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Adversarial Generation of Informative Trajectories for Dynamics

System Identification

Marija Jegorova, Joshua Smith, Michael Mistry, Timothy Hospedales1,2

Abstract— Dynamic System Identification approaches usually
heavily rely on evolutionary and gradient-based optimisation
techniques to produce optimal excitation trajectories for deter-
mining the physical parameters of robot platforms. Current
optimisation techniques tend to generate single trajectories.
This is expensive, and intractable for longer trajectories, thus
limiting their efficacy for system identification. We propose to
tackle this issue by using multiple shorter cyclic trajectories,
which can be generated in parallel, and subsequently combined
together to achieve the same effect as a longer trajectory.
Crucially, we show how to scale this approach even further
by increasing the generation speed and quality of the dataset
through the use of generative adversarial network (GAN) based
architectures to produce large databases of valid and diverse
excitation trajectories. To the best of our knowledge, this is the
first robotics work to explore system identification with multiple
cyclic trajectories and to develop GAN-based techniques for
scaleably producing excitation trajectories that are diverse in
both control parameter and inertial parameter spaces. We
show that our approach dramatically accelerates trajectory
optimisation, while simultaneously providing more accurate
system identification than the conventional approach.

I. INTRODUCTION

In the light of the continuous improvement in robotic

mechanical design, the importance of accurate models for

robot dynamics increases immensely. Model inaccuracies can

have a significant effect on control, stability, and motion

optimisation of the platforms. Hence the problem of sys-

tem identification in robotics is currently being revisited.

All dynamics system identification techniques are highly

data-dependent in the sense that their parameter estimation

efficacy, and the generalisation of dynamics models using

these parameters, are highly affected by the quality of the

trajectories used for exploration.

Most conventional system identification methods rely on a

single parameterised trajectory [1], [2], [3]. Such trajectories

are limited in how much they can explore system parameters

within their set length. Extending the length of this trajectory

alleviates this limitation, however the computation required

to generate an optimal excitation trajectory grows rapidly

with trajectory length, and quickly becomes intractable. We

explore whether generating multiple shorter diverse trajecto-

ries can be used to achieve the same effect more scaleably

than existing methods – or to outperform them – by effec-

tively allowing the generation of longer overall trajectories.

If many shorter trajectories, diverse in the inertial parameter

space, can be generated, they can ultimately better explore
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joshua.smith@ed.ac.uk, m.mistry@ed.ac.uk,
t.hospedales@ed.ac.uk

2 This work is supported by EPSRC under Grant EP/R026173/1.

all the parameters than a single longer trajectory, while being

easy and cheap to generate in parallel. Furthermore, assum-

ing that they are cyclic (same start and end condition), the set

of short trajectories can be concatenated for easy execution

in sequence. We provide experimental results to confirm that

generating multiple shorter excitation trajectories tends to be

better than the equivalently long single excitation trajectory

in terms of system identification performance.

To fully leverage this paradigm of system identification

trajectory generation, we need the ability to efficiently gen-

erate numerous diverse short excitation trajectories. To this

end, we propose a pipeline where a traditional trajectory

optimizer is used to generate an initial seed dataset, after

which we train a Generative Adversarial Network (GAN) on

this seed set. Once trained the GAN provides a surrogate

model for excitation trajectory optimisation that can effec-

tively generate an unlimited number of diverse short exci-

tation trajectories rapidly (roughly four orders of magnitude

faster than the conventional approach) and in parallel. Our

generative model is optimised with respect to the validity

(in terms of the constraints and avoiding self-collisions) and

fitness (excitation) scores, in order to generate a dataset that

is maximally informative about system dynamics.

Our proposed method is called System IDEntification

GAN (SIDE-GAN). In principle, the SIDE-GAN is indiffer-

ent to the dynamics model behind the training trajectories.

So, given the suitable initial training dataset, SIDE-GAN

can provide quality training data for either parametric, semi-

parametric, or even for some non-parametric system models.

Our empirical results show that our SIDE-GAN approach

improves the accuracy of parameter estimation and torque

prediction, with a recursive least squares identified model.

Furthermore, our generation speed increases by orders of

magnitude compared to the original short trajectories opti-

misation, and allow us to generate a total excitation trajectory

length that is intractable with traditional long-trajectory opti-

misation. Our empirical results are demonstrated using both

real and simulated KUKA LWR IV manipulation platforms.

II. RELATED WORK

Current models for dynamics system identification. Pre-

vious work on generating exciting trajectories for inertial

parameter identification has mainly focused on approaches

that optimize a single parameterized trajectory for optimal

excitation [1], [2], [3]. Typically, this is achieved by maxi-

mizing the identifiability of each parameter via the stacked

regressor matrix from the trajectory that is being optimised



(please refer to the Section III for more details).

The optimization metrics tend to be highly non-linear

with even more complex constraints, such as avoiding

self-collision or certain regions of space completely. The

optimization task is thus extremely difficult due to non-

smoothness and many local minima. Genetic algorithms [3]

are often used, but take many iterations to converge. More-

over, the cost of evaluating a single step of this optimizations

is more than O(n3) in the desired length of the trajectory.

To our knowledge no previous work has explored optimiz-

ing multiple trajectories. Our divide-and-conquer approach

can generate longer (and thus more informative) trajectories

than the traditional approach. Besides being over two orders

of magnitude faster, we find that our multi-trajectory can

outperform the standard approach, even when controlling for

the total length of the final trajectory.

Generative Adversarial Networks GANs [4] are a family

of neural network methods, that have gained popularity for

realistic image generation since 2014. They have since been

applied to a multitude of tasks, although their primarily focus

has largely remained realistic image and video generation [5],

[6], [7], [8], [9], for example from captions.

Compared to the image generation area, there is still com-

paratively little research on how GANs can be of significant

help in the field of robotics. Conventional image GANs can

generate data to assist training visual recognition systems in

autonomous systems [10], however applications of GANs to

planning and control are still very sparse.

The most relevant GAN-based approaches to non-sensory

part of robotics so far include imitation learning [11], [12] –

to efficiently learn a single policy or a discrete set of policies

from demonstration; and direct generation of robot control

policy repertoires [13]. The latter provides robust goal-

directed control by enabling sampling diverse controllers

from a continuous goal-conditional distribution over control

policies. There has also been some research conducted on

learning the inverse kinematics (IK) of the robot using

GAN-like architectures [14]. However this work does not

leverage the diversity potential of GANs, discarding the

random noise input completely, instead replacing it with the

end-effector position (for the IK problem). This replacement

strips the generator of all the diverse generative properties,

boiling it down to merely a mapping network, and the whole

architecture to an actor-critic-like model.

We provide the first application of GAN-like methods

to the ‘experimental design’ aspect of dynamics system

identification. We learn our SIDE-GAN that on a seed set

of excitation trajectories, which then provides a surrogate

model to replace the typical compute intensive trajectory

optimisation process. We rely on the ability of the trained

GAN to rapidly generate diverse cyclic trajectories which can

then be combined to provide an informative long trajectory.

III. PROBLEM AND MOTIVATION

Dynamics system identification is the task of learning the

inertial parameters π of the links of the robot. Normally this

is achieved by starting with the Rigid Body Dynamics (RBD)

equation:

τ = M(q)q̈ +C(q, q̇)q̇ +G(q) + F (q, q̇) (1)

Where M represents the inertia matrix, C the Coriolis

and centrifugal matrix, G is the gravity vector, F is the

friction vector and τ is the full joint torques experienced

and measured by the robotic platform. The state of the robot

is expressed in terms of (q, q̇, q̈) - position, velocity, and

acceleration. We then use the RBD equation and rearrange

it with a regressor Y (q, q̇, q̈) to form Eq. (2), which is linear

with respect to π. This allows us to the use standard least

squares approach [15] to solve for π, shown in (3).

τ = Y (q, q̇, q̈)π (2) Y −1(q, q̇, q̈)τ = π (3)

This solution would be valid for a single state of the robot

but would rarely be the correct model due to noise in the

data. Typically, the dynamics is sampled at many different

input states (positions, velocities, and accelerations) to com-

pensate for the noise. This allows multiple regressors to be

constructed in a stacked matrix, alongside their equivalent

stacked torque vector:

Y =





Y (q0, q̇0, q̈0)
...

Y (qn, q̇n, q̈n)



 (4) τs =





τ0
...

τn



 (5)

We can then estimate the inertial parameters π using the

pseudo-inverse of the regressor matrix:

Y T (Y Y T )−1τs = π (6)

Numerical errors can occur if Y Y T is ill-conditioned (e.g.,

has very small or zero eigenvalues). When regressors are ill-

conditioned, the trajectories sampled to provide state-torque

pairs do not sufficiently excite the relevant parameters. For

example, a sampled trajectory may not accelerate enough for

the inertia to affect the output torques. With low excitation

these parameters are not identifiable from the sampled data,

and the regressor will be ill-conditioned.

Discussion: Non-identifiable parameters Please note that

some parameters are always non-identifiable as they have

no effect on the output torque no matter the state of the

robot. These non-identifiable parameters can be removed

by calculating the base parameter set of the robot [16]

which will let us replace the regressor matrices with a base

regressor matrix, Yb, and replace the inertial parameter with

the base inertial parameters, πb, which contain the set of

parameters that are excitable, such that (7) holds. From this

point forward when the stacked regressor Y is referred to,

it contains the base regressors of each state rather than the

full regressor, and with π replaced by πb.

τ = Yb(q, q̇, q̈)πb (7)

Quantifying Trajectory Excitation As discussed ear-

lier, unexciting trajectories can lead to base regressors



that are still low rank with low excitation, meaning ill-

conditioned Y Y T and numerical errors in Eq. (6). The

goal of trajectory optimization is to produce trajecto-

ries ((q0, q̇0, q̈0, τ0), . . . , (qn, q̇n, q̈n, τn)) that lead to well-

conditioned Y Y T and accurate estimation of parameters

π. There are two different objectives correlated with the

trajectory quality, that can be used during the SIDE-GAN

training. In section V-D we show that either can be used for

training the SIDE-GAN, and results are comparable:

Eigenvalue Fitness: The first metric is condition number,

i.e., minimal ratio between the largest and smallest eigenval-

ues of Y TY . This implies a high parameter excitement within

the trajectory, with the least and the most excited inertial

parameters being explored as equally as possible, directly

leading to a better conditioned Y Y T matrix. We refer to the

condition number of Y TY as ‘fitness’, and use it to report

the progress of training in Figure 3.

Diagonal Fitness: Another objective is based on the trace of

Y TY , i.e. either maximising the trace itself or minimizing

the trace of the inverse. The diagonal of Y TY is indicative

of the level of exploration trajectory does in the inertial

parameter space. The trace is indifferent to basis changes

and hence is more comparable across the trajectories with

different basis vectors. We refer to

max(diag(Y TY ))

min(diag(Y TY ))
(8)

as the ‘diagonal fitness’, and use it for training one of the two

versions of the SIDE-GAN assessed in Section V-D. Simi-

larly to the conventional fitness, smaller scores correspond

to more evenly explored inertial parameters.

System Identification The conventional approach to dy-

namics system identification optimizes for a trajectory with

high fitness, executes this trajectory on the robot, and then

estimates inertial parameters as in Eq. 6. However, given the

cost of optimizing long trajectories, the achievable fitness

and parameter identification accuracy is limited.

Use of Multiple Trajectories The unique aspect of our

approach is to use multiple trajectories to improve inertial pa-

rameter exploration. For the purpose of system identification,

we desire not only diversity in control parameter space, but

also to explore different subsets of inertial parameters. Then

their stacked regressors combined will have more uniformly

distributed eigenvalues, and when inverted will produce a

better estimate of inertial parameters π. The eigenvalues of

the stack of short trajectories correspond to inertial param-

eter identifiability, as for the conventional single-trajectory

approach. We use Modified Fourier Trajectories [2], cyclic

in the start and end conditions, making concatenation of

several trajectories together trivial. We investigate: Can a

sufficiently large and diverse set of cyclic trajectories be

generated? And: How such set of trajectories performs for

system identification compared to a standard single longer

trajectory?

Using multiple short trajectories also has an important

advantage over a single long one in terms of generation effi-

G

D1 D2

z

trajectories pseudo-
eigenvalues

fitness / diversity

Ceig

real / fakereal / fake

valid / faulty

PSR

Fig. 1: SIDE-GANs at training time: In the conventional

GAN architecture on the left, the generator G inputs a

uniform random noise vector z, and outputs synthetic tra-

jectories (Fourier transform parameters). The discriminator

D1 tries to distinguish “fake” (synthetic) vs real trajectories.

The right side of the scheme represents the new part of

the system, where the pre-trained predictor PSR predicts

valid/faulty, and thus provides a penalty for invalid trajec-

tories. The pre-trained converter Ceig maps trajectories to

their estimated eigenvalues. These pseudo-eigenvalues are

then assessed by the second discriminator D2 as “real” or

“fake”, they are also used as input to compute an eigenvalue

fitness penalty that encourages high excitation trajectories.

Colour-coding: Trapezoid blocks are neural networks. Grey

trapezoids correspond to pre-trained networks with weights

frozen for the main SIDE-GAN system training. Green

trapezoids correspond to the networks that are learned during

main system training. Pink blocks stand for training losses.

ciency. The time of optimizing the trajectories grows quickly

as the trajectories grow longer, due to the O(n3) complexity

computing Y TY and the additional complexity of computing

the self-collisions at each discrete step. Optimising multiple

short trajectories means much faster regressor calculation, as

well as enabling trivial parallelisation.

Summary Our proposed pipeline uses conventional opti-

misation to generate a set of short trajectories, then trains

SIDE-GAN to to rapidly expand this dataset. The ultimate

testing objective is then to show that model-based torque

prediction (using parameters obtained from system identifica-

tion) is more accurate when using the SIDE-GAN-generated

trajectories than based on just the initial seed data, or the

conventional single longer trajectory.

IV. METHOD AND ARCHITECTURE

Architecture SIDE-GAN is built for the generation of

diverse excitation trajectories for system identification. Fig-

ure 1 shows the architecture. SIDE-GAN is trained on a set

of seed trajectories generated by the conventional optimizer,

and once trained can rapidly generate new trajectory batches.

We build our model on the top of a typical Deep Con-

volutional Generative Adversarial Network architecture, i.e.,



Fig. 2: Visual results: Left: examples of the SIDE-GAN generated trajectories - red traces show the end-effector positions.

Trajectories are clearly spatially diverse. Top-right: examples of the single 560s trajectory vs. the original seed set and the

SIDE-GANs 35×16s trajectories stacked together. Bottom-right: a few snapshots of one of the 16s SIDE-GAN trajectories.

DCGANs [17], all nets have 4 layers, RELU-activated, using

100D uniform random noise vectors. While conventional

DCGANs generate images, we modify them to generate

7× 6× 2 tensors representing Fourier transform parameters,

which define short cyclic trajectories. For our goal of system

identification, there are a number of extensions required to

adapt DCGAN to generate trajectories that are valid (e.g.

non-colliding) and diverse in both control parameter and

regressor eigenvalue (inertial parameter) space. These are

detailed as follows:

Success Predictor Loss: Vanilla GAN does not ensure

that the majority of generations are valid (i.e., non-self

colliding, or constraint-violating). To address this, we define

a success predictor, as a shallow convolutional network

mapping generated trajectories to a valid/faulty label. We

pre-train this network to differentiate the initial dataset of

valid trajectories, and some invalid trajectories generated

by vanilla GAN. The trained success predictor has 99%

validation accuracy. We fix its weights and use it as a loss for

the main SIDE-GAN training, thus encouraging it to generate

valid trajectories.

Trajectory-to-eigenvalues converter The salient feature

space for analysis of trajectories is the eigenvalues of the

rolled-out trajectory. To predict these features for generated

trajectories, we pre-train a shallow convolutional network to

map fourier trajectory parameters to the resulting eigenval-

ues. As above, we freeze its weights before plugging it into

SIDE-GAN. The estimated eigenvalues are then used by the

following two modules:

Eigenvalue Discriminator. The basic GAN discriminator

differentiates real vs fake trajectories in the GAN’s raw

output space (modified Fourier parameter tensors). However,

for our purposes, the crucial property of the trajectories is

to cover the eigenvalue space well. Therefore we define

a second discriminator that differentiates real/fake samples

based on the eigenvalues of the rolled out trajectories – as

predicted by the eigenvalue estimator defined above. This is

learned jointly with the vanilla discriminator in SIDE-GAN.

Fitness Loss. SIDE-GAN so far aims to generate trajectories

that are valid, and indistinguishable from the seed set used

for training. Nevertheless, other things being equal, for

SIDE purposes, we prefer trajectories with a more uniform

eigenvalue distributions. We therefore define a final loss that

penalizes the eigenvalue fitness (Sec III). This is trained

jointly with the other SIDE-GAN modules, but activated after

epoch 10 once the rest of the model has stabilized.

Alternative Diagonal Architecture. The above three mod-

ules (converter, second discriminator, fitness loss) are based

on eigenvalues. We also compare an alternative approach

based on diagonal Fitness (Sec III). In this case the converter

estimates the Y TY diagonal, the discriminator discriminates

based on this diagonal, and the fitness is defined as in Eq. 8.

Training SIDE-GAN the generator produces a batch of

trajectories defined by ‘fake’ modified Fourier transform

parameters. These are mixed with the real trajectories, and

the first discriminator labels these are real or fake, and the

success predictor labels them as valid or faulty. The con-

verter translates trajectories into pseudo-eigenvalues, which

are then used by the second discriminator for labelling as

‘real’ or ‘fake’. Finally, the pseudo-eigenvalues are also

used to calculate and penalize the eigenvalue fitness metric.

The training objective of SIDE-GAN is to produce diverse

trajectories with small fitness loss and good validity scores.

The full training objective has the following form:

min
G

max
D

V (G,D) = E
x∼pdata(x)[logD(x)]

+E
z∼p(z)[log(1−D(G(z))))]

+E
z∼p(z)[PSR(G(z)) + F (G(z))]

(9)

where x stands for a data example, z a random noise

vector, G(z) is a sample from the generator, D(x) represents

the discriminator’s estimate of the probability that x is from

the real data set rather than from the generator, and D(G(z))
- a probability that data are generated. PSR(G(z)) represents

the predicted success rates of the generator output (i.e., the

proportion of valid trajectories amongst the generated data).

F (G(z)) is the predicted fitness of the generator output.

We use the seed set to train the SIDE-GAN for 50 epochs

in total, using two generator iterations for each discriminator

iteration, and then discard everything but the generator.

Applying SIDE-GAN: The trained generator network pro-



vides our surrogate model for trajectory generation. It can

generate as many diverse, new and exciting trajectories as

necessary. Since it generates optimization-free, in a single

forward pass, it can produce novel trajectories near instanta-

neously compared to traditional optimisation.

V. EXPERIMENTS

A. Training Data & Metrics

The data we use for training SIDE-GAN were acquired

using a genetic optimizer for a rough global solution (ant

colony based [18]) followed by a finite difference gradient-

based solver to fine-tune the trajectory locally [19], using

the pagmo2 library [20]. The dynamics and regressors for

the task were computed through the ARDL library [21]. The

full seed training set consists of 1800 cyclic trajectories of 16

seconds each, that are represented in terms of 7×6×2 tensors

or parameters of the modified Fourier transform (these cor-

respond to the number of manipulator joints, the number of

Fourier transform parameters, and 2 points defining the cyclic

trajectory). Corresponding 35 eigenvalues of the resulting

trajectory are used during the training to optimise the quality

of the trajectories in terms of inertial parameter exploration.

All of the performance results in this paper are averaged

across at least three complete trainings of SIDE-GANs

from scratch, and 10 batches of trajectories produced from

different noise vectors.

B. SIDE-GAN Training

We first answer the question: ‘Can a neural network learn

to generate valid, exciting, novel, and diverse trajectories?

To answer this, we analyse SIDE-GAN training dynamics in

terms of success rate1, fitness (as defined in Sec III), and the

diversity of trajectories within a generated batch. Generation

of trajectories that exhibit diversity between themselves is

necessary, because if a trajectory generator simply repeats

itself, little new information will be added when short

trajectories are combined into a longer one for execution.

For diversity, we use two metrics: (1) Average euclidean dis-

tance between raw trajectory Fourier parameters, (2) Average

euclidean distance between the diag(Y TY ) vector of each

trajectory. These metrics thus cover diversity in both spatial

and inertial parameter perspectives.

Figure 3 shows the training dynamics of SIDE-GAN using

the 1800 seed trajectories as training data, and compares

vanilla DCGAN with our two (eigenvalue, and diagonal-

fitness) variants. Given the DCGAN-based architecture and

the diversity of the training set, we do not expect any of them

to mode-collapse. From the plots we can see that training

dynamics are somewhat unstable as per-usual with GANs: (1)

Both SIDE-GAN variants quickly learn to reliably generate

successful trajectories, while vanilla DCGAN struggles to

pass 40% success rate. (2) Vanilla DCGAN initially gener-

ates better fitness than SIDE-GAN, but by later epochs (40-

50) SIDE-GAN produces better fitness. (3) In terms of the

1Ratio of valid generated trajectories. I.e. non-self-colliding, obeying
the joint velocity and position constraints, as well as the physical space
constraints (e.g. avoiding the area within 10 cm above the desk on which
the manipulator is set up).

batch diversity, after 40 training epochs SIDE-GANs have

greater spatial diversity than vanilla DCGAN and comparable

overall spacial diversity to the original seed set. In inertial

parameter space SIDE-GANs are significantly more diverse

than the original seed set and usually equal or better than

vanilla DCGAN. We expand the initial limited dataset by

generating 4200 novel trajectories by SIDE-GAN after 50

training epochs, and this expansion results in a total set

of 6000 short trajectories used in the following system

identification experiments. Figure 2 visualizes a few sam-

ple trajectories from SIDE-GAN. This visualisation shows

considerable diversity, at least in trajectory parameter space.

We also tried training some conventional non-neural net-

work generative models such as Kernel Density Estimatiors

(KDE)s. However, lacking a discriminator to provide a

strong objective, these completely failed to produce valid

trajectories, with an overall success rate under 0.1%.

C. Exp 1: Multi- vs Single-Trajectory System Identification

We first evaluate our idea of generating a set of smaller tra-

jectories against standard practice of optimising the longest

single trajectory that is computationally feasible. We stress

that the key fundamental advantage our approach is: (1)

Scalability to effectively unlimited total length, and thus

much greater total excitation, unlike single trajectories. (2)

Enabling massive parallelization for fast generation at any

scale. Nevertheless, for the purpose of this experiment, we

put these points aside and focus on comparing identification

performance using a fixed total length – generated by a single

trajectory optimisation, or our multi-trajectory optimisation.

Setup: Dataset To compare the trajectory optimisation

methods, controlling for trajectory length, we optimise a

single long trajectory of 560 seconds (the longest we can

feasibly optimise) using eigenvalue-fitness criterion, and

compare it to the concatenation of 35 short 16-second

cyclic trajectories. As discussed earlier, our full dataset

is 1800+4200=6000 trajectories. Thus we define a greedy

strategy to pick a good subset 35 trajectories for direct

comparison. To achieve this, we first compute the diagonal

of Y TY for each trajectory, which we shall denote by ψi

for the ith trajectory. Each trajectory is then scored the

following metric di that balances preference for batch-diverse

and exciting trajectories:

gi = ||ψi − ψprevious best|| (10)

fi = sum(ψi) (11)

di =
gi

max(g)
+

fi

max(f)
(12)

We greedily pick the trajectory with greatest score di,

where ‘previous best’ is the previously selected best trajec-

tory, and initially ψprevious best is set to zero. Thus we prefer

those that are far from the previous choice, and have large

diagonals. After each trajectory is selected, it gets removed

from the set of trajectories to choose from next.

Setup: System Identification We next use recursive least

squares (RLS) to perform system identification and learn the
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Fig. 3: Average metrics over the SIDE-GAN training time: the SIDE-GAN is trained for 50 epochs in total, the averages

are taken over 3000 trajectories per epoch for each of the methods, i.e., 3 training runs, 10 noise vectors, 100 trajectories

(batch size) produced by each input noise vector. 1. Average success rate - i.e. ratio of the valid trajectories SIDE-GAN

generates on average. 2. Average fitness - i.e., the average condition number of the Y TY for the entire trajectory. The

lower the fitness score, the better is the quality of the trajectory for the system identification purposes. 1 and 2 represent

the SIDE-GAN training. SIDE-GAN learns to generate successful (valid) trajectories within ≤ 10 training epochs, however

better (lower) fitness scores is harder to achieve, SIDE-GANs trade it off for lower validity scores at training epochs 30-50.

3. The diversity of the generated batch is assessed via the average pairwise Euclidean distance between trajectories in two

spaces of interest. The bottom: diversity in the Fourier parameter space (immediate output of the generator) - at epochs 40-50

the SIDE-GAN overtakes vanilla DCGANs. The gap between the desirable level vs. SIDE-GANs shows that synthetic data

have comparable but still worse quality than real. The top: the average pairwise Euclidean distance between diag(Y TY ) of

the trajectories in the generated batches, representing the batch-diversity in the inertial parameters space. The SIDE-GANs

diversity is usually equal or higher than that of the vanilla DCGANs, significantly surpassing the original seed set diversity

(purple). The average inertial parameter diversity of the SIDE-GAN data (generated after 50 training epochs) and original

training set put together (yellow) shows that adding the SIDE-GAN data to the original dataset is highly beneficial.

dynamics of a Kuka LWR IV platform using the conventional

long, conventional short (35 of 1800), and extended SIDE-

GAN (35 of 6000) generated trajectories. We use the fitted

model to perform torque prediction and report the torque pre-

diction accuracy (normalized mean squared error, nMSE) in

Table I. We repeat this experiment using both the simulated

platform (perfect dynamic model with 10% uniform random

noise) via ARDL library [21] and a real robotic arm.

Results The results show that, controlling for trajectory

length: (1) Our multiple trajectory approaches clearly outper-

form the conventional single long trajectory approach both in

simulation and on the real KUKA LWR. (2) The additional

excitation trajectories synthesised by SIDE-GAN produce a

small improvement over multiple trajectory optimisation.

In terms of compute requirements: The single 560s large

trajectory generation required 14 hours, the 1800 seed

trajectories (≈ 8h length) required 30 hours to generate

(parallelised), the SIDE-GAN required a further 40 minutes

to train, but thereafter can generate short 16s trajectories in

1.4ms per trajectory per thread, compared to 6 minutes per

short trajectory using the conventional optimisation.

Overall, we conclude that multi-trajectory optimisation

performs favorably compared to the conventional approach,

and especially with SIDE-GAN can easily be scaled to gener-

ating more excitation trajectory data for system identification.

In the next section, we explore the benefit of using the full

generated dataset for dynamics learning.

D. Exp 2: System Identification with SIDE-GAN

We next evaluate system identification performance when

using our full SIDE-GAN generated dataset.

Trajectories: Single Long Multiple original Multiple SIDE-GAN

Simulator 0.2248(±0.056) 0.0063(±0.002) 0.0028(±0.001)

Real Robot 8.509(±9.906) 0.0239(±0.017) 0.0210(±0.016)

TABLE I: Average nMSE across joints. Multiple (35)

short cyclic trajectories show better performance than the

conventional single longer trajectory of comparable length.

The best 35 short trajectories generated with SIDE-GAN

further improve nMSE over those from the original seed set.

Torque Prediction We first evaluate torque prediction, as

in the previous experiment. We compare the margin of

improvement between: (1) Seed+GAN generated data, using

several GAN variants and (2) The original seed data alone

(×1), and (3) The seed data, replicated ×4 or ×10 times

(each replication is done with 10% uniform random noise on

both the robot state (q, q̇, q̈) and on the output torques). The

×4 replication corresponds to a similar amount of data to our

GAN-generated dataset, and the ×10 replication corresponds

to significantly more data than our GAN-generated dataset.

The results in Table II are reported in terms of % im-

provement in torque prediction nMSE. We can see that:

(1) Vanilla DCGAN already leads to a clear improvement,

and (2) Our two SIDE-GAN variants further improve on

vanilla DCGAN trajectory generation, (3) Comparing our

two SIDE-GAN variants that use eigenvalue or diagonal-

based fitness, the eigenvalue-fitness variant performs best.

(4) Simply replicating the original seed data does provide

a simple alternative: the margin of our methods over the

original data results does not decrease systematically with

replication factor.



Original + generated data vs. orig. (×1) orig. (×4) orig. (×10)

+ Vanilla DCGAN 36%(±44%) 21%(±30%) 38%(±17%)

+ SIDE-GAN (Y TY eigens) 51%(±27%) 39%(±25%) 53%(±8%)

+ SIDE-GAN (Y TY diag.) 52%(±16%) 35%(±32%) 44%(±27%)

TABLE II: Improvements in nMSE of torque predictions

with respect to the original training data (fed into RLS

×1, ×4, and ×10 times with 10% uniform random noise).

Improvement ratio is averaged across the joints.

Methods Covariance Diagonals Norms

Original dataset ×1 2.65384

Original dataset ×4 2.44338

Vanilla DCGAN 2.2573

SIDE-GAN (Y TY eigens) 1.89143

SIDE-GAN (Y TY diag.) 2.36345

TABLE III: Parameter estimation quality. Lower values mean

that covariance matrices have smaller determinants, which

means inertial parameters are predicted with more certainty.

Parameter Estimation Quality We next investigate the

parameter estimation quality for the different methods. We

quantify estimation quality by the norms of the diagonal

of the covariance from the RLS algorithm, which gives an

estimate of the uncertainty of the internal base parameters.

The results in Table III shows that SIDE-GAN eigenvalue-

fitness variant provides the lowest (least uncertain) norm

estimates compared to both the original data and any of the

other competitors.

E. Discussion

SIDE-GAN Dependence on Seed Set Size Our experiments

used a fixed seed set of 1800 trajectories throughout to

train SIDE-GAN. We explored reducing the training set size.

Training on, e.g., 240 trajectories, SIDE-GAN still generates

diverse and exciting trajectories. However, this does not

provide sufficient data for the GAN to learn the constraints

well, and the validity rate of generated trajectories suffer

(about 10%). This could still be useful since many samples

can be drawn and invalid trajectories filtered. Generating and

filtering in this way is still faster than conventional optimiza-

tion (which takes roughly 6 minutes per trajectory) vs SIDE-

GAN (32 per second, including checking the validity).

SIDE-GAN Generality GAN-based methods are generally

indifferent to the specifics of the training data. Thus the

SIDE-GAN method is expected to work well for other types

of manipulators, and other dynamics models. That said,

SIDE-GAN does need a seed set for the relevant manipulator.

The trajectories generated by the SIDE-GANs are unlikely

to generalise effectively across manipulators.

VI. CONCLUSIONS AND FUTURE WORK

This work shows the benefits of using multiple trajectories

instead of the conventional single parameterised trajectory

for the task of the system identification and torque prediction.

Further, it proposes a method for generating valid and

more diverse trajectories for the above task at the speed

exceeding the underlying method by at least two orders of

magnitude. The trajectory generator is trained to produce

diversity in both trajectory and inertial parameter space.

Numerical results on trajectory validity, fitness metrics, and

torque prediction – in both simulation and on real Kuka arm

– confirm our contributions.

In future work we intend to investigate the use of condi-

tional models to incorporate user-specified specific region-

based and inertial-parameter-based focused exploration. We

will also explore sparse data transfer learning to reduce the

size of the seed set required to learn SIDE-GANs.
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