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Abstract— For accomplishing a variety of missions in chal-
lenging environments, the capability of navigating with full
autonomy while avoiding unexpected obstacles is the most
crucial requirement for UAVs in real applications. In this paper,
we proposed such a computationally efficient obstacle avoidance
trajectory planner that can be used in unknown cluttered
environments. Because of the narrow view field of single depth
camera on a UAV, the information of obstacles around is quite
limited thus the shortest entire path is difficult to achieve.
Therefore we focus on the time cost of the trajectory planner
and safety rather than other factors. This planner is mainly
composed of a point cloud processor, a waypoint publisher
with Heuristic Angular Search(HAS) method and a motion
planner with minimum acceleration optimization. Furthermore,
we propose several techniques to enhance safety by making the
possibility of finding a feasible trajectory as large as possible.
The proposed approach is implemented to run onboard in real-
time and is tested extensively in simulation and the average
control output calculating time of iteration steps is less than 18
ms.

I. INTRODUCTION

Unmanned aerial vehicles(UAVs), especially quadrotors,
are increasingly used in field applications due to their flexi-
bility, agility, and stability. Autonomous navigation enables
the aircraft to be used for missions inaccessible or dangerous
to humans or ground vehicles, such as search and rescue,
inspection and exploration, monitoring and surveillance. For
the UAV obstacle avoidance, the most important thing is
responding quickly enough to the newly detected static
obstacles, or even moving obstacles. First, the trajectory
planner needs to obtain information about obstacles in the
environment. In most related studies, obstacles are obtained
by using two sensors: lidar or depth binocular camera. Lidars
are generally large in size and weight and consume too much
energy. Although lidars have higher detection accuracy and
more stable obstacle information, they are not suitable for
small drones. The detection accuracy of the depth camera
is sufficient for UAV obstacle avoidance within a certain
distance (0.5-8m), but the field of view is narrow, and it is
impossible to obtain 360◦ environmental information like
lidar. So we need to use the information obtained by the
depth camera to build a global map, which can prevent the
drone from hitting obstacles outside the field of view. The
accuracy and stability of maps built online is key to avoiding
obstacles.
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Fig. 1. Our simulation environment and visualized data of results

In this paper, we propose a method to directly find the
target point of the drone in the next step on a sparse point
cloud, and then solve the optimization problem to obtain
the motion primitives that the drone needs to perform at the
next moment. In order to reduce the amount of calculation
for collision detection when searching for a waypoint, we
further streamline the point cloud of obstacles in the global
map maintained by Octomap. The degree of simplification
is related to the drone safety radius rsafe we set. Then,
the discrete angular search is used to simplify the collision
detection to calculate the distance from the point to the
straight line.

In summary, the main contributions of the paper are:
• The combination of a streamlined point cloud of global

Octomap and the heuristic discrete angular search
makes the computation load of finding a collision-
free path much lighter. It improves the efficiency by
generating waypoints directly on the point cloud rather
than building a grid map and running a static path
planning algorithm(such as A* or JPS) on the grid map
afterward.

• The collision check can be removed from the motion
planning part due to the introduction of rsafe and the
constraint of maximum speed and acceleration of drone,
the drone’s position can be well constrained in the free
space between the execution time of two contiguous
steps of the trajectory planner.

• We propose three techniques to guarantee safety in
the autonomous flight based on the mentioned method.
Simulation experiments in ROS/Gazebo showing agile
flights in completely unknown cluttered environments,
with maximal average control output calculating time of
iteration steps less than 18 ms.

II. RELATED WORK

For hardware experiments, it is necessary to encode and
use the information of detected obstacles in an efficient way.
In most of the related research, point cloud is the most
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widely used form to express obstacle information. For the
use of point clouds, the most common practice is to use
a filtered point cloud to create a three-dimensional grid
map and then perform trajectory planning on the basis of
the grid map[1]. Considering the estimation of the vehicle
state, many methods have been proposed to convert the
depth measurements generated by the on-board sensors into
a global map. Representative methods include voxel grids
[2], Octomap [3], and elevation maps [4]. Each method has
advantages and disadvantages in a particular environment.
The voxel grid is suitable for fine-grained representation of
small volumes, but the storage complexity is poor. Elevations
are suitable for representing artificial structures composed
of vertical walls but are less efficient in describing natural
and unstructured scenes. Octomap is memory-efficient when
indicating an environment with a large open space. This
storage structure is very useful for further utilizing maps for
trajectory planning and has the function of automatic map
maintenance, which is convenient to use and has satisfactory
results in both simulation and hardware flight tests.

In the previous work [5], they used Octomap building on
point cloud raw data to develop their own method and gained
good experimental results. In another way, in order to reduce
the computational time consumed by this step of building the
map, some researchers have directly planned the trajectory
on the original point cloud. Lopez used the transformed point
cloud for the collision check with trajectories corresponding
to the randomly generated motion primitives [6]. However,
planning on the point cloud directly requires high-quality
point cloud information, and this method is not suitable for
drones carrying a single depth camera if a global map has
not been established.

After obtaining the environmental information, the most
important thing is to calculate motion primitives. The related
methods can also be divided into two categories. One is to
first convert the obstacle information and the position of the
UAV in three-dimensional space into a local map. This map
contains only the obstacle information near the UAV, the
global goal and the points of obstacles are projected in this
local map in some way, then a static path planning algorithm
is run on the local map, and finally the motion primitives
are obtained by solving the motion planning equations. For
instance, [7]-[8] built a local occupancy grid map with the
most recent perception data and generated a minimum-jerk
trajectory through waypoints from an A* search. As for
waypoint time allocation, an approximate method was used
in [9] and a bi-level optimization was used in [10]-[11] to
find the times. The other type of method is to skip searching
paths on the map first and directly generate motion primitives
by sampling. Then, the evaluation function can be designed
to select the most suitable group of motion primitives as the
output, which is very similar to DWA. A representative work
is presented by Mueller et al, even making the quadrotor
catch a falling ball [12].

In addition, you can also directly obtain motion primitives
by solving an optimization problem. This requires appropriate
expressions of the trajectory of the aircraft, such as Bezier

curves, and to ensure that the final trajectory is collision-
free by setting constraints. [13]-[15] achieved satisfactory
results by utilizing this method. For these two methods,
the collision check is the most time-consuming, and it is
difficult to significantly increase the calculation speed within
its own framework, so we propose another idea to improve
the calculation speed.

III. QUICK RESPONDING AND SAFE PLANNER

(a) (b) (c)

Fig. 2. (a) depth camera’s RGB output, (b) raw point cloud, (c) filtered
point cloud(Pcl2)

As mentioned above, the collision check is the most time-
consuming part of the trajectory generation. To cope with this
challenge, we introduce a Heuristic Angular Search(HAS)
method with a backup safety plan. The overall algorithm
is presented in Algorithm 1, where Pcl is the point cloud,
Prec is the list where the planner record pn in each step,
BE described in (1) is the transformation matrix from body
coordinate to earth coordinate, c() is short for cos() and
s() is short for sin(), φ, θ, ψ are Euler angles respectively.
We describe Line 2-4 in section A and describe Line 5 in
Section B. Line 6-7 is described in Section C and Line 9
is described in Section D. Overall, the outer loop can be
executed at 55-100 Hz, considering the density of obstacles
in the simulation tests.

Algorithm 1 our proposed planner
1: while true : do
2: Filter the raw point cloud data, output Pcl1
3: Transform Pcl1 in body coordinate (B) to Pcl2 in

earth coordinate(E) by BE

4: Build a global map represented by point cloud Pcl3,
filter again

5: Find the next waypoint wp by heuristic angular search

6: if found a feasible waypoint: then
7: Run the minimum acceleration motion planner to

get motion primitives
8: else
9: Run the backup plan for safety, then go to 5

10: end if
11: Send the motion primitives to the UAV flight controller

12: Record the current position pn in list Prec

13: end while



BE =

 cψcθ sψcθ −sθ
cψsθsφ− sψcφ sψsθsφ+ cψcφ cθsφ
cψsθcφ+ sψsφ sψsθcφ− cψsφ cθcφ

 (1)

A. Processing the point cloud

The point cloud data obtained by a real depth camera is
often noisy and too dense, and the noise is greater on objects
farther from the camera, as shown in Fig. 2(a) and Fig. 2(b).
This is inconvenient for converting the coordinate system of
each point in the point cloud and establishing a global map.
First, we filter the original point cloud data Pcl1 through
three filters in order to obtain the point cloud data Pcl2 which
is convenient to store and recall. The algorithm of the filter
and the point cloud after filtering are shown in Algorithm
2 and Fig. 2(c). duse is a parameter. It can be seen that the
filtered point cloud data are more concise and tidy, retaining
the basic shape of the obstacle. Then we convert the point
cloud into the earth coordinate system and use Octomap to
build and maintain a global map. In fact, it is tolerable as
long as the gap between the midpoints of the point cloud
corresponding to an obstacle is not greater than the safe radius
rsafe of the drone. But if you do this at beginning, the global
map after fusion will be unavailable for visualization. So we
filter again after we obtain the point cloud of the global map,
the algorithm is also shown in Algorithm 2. q is one of the
three axes’ value of a point in Pcl4, pointw is the point in
Pcl4, Lq is the list of all points in Pcl4 and it is rearranged
by q value according to the order of x− y − z.

At last, we only use the point in Pcl5 for collision
detection.

B. Heuristic angular search method

Different from the previous work in which a complete
path needs to be planned on the local map, we only find a
target point close to the drone as a guide for motion planning.
Because the overall planner’s calculation speed is quite fast,
such a short predicted trajectory is sufficient to refresh before
the drone flight reaches its endpoint. As shown in Fig. 3,
we use the vector Ag = (αg, βg) to represent the angle of
the navigation target G = (xg, yg, zg) relative to the current
position of the drone pn(x, y, z) in E. Based on this, we
define a series of line segments with different endpoints Pd1-
Pd4 in (2), and these line segments have a common endpoint
pn.

Algorithm 3 reveals the process of searching for waypoints.
We simplify the calculation of collision detection by calculat-
ing the perpendicular distance from a point to a line segment,
rather than the distance from the obstacle to the sampled curvy
path [16]. The specific process of collision checking is shown
in Algorithm 4. In most cases in simulation tests, collision
detection can be done within 16 ms. The meaning of heuristic
search is that the starting point of the search is calculated
according to the historical record of the results obtained by
this method and the current point cloud information, so as
try to obtain an initial value Ag0 which is the closest to the

Algorithm 2 point cloud filter
1: Pcl1 ⇐ point cloud raw data
2: for pointi in Pcl1 do
3: Remove pointi which is further than 8m, keep only

one point in a 0.2m voxel, remove the outliers
4: end for
5: Pcl2 ⇐ Pcl1
6: for pointm in Pcl2 do
7: pointm = pointm + pn
8: end for
9: Pcl3 ⇐ center points of Octomap, with Pcl2 input

10: Pcl4 ⇐ Pcl3
11: for q in x, y, z do
12: for qw of pointw in Lq do
13: if not ((qw−Lq(0, q))%rsafe ≈ 0 or no element of

Lq(:, q) in range of [qw, qw + rsafe]) then
14: Delete pointw from Pcl4
15: end if
16: end for
17: end for
18: Pcl5 ⇐ Pcl4
19: for pointt in Pcl5 do
20: if ‖−−−−−→pnpointt‖2 > duse then
21: Delete pointt from Pcl5
22: end if
23: dmin = min(‖−−−−−→pnpointt‖2)
24: end for

final search result, minimize the search time cost. The initial
value of Ag0 is calculated in (3) and (4), where ld is the
detection radius of UAV for obstacle avoidance check, µ is
a relatively small coefficient with a value between 0.1-0.2.
Alast is the angle corresponding to the waypoint in the last
step, nobs is the size of Pcl5 in the current step and navr is
the average of the size of Pcl5 over all past steps.

Pd1 = ld (c (αg0 + αd) , s (αg0 + αd) , s (βg0)) + pn

Pd2 = ld (c (αg0 − αd) , s (αg0 − αd) , s (βg0)) + pn

Pd3 = ld (c (αg0) , s (αg0) , s (βg0 + αd)) + pn

Pd4 = ld (c (αg0) , s (αg0) , s (βg0 − αd)) + pn

(2)

Ag0 =

{
Ag (others )
Alast (λnobs > navr)

(3)

λ =
times’ number for Ag = Alast in last 3 steps

3
(4)

C. Motion planning

Once the path point has been obtained, the next step
is to calculate the control command, such as position
p = (px, py, pz), speed v = (vx, vy, vz), acceleration a =
(ax, ay, az), and send the command to the flight controller, so
as to ensure that the aircraft can fly within its own kinematic
limit and reach the next waypoint. Generally, the motion
primitives are obtained by solving an optimization problem.
In this way, the kinematic constraints of the drone can be
addressed by setting constraints [17]. We take the acceleration



(a)

(b) (c)

Fig. 3. Illustration about angular search,(a) is a stereogram,(b) and (c)
are the projection of (a) to different plane. B − xyz presents the body
coordinate. The number in the blanket is the ordinal number of iteration,
for example, 2(1) presents Pd2 with αd = ∆α.

Algorithm 3 HAS method
1: for i in 1,2,3,4 do
2: for αd in 0,∆α, 2∆α...m∆α do
3: if dPdi > rsafe then
4: wp = µ(Pdi − pn) + pn
5: Break all circle
6: end if
7: end for
8: end for

of the drone as the variable to be solved, because compared
with the use of jerk or snap, acceleration can be directly sent to
the flight control as a control command, and the computational
load is less while meeting the kinematic constraints and
ensuring the smooth trajectory.

The optimization problem is defined in (5), where the
subscript n presents the current step in a rolling process of
the whole planner, pstart is the position of the drone when the
planner starts to work [18]. vmax and amax are the kinematic
constraints for speed and acceleration respectively, tmax is
the upper bound for the time which can be used to finish
the predicted piece of trajectory. ξ is the tolerance for the
difference between the end of the predicted trajectory and the
wp, vn+1 and pn+1 are calculated by the kinematic formula.

Algorithm 4 collision check
1: for pointt in Pcl5 do
2: if ‖−−−−−→pnpointt‖22>‖

−−−−−−→
Pdipointt‖22+‖

−−−→
Pdipn‖22

or ‖
−−−−−−→
Pdipointt‖22>‖

−−−−−→
pnpointt‖22+‖

−−−→
Pdipn‖22 then

3: dPdi =∞ (Foot drop of pointt is not on pnPdi)
4: else
5: dPdi = ‖−−−−−−→pnpointt×

−−−→
pnPdi‖2∥∥∥−−−→pnPdi

∥∥∥
2

6: end if
7: end for

min
an,tn

‖an‖22 + ηtn

s.t. p0 = pstart

0 < tn ≤ tmax

vn = ṗn

an = v̇n

‖vn+1‖∞ ≤ vmax

‖an‖∞ ≤ amax

‖pn+1 − wp‖2 ≤ ξ
vn+1 = vn + antn

pn+1 = pn + vntn +
1

2
ant

2
n

(5)

D. Safety guarantee

Next, we demonstrate the safety of the trajectory and add
additional measures to improve safety based on the above
method. As shown in Fig. 4, if the trajectory of the aircraft is
a straight line that coincides with pnwp in each step, then this
line must be safe because it has undergone collision detection
check. However, considering the kinematic constraints of the
aircraft, the trajectory of the aircraft in each step is a curve.
Assuming that the acceleration an solved by the optimizer is
in the same plane as the speed vn and the waypoint of the
drone at the current moment (so that it meets the optimization
objective function), then this curve is a parabola in this plane.
When an is in opposite direction of vn, the deviation dmax

between the drone trajectory and line segment pnwp is the
largest. It can be easily proven since ‖vn‖2 and ‖an‖2 is
constant.

We can get dmax by solving the optimization problem in
(6), and we get a close form solution in (7).

dmax = max

(
2 ‖vn‖22
‖an‖2

)

s.t.

√
2 ‖wp − pn‖2
‖an‖2

+
‖vn‖2
‖an‖2

≤ tmax

(6)

dmax = 2 ‖vn‖2

tmax −

√
2 ‖wp − pn‖2

amax

 (7)



The trajectory is safe when we choose parameters to
make dmax < rsafe. Besides, we implement another three
techniques to achieve further security:

1)change ld to a smaller one when no feasible wp is found
at the first circle and run another circle.

2)change vmax to a smaller one when dmin is smaller than
1.5rsafe [19].

3)if no feasible wp is found, return to the last path point
and use the next feasible solution in the angular search.

Fig. 4. Illustration of the relationship between dmax and the direction of
vn (‖vn‖2 and ‖an‖2 are fixed).

IV. EXPERIMENTAL RESULTS

A. Experimental Configuration

Our proposed HAS-based trajectory planner was tested
and verified in the Robot Operation System (ROS)/Gazebo
simulation environment. Gazebo is a simulation software
which can provide a physical simulation environment close
to the real world. The model of the drone we use in the
simulation is IRIS, the depth camera model is Kinect V2,
and the PX4 1.7.4 firmware version is used as the underlying
flight controller. Mavros package is deployed for establishing
the communication between our planner node and the PX4
control module. The acceleration controller for tracking is
provided by the PX4 module by default. The point cloud
processor is executed by C++ code and the other parts are
executed by Python scripts. All these timing breakdowns were
measured using an IntelCore i7-8200U 1.8GHz Processor.
Table I describes the parameter settings of the planner in
the simulation test. To make the depth camera observe the
environment more efficiently, we control the yaw angle of
the drone to keep the camera always heading toward the goal
during the flight.

TABLE I
PARAMETERS FOR SIMULATION

Parameter Value Parameter Value
∆α 10◦ duse 3m
amax 4m/s2 rsafe 0.8m

voxel size 0.2m vmax 3m/s
ξ 0.01m µ 0.1
ld 3m dmax 0.68m < rsafe

tmax 0.5s η 1.2

Two flight tests of increasing difficulty are presented in
section B and section C to show the planning trajectory in 3D
space and the time cost of each planning step. The obstacles
are not known a priori and are unobservable at takeoff.

B. Simulation flight test in a simple environment

The test results are shown in the Fig. 6. In the first flight,
the starting point of the drone is (0,0,0), and the red point

indicates the navigation target point (12,0,1). After reaching
the target point, set the starting point change to (12,0,0) and
the endpoint is set to (0,0,1), then another test is performed.
This is to test the drone’s ability to avoid obstacles in the
horizontal and vertical directions. According to the design
of the algorithm, the drone will choose the path with the
smallest amount of angle change of the flight direction when
the obstacle can be avoided both horizontally and vertically.
Because turning the drone too fast will increase the noise
of the point cloud data obtained by the depth camera and
destroy the established map, the attitude angle of the drone
should be kept as smooth as possible.

The global 3D map and the flight trajectory of the drone
during the flight are displayed in RVIZ, as shown in Fig.
6(c)-(d). In the first flight, the drone first raised its height to
avoid the obstacles in the face of short obstacles and then
chose to fly to the left to avoid the higher obstacles. In the
second test, the drone first chose to fly to the left and then
chose to continue to the left, because this minimizes the
amount of angle change in the flight direction.

(a) (b)

(c) (d)

Fig. 5. (a) an IRIS drone, (b) a simple simulation environment, (c) and
(d) show the results of the first and the second flight test respectively. The
trajectory is shown in the green line.

C. Simulation flight test in a complex environment

In this test, we built a more complex map. Due to the
limited space in the paper, we show only one flight’s results.
The start point is set at (12,0,0), the endpoint is set at (-
12,0,1). The flight trajectory of the drone and the established
global map are shown in Fig. 7. After repeating the flight
experiments 10 times, the detailed data of the trajectory and
the average running time of each part of the planner are
shown in Fig. 7. Table II compares the calculation time of
our proposed planner to the state-of-the-art, where Cond.1
means Ag0 is fixed to goal direction, and Cond.2 means all
points in Pcl3 are used for collision check. PL(path length)
factor is the ratio of the whole path length to the straight
distance from the start point to goal. It is worth noting that
the difficulty of the simulation tests in this table are different,
we show the data here for a preliminary comparison. We
can see that our proposed planner has obvious advantages in
computational time, but the whole path length is longer than
some of others’ works.



(a)

(b)

Fig. 6. Results of the test in a complex environment. (a) shows the point
cloud of the global map and the size of the obstacles from the top view, (b)
shows the Octomap from a side view. The trajectory is shown in the green
line.

TABLE II
COMPARISON WITH STATE-OF-THE-ART ALGORITHMS.

Authors Comp.
Time(ms)

PL
Factor

Authors Comp.
Time(ms)

PL
Factor

Zhou et
al.[14]

>100 1.56 Tordesillas
et al.[22]

>25 1.34

Liu et
al.[7]

>160 - Chen et
al.[21]

>34 -

Burri et
al.[20]

>40 1.78 This
paper

19 1.48

This
paper

(Cond.1)

29 1.48 This
paper

(Cond.2)

42 1.44

In Fig. 7(b)-(c), the curve changes intensely near the end
because the drone was switched to position control mode
when it is close enough(¡0.3 m in this test) to the goal. We
can see from the boxplot that the number of iteration time
in the angular search is the major influential factor to the
time cost. Fig. 7(e) shows that in most instances the HAS
method can work out the feasible solution with less than 3
steps, so the average step time can be controlled within 20ms.
The time cost also relates to the number of input points to
some extent, which means we can decrease the time cost by
simplifying the point cloud(Pcl5) in a more efficient way.

However, in additional series of simulation tests, we found
the proposed trajectory planner may fail in two typical
scenarios as shown in Fig. 8: a room with narrow exit and a
forest with dense and tall pillars. To improve the computation
efficient, the collision check is not performed in range of
360◦ on the point cloud. Although the drone returns to the
last recorded position when it fails to find a waypoint, it may
fail to exit the room if the exit is too narrow. In the dense
forest, although the gap between the pillars allows the drone
to pass, considering the fixed rsafe the drone can’t find a
collision-free line segment under such condition.

V. CONCLUSION AND FUTURE WORK

This work presented a trajectory planner’s framework
based on the HAS method, for safe and quick responding

(a)

(b)

(c)

(d)

(e) (f)

Fig. 7. (a)-(c) curve of the three-axis coordinate position, flight speed,
attitude angle respectively; (d) curve of time cost of each part of the planner
versus number of points in Pcl5; (e) pie chart for the proportion of each
iteration number; (f) the boxplot of time cost for each iteration number.

(a) (b)

Fig. 8. The two scenarios in which the drone are most likely fail to find
a free path



flights in unknown environments. The key properties of this
planner are that it uses a direct waypoint search method
on a simplified point cloud to reduce the time cost and the
safety is ensured by restricting dmax < rsafe by setting
parameters and compromise on vmax and ld when necessary.
Our proposed planner was tested successfully in different
simulation environments, achieving the average step time cost
within 18 ms. The time cost is believed to be able to achieve
a better level on a higher performance hardware platform
with C++ code.

In the future, one interesting research idea is to combine
the global planner on the global map with the local planner
mentioned in this paper together to confront a more complex
and dense environment, which is difficult for our current local
planner with HAS method to pass. Another potential plan
is studying on how to make a drone fly a optimal trajectory
in an environment with dynamic and static obstacles at the
same time.
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