (01×3, 01×3, φn · 11×4)T

where the φn is the rotor rate at which the lift provided by
the propellers allows the drone to hover in stable equilibrium.
The cost J(xs1, x

s
2) is learned as in Sec.V.B from 17016

paths. Fig. 10 shows the trajectories and energy map. The
ground energy cost is found with Drivocopter parameters.

C. Results

Fig. 11. A. Model Terrain classified into drivable and undrivable terrains.
B. Poisson sampling on ground mesh. C. Poisson sampling on air and
shortest path search. D. Smoothened final path. E. Heuristic trajectories for
comparison in Tab.I. From back to front: F (red), DF (green), DFD (blue),
FDF (pink), DFDF (black), DFDFD (cyan)

A CAD environment model, consisting of two raised
platforms separated by a flat-bottom chasm, is meshed into
drivable and undrivable regions (Fig.11.A), and the ground
and free-space meshes are Poisson sampled (Fig.11.B). The
result of a shortest-path (Fig.11.C) is smoothened (Fig.11.D).
This process is depicted in Fig. 11. We hypothesized that

when the platforms are nearby, the drone should not drive
in the chasm, since gravitational losses exceed energy gains
from by driving. As the platforms separate further, the drone
saves energy by driving in the chasm. We tested this idea
on 5 different terrains parametrized by the distance between
platforms (see Fig.9). Our planning results show correct
qualitative behavior.

To show quantitative competence, we also generate few
heuristic trajectories per given fixed sequence (illustrated
in Fig.11.E) and tabulate the final costs in Table.I. Our
method produces a switching sequence that mostly agrees
with lowest-cost producing sequences among heuristic tra-
jectories, and costs are quantitatively comparable to the
heuristically optimal trajectories.

VII. CONCLUSION

We presented a novel scheme to plan near-optimal hybrid
locomotion trajectories. A double-integrator example showed
that our method can generate probabilistically optimal and
dynamically feasible trajectories in low-dimensional state-
spaces. The Ambot and Drivocopter examples showed that
virtual constraints and cost function learning renders our
method practical in high-dimensional problems.

Improvements are possible by upgrading components of
our framework. Better computational speed could be realized
by adaptive sampling [28] and the use of RRT [9] search to
achieve faster single-query tractability. An (A*) [29] graph
search would be enabled by transport energy heuristics, while
other function approximations, such as Neural Nets, might
improve the cost function learning module. Differential Dy-
namic Programming [30] is another promising scheme for
planning trajectory segments.

While we have demonstrated probabilistic optimality in
a low-dimensional example, we acknowledge the lack of
provable optimality in high dimensions. A better understand-
ing and justification of virtual constraints should result from
studying the bisimilarity between the full-state and reduced-
order systems. Finally, efforts are underway to demonstrate
our results on the Drivocopter of Fig. 1.

Cost from Fixed Sequence Heuristic Trajectories (Joules) Our Method
Dist. (m) F DF DFD FDF DFDF DFDFD Sequence Cost (Joules)

110 12129.72 11991.18 11780.26 6612.62 6620.16 6642.41 DFDFD 6655.44
90 10167.32 9902.18 9867.10 6345.64 6558.94 6578.74 DFDFD 6600.45
70 8208.72 7941.78 7726.73 6470.98 6492.85 6511.88 DFD 8156.85
50 6248.72 6112.78 5894.58 6477.60 6449.91 6452.32 DF 6456.37
30 4244.2 4148.18 3815.68 6343.64 6365.65 6387.47 DFD 4033.92

TABLE I
COMPARISON OF OUR COSTS FROM HUERISTIC TRAJECTORIES WITH FIXED SEQUENCES. D: DRIVING, F: FLYING

Fig. 9. Depiction of trajectory differences as the platforms are further separated. At less than 75m separation, the robot always flies. After 95 meters
separation, driving in the chasm saves energy.

6

REFERENCES

[1] L. Cui, P. Cheong, R. Adams, and T. Johnson, “Ambot: A bio-inspired
amphibious robot for monitoring the swan-canning estuary system,”
vol. 136, no. 11, 2014, pp. 115 001–115 001.

[2] G. Dudek, P. Giguere, C. Prahacs, S. Saunderson, J. Sattar, L. Torres-
Mendez, M. Jenkin, A. German, A. Hogue, A. Ripsman, J. Zacher,
E. Milios, H. Liu, P. Zhang, M. Buehler, and C. Georgiades, “Aqua:
An amphibious autonomous robot,” Computer, vol. 40, no. 1, pp. 46–
53, Jan 2007.

[3] Y. Mulgaonkar, B. Araki, J. Koh, L. Guerrero-Bonilla, D. M. Aukes,
A. Makineni, M. T. Tolley, D. Rus, R. J. Wood, and V. Kumar, “The
picobug: A mesoscale robot that can run, fly, and grasp,” in 2017 IEEE
International Conference on Robotics and Automation (ICRA), 2016.

[4] S. Mintchev and D. Floreano, “A multi-modal hovering and terrestrial
robot with adaptive morphology,” Proceedings of the 2nd International
Symposium on Aerial Robotics, 2018.

[5] K. Peterson, “Hybrid aerial and terrestrial locomotion, and impli-
cations for avian flight evolution,” Ph.D. dissertation, University of
California, Berkeley, 2013.

[6] Y. Chen, H. Wang, F. Helbling, N. T. Jafferis, R. Zufferey, A. Ong,
K. Ma, N. Gravish, P. Chirarattananon, M. Kovac, and R. J. Wood, “A
biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot,”
Science Robotics, vol. 2, no. 11, 2017.

[7] N. Meiri and D. Zarrouk, “Flying star, a hybrid crawling and flying
sprawl tuned robot,” in IEEE International Conference on Robotics
and Automation (ICRA), May 2019.

[8] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
vol. 1994. IEEE Transactions of Robotics, 1994.

[9] S. Lavalle, “Rapidly-exploring random trees: A new tool for path
planning,” Tech. Rep., 1998.

[10] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms
for optimal motion planning,” 2006.

[11] S. L. Campbell, “Practical methods for optimal control using nonlinear
programming, john t. betts, siam, philadelphia, pa, 2001, isbn 0-
89871-488-5,” International Journal of Robust and Nonlinear Control,
vol. 14, no. 11, pp. 1019–1021, 2004.

[12] M. A. Patterson and A. V. Rao, “Gpops-ii: A matlab software for
solving multiple-phase optimal control problems using hp-adaptive
gaussian quadrature collocation methods and sparse nonlinear pro-
gramming,” ACM Trans. Math. Softw., vol. 41, no. 1, pp. 1:1–1:37,
Oct. 2014.

[13] A. Hereid, C. M. Hubicki, E. A. Cousineau, and A. D. Ames,
“Dynamic humanoid locomotion: A scalable formulation for hzd gait
optimization,” IEEE Transactions on Robotics, vol. 34, no. 2, pp. 370–
387, April 2018.

[14] B. Landry, R. Deits, P. R. Florence, and R. Tedrake, “Aggressive
quadrotor flight through cluttered environments using mixed integer
programming,” in 2016 IEEE International Conference on Robotics
and Automation (ICRA), May 2016, pp. 1469–1475.

[15] T. Marcucci and R. Tedrake, “Mixed-integer formulations for optimal
control of piecewise-affine systems,” in Proceedings of the 22Nd
ACM International Conference on Hybrid Systems: Computation and
Control, ser. HSCC ’19. New York, NY, USA: ACM, 2019, pp.
230–239.

[16] B. Araki, J. Strang, S. Pohorecky, C. Qiu, T. Naegeli, and D. Rus,
“Multi-robot path planning for a swarm of robots that can both fly
and drive,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA), May 2017, pp. 5575–5582.

[17] B. Flom, “Autonomous path planning for an amphibious vehicle,”
Naval Surface Warfare Center, Caderock Division, Tech. Rep., August
2009.

[18] S. A.Sharif and H.Roth, “A new algorithm for autonomous outdoor
navigation of robots that can fly and drive,” in Proceedings of the 5th
International Conference on Mechatronics and Robotics Engineering,
ser. ICMRE’19. New York, NY, USA: ACM, 2019, pp. 141–145.

[19] E. Dijkstra., “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269–271, Dec 1959.

[20] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” in IEEE International Conference on Robotics
and Automation, May 2011.

[21] H. Drucker, C. Burges, L. Kaufman, A. Smola, and V. Vapnik, “Sup-
port vector regression machines,” Advanced in Neural Information
Processing Systems, vol. 9, pp. 155–161, July 1997.

[22] A. Wächter and L. Biegler, “On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming,”
Mathematical Programming, vol. 106, no. 1, pp. 25–57, Mar 2006.

[23] R. Bridson, “Fast poisson disk sampling in arbitrary dimensions,” in
SIGGRAPH, August 2007.

[24] R. Fan, P. Chen, and C. Lin, “Working set selection using second order
information for training support vector machines,” J. Mach. Learn.
Res., vol. 6, pp. 1889–1918, Dec. 2005.

[25] D. Brescianini and R. D’Andrea, “Design, modeling and control
of an omni-directional aerial vehicle,” in 2016 IEEE International
Conference on Robotics and Automation (ICRA), May 2016, pp. 3261–
3266.

[26] F. Morbidi, R. Cano, and D. Lara, “Minimum-energy path generation
for a quadrotor uav,” in IEEE International Conference on Robotics
and Automation (ICRA), May 2017.

[27] H. T. Suh, “End-to-end full-state dynamics of generic rotorcrafts,”
2018.

[28] D. Hsu, “Randomized single-query motion planning in expansive
spaces,” Ph.D. dissertation, Stanford University, May 2000.

[29] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, July
1968.

[30] D. Jacobson and D. Mayne, Differential Dynamic Programming, ser.
Modern analytic and computational methods in science and mathe-
matics. American Elsevier Publishing Company, 1970.

7

	I Introduction
	II Problem Formulation
	II-A The Hybrid Locomotion System
	II-B Optimal Trajectories in the Hybrid Locomotion System

	III Planning Methodology
	III-A Dynamic Programming with Continuous Optimization
	III-B Extension to High Dimensions

	IV Case Study: Hybrid Double Integrator
	V 2D Case Study: Amphibious Tank (AmBot)
	V-A Dynamics
	V-B Cost Learning
	V-C Results

	VI 3D Case Study: Drivocopter
	VI-A Dynamics
	VI-B Cost Learning
	VI-C Results

	VII Conclusion
	References

