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Abstract— In recent years, self-supervised methods for
monocular depth estimation has rapidly become an significant
branch of depth estimation task, especially for autonomous
driving applications. Despite the high overall precision achieved,
current methods still suffer from a) imprecise object-level depth
inference and b) uncertain scale factor. The former problem
would cause texture copy or provide inaccurate object bound-
ary, and the latter would require current methods to have an
additional sensor like LiDAR to provide depth ground-truth or
stereo camera as additional training inputs, which makes them
difficult to implement. In this work, we propose to address these
two problems together by introducing DNet. Our contributions
are twofold: a) a novel dense connected prediction (DCP) layer
is proposed to provide better object-level depth estimation
and b) specifically for autonomous driving scenarios, dense
geometrical constrains (DGC) is introduced so that precise scale
factor can be recovered without additional cost for autonomous
vehicles. Extensive experiments have been conducted and, both
DCP layer and DGC module are proved to be effectively
solving the aforementioned problems respectively. Thanks to
DCP layer, object boundary can now be better distinguished in
the depth map and the depth is more continues on object level.
It is also demonstrated that the performance of using DGC
to perform scale recovery is comparable to that using ground-
truth information, when the camera height is given and the
ground point takes up more than 1.03% of the pixels. Code is
available at https://github.com/TJ-IPLab/DNet.

I. INTRODUCTION

Estimating an accurate depth map from single RGB image
is of great significance in 3D scene understanding as well as
in many real-world applications such as augmented reality
and autonomous driving. Compared to traditional hand-
crafted feature-based methods [1], supervised [2], [3], [4],
[5], [6], [7] and stereo self-supervised [8], [9], [10], [11]
learning has been proved to be able to achieve better perfor-
mance on this task. Unfortunately, these methods either re-
quire a large amount of high-quality annotated ground-truth,
which is difficult to obtain, or need complex stereo calibra-
tion. Therefore, monocular self-supervised learning methods
became the focus of research. Some recent works [12], [13],
[14], [15] revealed its great potential to tackle monocular
depth estimation task.

Despite its potential to reach satisfying performances,
current methods have two shortcomings. One of them is that
they are only able to estimate relative depth rather than the
absolute one. For evaluation, scale factor is calculated by
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Fig. 1. Structure difference of DNet with other self-supervised monocular
depth estimation methods. Solid lines indicates our work flow and dotted
lines are that of other methods. Dense connected prediction (DCP) layer
is introduced to generate hierarchical features for better object-level depth
inference, and dense geometrical constraint (DGC) is introduced to directly
estimate absolute depth from monocular images. Performance comparison
of DGC and ground-truth based scale recovery is indicated in the top-right
plot.

ratio between the medians of ground-truth (given by LiDAR)
and predicted depth [12], [13], [14], [15], as can be seen
from Fig. 1. Theoretically, it is a decent solution. However,
for practical uses, obtaining ground-truth in real applications
using other sensors not only raises the cost, it also complexes
the system, leading to complicated joint calibration processes
and synchronization problems.

Another problem is that because the decoder of current
methods predict depth in different resolutions separately,
some details on object-level is omitted. For example, object
boundary can be blurred and the depth of texture on the
object may be predicted differently than the object itself.

In this paper, we propose DNet, a novel self-supervised
monocular depth estimation pipeline that exploits densely
connected hierarchical features to obtain more precise object-
level depth inference, and uses dense geometrical constraint
to eliminate the dependence on additional sensors or depth
ground-truth to perform scale recovery, so that it is easier to
be brought into practical use.

Our contributions are listed as follows:
• We improve the former multi-scale estimation strategy

by proposing a novel dense connected prediction (DCP)
layer. Instead of predicting depth and computing re-
construction loss separately under different scales, the
proposed DCP layer exploits hierarchical feature so
that object-level depth inference can be made based on
multi-scale prediction features, refining object boundary
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and reducing visual artifacts.
• A novel dense geometrical constraints (DGC) module

is introduced to perform high-quality scale recovery for
autonomous driving. Based on relative depth estimation,
DGC module can finish per-pixel ground segmentation
and estimate a camera height from every ground point.
Statistical method is applied to determine the camera
height so that outliers of ground point extraction can
be robustly suppressed. Scale factor can be determined
through comparision between the given and estimated
camera height.

• DNet is extensively evaluated on KITTI[16] Eigen
Split [2], where the results not only showed the capabil-
ity of DCP layer to improve the performance of object-
level depth inference, but also proved that DNet using
DGC module has competitive performance against those
methods using depth ground-truth to determine scale
factor. Ablation studies demonstrated module effective-
ness as well as sensitivity of DNet to ground points
ratio.

II. RELATED WORKS

A. Self-supervised monocular depth estimation

Monocular depth estimation has always been an important
aspect of scene understanding. Some works apply super-
vised [2], [3], [4], [5], [6], [7] or stereo self-supervised [8],
[9], [10], [11] methods to tackle the problem. However, due
to the difficulty of obtaining large amount of labeled data
or complex stereo calibration to train the depth estimation
network, monocular self-supervised method was proposed
instead [12], [13], [14], [15].

Proposed by the pioneering work [15], the basic idea is to
use photometric reconstruction loss calculated by comparing
the target image with the target view reconstructed from
nearby source views. However, it assumes that the scene
is static and that no occlusion is present between different
consecutive frames. [17], [18], [19] explicitly established
different motion models to resolve the moving scene prob-
lem. [20] introduced 3D surface normal by constructing two
additional layers for better depth estimation. [14] replaced
the original photometric reconstruction error with per-pixel
minimum reprojection error, which partially enabled it to
tackle occlusion. It also used up-sampling and proposed auto-
masking of stationary pixels to avoid ’holes’ of infinite depth
generated by low-texture and moving objects respectively.

However, all aforementioned works predict only relative
depth, which means there still exists a scale gap between
the prediction and true depth. For evaluation purpose, ratio
between medians of ground-truth and current prediction is
employed to acquire absolute depth. Unfortunately, in real
application scenarios, ground-truth is either too difficult or
financially expensive to obtain. Therefore, a scale recovering
approach which is free of depth ground truth is called for.

B. Monocular scale recovery

Scale uncertainty has always been a problem for 3D vision
for monocular camera. To recover scale factor and achieve

absolute depth estimation, [21] utilizes pose information and
[22] uses stereo data to pretrain network, both introducing
additional sensor information but the results were no as
satisfactory. Besides depth estimation, a typical example
of this is monocular visual SLAM. In order to mitigate
this, [23], [24] integrate object detection algorithms into
monocular visual SLAM system and take advantage of object
size prior to recover scale. However, in addition to the sig-
nificant increase of computation complexity, these methods
show limited robustness under scenes without known object
classes.

Handling the geometrical relationship between camera and
ground is also an effective approach to tackle this problem.
This geometrical constrain is broadly used in autonomous
driving tasks, for ground is commonly seen in images cap-
tured by on-board cameras. The main task of these methods
is to estimate a relative camera height using camera-ground
geometrical constrains, and thus infer scale with absolute
camera height prior. [25] extracted ground using trained
classifier, but it doesn’t possess an excellent generalization
power. [26] extracted the ground points densely in region
of interest similar to [27], [28], but it requires dense stereo
to be added to the system, which can potentially raise cost
and increase complexity. In [29], the most similar work to
this one, used surface normal to extract ground points and
thus calculate camera height. However, due to the sparsity
originated in its key-point-based strategy, data association
through consecutive frames are needed, makes this method
hardly integrated into monocular depth estimation tasks
which use only single image as input. In additon, this method
regards the ground as a whole, flat panel with single surface
normal, which is a strong assumption for autonomous driving
scenarios. In contrast, our method is free of data association,
which means it can be integrated into both monocular depth
estimation and visual SLAM tasks. Furthermore, our method
achieve per-pixel surface normal calculation and ground
segmentation, makes the algorithm robust to different road
conditions for autonomous driving.

III. METHOD

In this section, a novel pipeline called DNet specifically
designed for monocular absolute depth estimation in au-
tonomous driving applications is proposed. The pipeline
can be divided into two parts, respectively relative depth
estimation, with dense connected prediction (DCP) layer
to improve object-level depth inference, and scale recovery
based on dense geometrical constraint, without needing any
additional sensor signals or depth ground-truth. The overview
of DNet can be seen in Fig. 2.

A. Relative depth estimation

The proposed DNet is based on Monodepth2 [14]. As
all self-supervised depth estimation methods, its object-
level inference can still have texture copy and imprecise
object boundaries. In this section, we will first introduce
Monodepth2 and then resolve this issue by introducing DCP
layer to replace full resolution module used in Monodepth2.
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Fig. 2. Overall structure of proposed DNet pipeline. The algorithm first estimates relative depth using the depth estimation network with our proposed DCP
layer (pink layer in the figure) to generate and exploit hierarchical features. After that, scale recovery module pops in. It utilizes geometrical relationship
between the ground and the camera, using extracted ground points to densely calculate camera heights point by point. Median value of all camera heights
is then selected to be the final estimated value and used to obtain scale factor. Combined with relative depth map generated in the first step, scale recovery
module outputs absolute depth of the given monocular image.

1) Baseline: Monodepth2 w/o full resolution: Archi-
tecture: Two networks are required in monocular self-
supervision architecture, respectively a depth network and
a pose network. Single image It of the t-th frame is taken
as the input of the depth network. Depth network outputs a
dense relative depth map Drel

t . Pose network takes {It−1, It}
and {It, It+1} sequentially as inputs and then outputs camera
poses of the t-th image relative to that of the (t− 1)-th and
(t+ 1)-th images, i.e., {Trel

t→t−1,T
rel
t→t+1}.

Self-supervision loss: Two parts constitute the overall
loss, respectively per-pixel minimum reconstruction loss
Lp and inverse depth smoothness loss Ls. Reconstruction
loss is calculated by firstly inverse warping source images
{It−1, It+1} to rebuild two target images {It−1→t, It+1→t}.
After that, photometric error (PE) between reconstructed
image and target image is calculated combining structural
similarity index (SSIM) [30] and L1 norm between two
images Ia, Ib as follows:

PE(Ia, Ib) = α
1− SSIM(Ia, Ib)

2
+ (1−α)‖Ia− Ib‖1 , (1)

where α is used for weight adjustment.
Per-pixel minimum loss Lp is then calculated as follows:

Lp = min
I′

(PE(I′, It)) , (2)

where I′ ∈ {It−1→t, It+1→t, It−1, It+1}.
Combined with edge-aware smoothness loss Ls:

Ls = |∂xd∗t |e−|∂xIt| + |∂yd∗t |e−|∂yIt| , (3)

where d∗t = dt/d̄t is the mean-normalized inverse depth,
overall loss can be constructed with two hyper-parameters µ
and λ as:

Li =
∑
i

(µLp,i + λwiLs,i) , (4)

where subscript i denotes different resolution layers of the
decoder. wi is determined according to the resolution.

2) DNet & Dense connected prediction layer: Overall
loss: Because the photometric error of low resolution depth
prediction can be the result of wrong network prediction
or the aliasing of down-sampling, using the same weight
in loss for low-res and high-res results can mislead the
network to converge in non-optimal values. Additionally, in
consideration that features with lower resolution are reused
for multiple times, the weight of error in lower resolution
depth prediction is reduced as follows:

Li =
∑
i

(µviLp,i + λwiLs,i) . (5)

where vi < 1 is introduced as weight adjustment parameter.
DCP layer: In order to handle local gradient caused by

bilinear sampling [31] and local minima, current works [12],
[13], [14], [15] including our baseline Monodepth2 use
multi-scale depth prediction strategy. This strategy implicitly
uses low-res features to predict depth by repeated upsampling
layers, which has the tendency of depth artifacts (Fig. 9).
Motivated by reducing the depth artifacts and acquiring
more reasonable object-level depth inference, we propose a
novel DCP layer that explicitly combines features in different
scales hierarchically. The intuition is based on the observa-
tion that low-res layers of decoder network can provide more
reliable object-level depth inference and high-res layers focus
more on local depth details.

Formally, the numbers of feature channels in different
scales are reduced to eight using a convolutional layer in the
DCP layer, so that the number of channels are uniformed and
calculations afterwards can be simplified. Features in low-
res layers are then up-sampled and concatenated to higher-
res layer features. By doing this, we introduce more precise
object-level inference into higher resolution depth predictions
that originally care less about object-level depth. The final
depth estimation is performed based on the hierarchical fea-
tures provided by densely connected feature layers. Detailed
structure can be seen in Fig. 3.
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Fig. 3. Structure of proposed DCP layer. Different from baseline multi-
scale prediction strategy (directly uses feature in different resolutions
independently), features are densely connected from low to high resolution
to form hierarchical features in DCP layer.

B. Scale recovery

Scale recovery is performed after relative depth is pre-
dicted so that absolute depth map can be generated solely
relying on monocular image. Dense geometrical constraint
(DGC) is thus introduced. DGC is specifically designed for
autonomous driving applications. It works under the assump-
tion that there are enough ground points in the monocular
image, which is usually the case for autonomous driving.
Unlike the scale recovery employed by feature-based visual
odometry, ground points are densely extracted by DGC from
the monocular images to form a dense ground point map.
Each point in the map is used to estimate one camera height,
as can be seen in Fig. 5. A large number of camera heights
can thus be obtained. By applying statistical methods for
overall camera height estimation, outliers can barely harm
the estimation result of the scale factor.

1) Surface normal calculation: The first step is to deter-
mine a surface normal for each pixel in the input image. All
the pixel points need to be projected to 3D space according
to the following equation:

Drel
t (pi,j)pi,j = KPi,j , (6)

where pi,j = [i, j, 1]> refers to the pixel on the i-th row
and the j-th column in 2D space with one homogeneous
coordinate, and Pi,j = [X,Y, Z]> is the corresponding 3D
point, Drel

t (pi,j) is the depth of that specific point, and K
is the camera intrinsic matrix.

Similar to [20], for each pixel point , 8-neighbor con-
vention is used to determine several planes around it,
as in Fig. 4. All 8 neighbors of pi,j are grouped into
4 pairs. Two vectors of pi,j connected respectively to
two points in one pair form a 90-degree angle, i.e.,
G(Pi,j) = {[Pi+1,j ,Pi,j−1], [Pi+1,j−1,Pi−1,j−1]...}. Four
pairs of vector constitutes 4 surfaces, thus generating 4
surface normals, which can be calculated by:

ng =
−−−−−→
Pi,jGg,1 ×

−−−−−→
Pi,jGg,2 , (7)

where Ga,b denotes the b-th element of the a-th pair in
G(Pi,j) and g = 1, 2, 3, 4.

u

v

Y

Z

X

Surface Normal

Fig. 4. 2D to 3D projection and pairing of 8-neighbors in surface normal
calculation. Points with the same color is paired to form two vectors
respectively with the center point. Four surface normals can be calculated
from four vector pairs and used to form one surface normal.

The final normalized surface normal of point Pi,j is given
by normalizing and averaging four estimated normals:

N(Pi,j) =

∑
g n/‖ng‖2

4
. (8)

2) Ground point detection: Ground points usually refers
to the points that has a normalized normal close to ideal
ground normal, i.e., ñ = (0, 1, 0)>. With this ideal target
normal and the calculated normalized surface normal, we
propose a similarity function s(Pi,j) based on absolute value
of cosine function. The calculated similarity S can be used
as a simple criteria to determine whether Pi,j is a ground
point or not.
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Fig. 5. Schematic for DGC. Different from common geometrical constraint,
which outputs only one surface normal for all ground points, for each ground
point in DGC, a surface normal vector is calculated. Each surface normal
vector is used to estimate one camera height. The overall camera height is
estimated through calculating the median of all estimated camera heights.

S = s(Pi,j) = |6 (ñ,N(Pi,j))| = |arccos
ñ ·Pi,j
‖ñ‖‖Pi,j‖

| ,
(9)

where operator · denotes the inner product operation.
Considering the uncertainty produced by estimating the

surface normal and the y-axis of camera coordinate system
is not strictly perpendicular to the ground as in Fig. 5, a
threshold Smax is set. For S < Smax, the pixel point is
considered as ground points. After determination for ground
points has finished for all pixel points, a set of ground points
GP = {Pi,j |s(Pi,j) < Smax, y(Pi,j) > 0} is detected,



TABLE I
QUANTITATIVE RESULTS. PERFORMANCE OF DNET PIPELINE COMPARED TO EXISTING METHODS. THE EXPERIMENT RESULTS OF EXISTING

METHODS ARE FROM RESPECTIVE PAPERS. FOR SCALE FACTOR, GT IS USING LIDAR DEPTH GROUND TRUTH, P IS USING ADDITIONAL POSE

INFORMATION, S IS USING STEREO PRETRAINED NETWORK AND DGC IS OUR PROPOSED DENSE GEOMETRICAL CONSTRAIN METHOD. BOLD AND

UNDERLINED DATA DENOTES THE BEST AND SECOND BEST PERFORMANCE RESPECTIVELY.

Method Scale Lower is better Higher is better
Factor Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Zhou et al. [15]CVPR’17 GT 0.183 1.595 6.709 0.270 0.734 0.902 0.959
Yang et al. [20]AAAI’18 GT 0.182 1.481 6.501 0.267 0.725 0.906 0.963
Mahjourian et al. [32]CVPR’18 GT 0.163 1.240 6.220 0.250 0.762 0.916 0.968
LEGO [13]CVPR’18 GT 0.162 1.352 6.276 0.252 - - -
DDVO [33]CVPR’18 GT 0.151 1.257 5.583 0.228 0.810 0.936 0.974
DF-Net [34]ECCV’18 GT 0.150 1.124 5.507 0.223 0.806 0.933 0.973
GeoNet [18]CVPR’18 GT 0.149 1.060 5.567 0.226 0.796 0.935 0.975
EPC++ [17]TPAMI’18 GT 0.141 1.029 5.350 0.216 0.816 0.941 0.976
Struct2Depth [12]AAAI’19 GT 0.141 1.026 5.291 0.215 0.816 0.945 0.979
CC [35]CVPR’19 GT 0.139 1.032 5.199 0.213 0.827 0.943 0.977
Bian et al. [36]NIPS’19 GT 0.128 1.047 5.234 0.208 0.846 0.947 0.976
Monodepth2 [14]ICCV’19 GT 0.115 0.903 4.863 0.193 0.877 0.959 0.981
DNet (Ours) GT 0.113 0.864 4.812 0.191 0.877 0.960 0.981
Pinard et al. [21]ECCV’18 P 0.271 4.495 7.312 0.345 0.678 0.856 0.924
Roussel et al. [22]IROS’19 S 0.175 1.585 6.901 0.281 0.751 0.905 0.959
DNet (Ours) DGC 0.118 0.925 4.918 0.199 0.862 0.953 0.979

where y(Pi,j) denotes the y-axis value of Pi,j . A ground
mask is thereafter generated.

3) Camera height estimation: When all the ground points
have been densely identified from the image, the geometrical
relationship between ground points and camera itself is ready
to be exploited. As can be seen from Fig. 5, camera height
is the projection of vector

−−−→
OPi,j in the direction of surface

normal of point Pi,j , i.e., N(Pi,j). Therefore, camera height
of Pi,j can be calculated as follows:

h(Pi,j) = N(Pi,j)
> ·
−−−→
OPi,j , (10)

where
−−−→
OPi,j = Pi,j = [X,Y, Z]>. This operation is done

for all Pi,j ∈ GP.
Now a set of camera heights H = {h(Pi,j)|Pi,j ∈ GP}

with element number equal to that of ground points is
obtained. But for overall scale factor, one single camera
height should be estimated for the relative depth map. After
careful experiments, median of all estimated camera heights
hM = Median(H) is selected as the final camera height.

4) Scale factor calculation: Given the camera height
estimated for current relative depth map for It, in order to
calculate the scale factor, all that is still needed is the real
height of the camera hR. The scale factor for the current
relative depth estimation is simply determined as follows:

ft =
hR
hM

. (11)

C. Absolute depth estimation

After successfully estimated the scale factor for current
relative depth map Drel

t , absolute depth can be thus pixel-
wise calculated:

Dabs
t = ftD

rel
t . (12)

where Dabs
t denotes the absolute depth estimated for current

image It.

IV. EXPERIMENT

Thorough experiments are presented here for evaluation
of DNet pipeline. Quantitative results show our proposed
DNet is able to achieve competitive performance on both
relative depth estimation and scale recovery. Also, ablation
study is performed to prove the effectiveness of our proposed
DCP layer. And due to the dependency of enough visible
ground, experiments under different ground point ratio show
the robustness of DGC scale recovery module.

A. Implementation details

The same training parameters and method as Monodepth2
are used. Specifically, we set µ = 1, λ = 0.001, and α
for SSIM is equal to 0.85. Only monocular image sequence
is used during training. For scale recovery, angle threshold
Smax = 5. Low values are assigned to vi and wi for low-res
predictions, i.e., v = w = {1/8, 1/4, 1/2, 1}.

The experiments are run on a computer with Intel Xeon
8163 CPU (2.5GHz) and NVIDIA RTX 2080 Ti.

B. Evaluation dataset

All experiments for evaluation of DNet are conducted on
the Eigen split [2] of KITTI[16] 2015 containing 697 test
images. For evaluation of depth estimation results, it contains
ground truth projected from LiDAR 3D point clouds to 2D
depth maps. However, there is no ground truth for scale
factors to transfer relative depth maps to absolute depth
maps. Usually used method is to use the ratio between
medians of LiDAR detected depth values and estimated ones
as ground truth of scale factor.

C. Quantitative evaluation

Thorough quantitative evaluation is presented to show
the overall performance of DNet pipeline on both relative



and absolute depth estimation. Commonly used metrics are
adopted for evaluation.

Table I demonstrates the overall depth estimation perfor-
mance of DNet, both using ground-truth (GT) and DGC scale
recovery, in comparison with 14 self-supervised monocular
depth estimators. DNet with GT scale recovery is first evalu-
ated to demonstrate its relative depth estimation performance.
As can be seen from the table, DNet with GT scale recovery
has achieved a satisfactory result. It has improved com-
pared to Monodepth2 on former four metrics by respectively
1.74%, 4.32%, 1.05% and 1.04%.

In terms of absolute depth estimation, DGC performs
almost as well as GT scale recovery. Compared to Roussel et
al.[22], DNet achieves improvement on former four metrics
by respectively 32.57%, 41.64%, 28.73% and 29.18%. The
performance of DGC module can even outperform most early
depth estimator using GT scale recovery. These indicate that
DGC scale recovery method, in spite of its simplicity, can
carry out a satisfactory scale recovery.

D. Ablation study

In order to better show the benefit of our proposed modules
and the robustness against ground point ratio, comprehensive
ablation study is conducted.

TABLE II
ABLATION STUDY. COMPARISON ON THE PERFORMANCE BETWEEN

BASELINE AND OUR DNET WITH PROPOSED DCP LAYER. SCALE

FACTOR IS DETERMINED USING LIDAR GROUND TRUTH.

Method Lower is better Higher is better
Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Baseline 0.117 0.894 4.899 0.195 0.871 0.958 0.981
Ours 0.113 0.864 4.812 0.191 0.877 0.960 0.981

TABLE III
ABLATION STUDY. COMPARISON ON THE OBJECT LEVEL PREDICTION

PERFORMANCE BETWEEN BASELINE AND OUR DNET WITH PROPOSED

DCP LAYER. SCALE FACTOR IS DETERMINED USING LIDAR GROUND

TRUTH.

Method Lower is better Higher is better
Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Baseline 0.227 3.680 8.430 0.327 0.690 0.857 0.924
Ours 0.202 2.817 7.941 0.310 0.725 0.875 0.932

1) Benefit of DCP layer: In order to show the effec-
tiveness of hierarchical feature generated by DCP layer,
comparisons are made between baseline and DNet as can
be seen in Table II. It can be seen that, our proposed DCP
layer can boost the performance on the former four metrics
by respectively 3.42%, 3.36%, 1.78%, 2.05%.

2) Benefit of DCP layer on object-level prediction: Depth
estimation on objects can be challenging for the irrgular
boundary and texture copy effects. To show the improvement
of DCP layer on object-level prediction, Mask-RCNN[37] is
used to generate object masks as shown in Fig.6 on test
files and error metrics are calculated only within the masked

Fig. 6. Object masks extracted by Mask-RCNN[37], object level perfor-
mance is calculated only on pixels in the mask.

areas. Table III compares performance between baseline and
DNet on the object-level depth prediction. Our proposed
DCP layer improves the object-level prediction performance
on the former four metrics by respectively 11.01%, 23.45%,
5.80%, 2.14%.

E. Robustness of DGC scale recovery against visible ground:

Since DGC scale recovery largely depends on the ground
points extraction, the relationship of its performance and the
proportion of ground points in a single frame should be
carefully evaluated. We evaluate 697 test images in Eigen
split and plot ground points ratio and corresponding scale
error of each frame. Result is shown in Fig. 7, where the x-
axis is ground point ratio and y-axis is DGC−GT

GT . It can be seen
that when the ground point ratio is larger than 1.03%, the
proposed DGC module can perform uniformly and robustly
comparable to GT scale recovery. But with extreme low
ground points ratio, scale may be incorrectly estimated.

Ground points 
ratio less than 
1.03%

Fig. 7. Robustness evaluation of DGC scale recovery module under
different ground point ratios. The result shows that when detected ground
points take up more than 1.03% of all pixels, our proposed DGC module
can perform comparable to GT scale recovery.

TABLE IV
SPEED PERFORMANCE OF DNET.

Stage Time consumption
Inference 50.0ms

DGC scale recovery 4.1ms

F. Qualitative evaluation

Qualitative results are demonstrated in Fig. 8 and Fig. 9.
Fig. 8 shows the overall absolute depth estimation results
as well as intermediate results such as surface normal and
ground point mask. Fig. 9 demonstrates intuitively the im-
provement brought by introducing DCP in comparison with
baseline. It can be seen that object boundary is more precise
and depth artifacts are to some extent eliminated.



Input image Depth estimation Surface normal map Ground point estimation

Fig. 8. Qualitative results of DNet absolute depth estimation result as well as components in DGC scale recovery module on KITTI 2015 Eigen Split.
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Fig. 9. Qualitative results of our proposed DCP layer on KITTI 2015 Eigen Split. Compared to baseline, DNet with DCP layer is able to present more
precise object boundary (green) and significantly reduce depth artifacts (blue).

TABLE V
QUANTITATIVE RESULT IN SCENES LISTED IN FIG. 10. WHEN

GROUND POINT RATIO IS RELATIVELY HIGH, DGC USUALLY PERFORMS

BETTER THAN GT SCALE RECOVERY IN AT LEAST ON METRIC.

Frame Scale Lower is better
Factor Abs Rel Sq Rel RMSE RMSE log

#106 GT 0.195 1.443 6.416 0.320
#106 DGC 0.110 1.105 5.799 0.319
#183 GT 0.194 1.175 5.888 0.231
#183 DGC 0.127 0.995 5.745 0.229
#330 GT 0.211 1.100 4.138 0.270
#330 DGC 0.144 0.844 4.174 0.271
#395 GT 0.353 2.181 5.837 0.418
#395 DGC 0.273 1.754 5.834 0.470

G. Additional DGC and GT comprarisons

There are also results showing that in some cases, DGC
scale recovery works even better than GT scale recovery,
especially in those scenes, where ground point ratio is
relatively large. Some example of those scenes can be seen
in Fig. 10. The performance in those frames can be seen in
Table V. Surprisingly, in at least 31.7% and at most 45.2% of
the frames, DGC scale recovery module performs better in
terms of four metrics. Detailed result of the ratio of frames
where DGC performs favorably against GT scale recovery
can be seen in Table VI.

V. CONCLUSIONS

In this work, a novel pipeline for self-supervised monoc-
ular absolute depth estimation is presented. DCP layer is
proposed to generate hierarchical features for high resolution
depth inferences, so that object boundary can be more

TABLE VI
RATIO OF THE FRAMES WHERE DGC SCALE RECOVERY PERFORMS

BETTER THAN GT IN TERMS OF DIFFERENT METRICS. IT CAN BE

SEEN THAT ESPECIALLY IN ABSOLUTE RELATIVE ERRORS, DGC
PERFORMS BETTER IN MANY FRAMES.

Evaluation metrics
Abs Rel Sq Rel RMSE RMSE log
45.2% 38.5% 39.3% 31.7%

Frame #106

Frame #395Frame #330

Frame #183

Fig. 10. Scenes where DGC scale recovery performs better than GT
scale recovery. It can be intuitively seen that ground point ratio are all
relatively high in those scenes.

accurate and depth artifacts can be better addressed. In
order for the self-supervised monocular depth estimation
to be more easily adapted to and used in autonomous
driving applications, DGC module is introduced to perform
absolute depth prediction without additional sensors and
depth ground truth. Extensive experiments were conducted to
demonstrate the effectiveness and robustness of the proposed
DNet pipeline as well as DCP and DGC module. In future,
this work provides intuition for better use of hierarchical
features and can serve as the basis for further explorations
of scale recovery methods.
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