arXiv:1906.01408v3 [cs.LG] 3 Mar 2020

Hypothesis-Driven Skill Discovery for
Hierarchical Deep Reinforcement Learning

Caleb Chuck!, Supawit Chockchowwat! and Scott Niekum!

Abstract— Deep reinforcement learning (DRL) is capable of
learning high-performing policies on a variety of complex high-
dimensional tasks, ranging from video games to robotic ma-
nipulation. However, standard DRL methods often suffer from
poor sample efficiency, partially because they aim to be entirely
problem-agnostic. In this work, we introduce a novel approach
to exploration and hierarchical skill learning that derives its
sample efficiency from intuitive assumptions it makes about the
behavior of objects both in the physical world and simulations
which mimic physics. Specifically, we propose the Hypothesis
Proposal and Evaluation (HyPE) algorithm, which discovers
objects from raw pixel data, generates hypotheses about the
controllability of observed changes in object state, and learns a
hierarchy of skills to test these hypotheses. We demonstrate that
HyPE can dramatically improve the sample efficiency of policy
learning in two different domains: a simulated robotic block-
pushing domain, and a popular benchmark task: Breakout.
In these domains, HyPE learns high-scoring policies an order
of magnitude faster than several state-of-the-art reinforcement
learning methods.

I. INTRODUCTION

While recent advances in deep reinforcement learning
(DRL) have been used to obtain exciting results on a variety of
high-dimensional visual tasks, these algorithms often require
large amounts of data in order to achieve good performance.
In real-world domains such as robotics, this data is difficult
and expensive to collect in sufficient quantity. When using
high dimensional observations like images as input state, a
natural factorization of state often exists that reduces the
state space complexity. This factorization reduces the space
of pixels to a space where only sparse instances of interaction
occur [1]—for example, a key unlocking a door, a bat hitting
a baseball, or gripper-object contact in robotic manipulation.
Such interactions often create state-space bottlenecks [2]—a
small subset of states which must be reached in order for the
agent to access large regions of the state space. This feature
of the state space can make exploration difficult, but can also
present opportunities for hierarchical RL algorithms [3], [4],
[5], [6] to learn options [7] that efficiently navigate between
regions separated by bottlenecks. Unfortunately, hierarchical
RL also often learns slowly because extrinsic reward must be
experienced, often repeatedly, before the agent can start to
learn meaningful behavior or skills. For sufficiently difficult
sparse-reward tasks, even with state-of-the-art exploration
methods [8], [9], [10], the agent may take an exceptionally
long time to see a positive reward even once.

Thus, rather than working backwards from reward [11],
[12], we propose building forward towards state bottlenecks

I'The University of Texas at Austin Personal Robotics and Automation
Lab. Contact: calebc@cs.utexas.edu

(2) Hypothesis Generation

Hypothesized
~ Behavior

N

N
N

u
Ball Identifcation Baseline Behavior

v Ball Motion
Paddle Identification

Policy Control

(1) Object Discovery (3) Skill Learning
Fig. 1: The HyPE loop illustrated on the benchmark RL task
Breakout. (1) Beginning with primitive actions, controllable
target objects are visually discovered one at a time. (2)
Hypotheses are generated that describe the types of changes
that a source object (or primitive action) may be able to cause
in the target object. (3) Hypotheses are tested by attempting
to learn options that control the target object via the source
object. Successfully learned options support learning in the
next iteration of the HyPE loop.

by learning skills that control sparse interactions between
objects in physics-based domains. These skills can then be
used to navigate bottlenecks, explore efficiently, and maximize
return. In this work objects are physical entities that obey
certain laws. Additionally, we add abstract objects such as
primitive actions or reward that can affect, or be affected by,
physical objects. In this work, if an action (either a primitive
action or a higher-level option that controls an object) can
cause a predictable change in another object, we refer to
that action as being causal of that change. The Hypothesis
Proposal and Evaluation (HyPE) algorithm illustrated in
Figure |1| exploits causal relationships between objects using
a three step loop to learn policies which navigate state space
bottlenecks:

1) Object discovery: In this step, we aim to discover
factorized object representations from raw pixel inputs.
Specifically, in each iteration of the HyPE loop, we
attempt to discover one new object (the farget object)
by learning a set of convolutional filters whose outputs
meet certain physics-guided criteria, and whose motion
is explained by a previously discovered object or
primitive action (the source object).

2) Skill proposal via hypothesis generation: We then
generate one or more hypotheses about the specific
changes that the source object can cause in the target

Option Hierarchy

Reward

Ball Ball Ball Ball
Left L-center, _R-cente Right
Paddle Paddle Paddle
Left Fixed

nght

Fig. 2: An example option hierarchy learnable by HyPE in
Breakout. Each option’s action space is comprised of options
from the previous level, until reaching primitives actions at the
bottom. An option that uses source object o; to control target
object o; uses the object states ¢;(s),;(s) as input. Green
in the images denotes the action space at each level, while
yellow denotes the hypothesized target object state change(s),
which define the termination sets for those options.

object by observing interactions between them (i.e. how
the state of the source object appears to influence the
state of the target object). However, these hypothesized
interactions may be spurious rather than causal, so
each hypothesis must be made testable. To do so, each
hypothesis is instantiated as an option whose goal is
to cause a particular change in the target object via
the source object. The actions available to the option
are, in turn, previously learned options that control the
source object, beginning with primitive actions at the
beginning of the hierarchy.

3) Hierarchical skill learning via hypothesis evalua-
tion: Finally, each interaction hypothesis is tested
by using DRL to determine if the associated option
is learnable. If an option policy can be successfully
learned, the corresponding hypothesis is confirmed and
the option hierarchy is extended permanently. The loop
then continues from step 1. For example, in Breakout,
options for controlling the ball can be learned by using
options that control paddle displacement, which, in turn,
use primitive actions. The next iteration of the HyPE
loop could then use the new ball-control options to
learn options which control the blocks. Figure [2] shows
an illustration of such a hierarchy.

We evaluate HyPE in two domains: First, a simulated robotic
pushing domain in which standard DRL methods exhibit
poor sample efficiency. Second, the classic arcade game of
Breakout, where HyPE improves the sample efficiency of

policy learning on raw pixels by an order of magnitude, as
compared to several state-of-the-art DRL algorithms.

II. PROBLEM FORMULATION
A. MDP formulation

A Markov Decision Process (MDP) is defined by
(S,Apiim, T, R, 7). At each time step 7, the agent observes
a state s € S (in our case, s is an image), with starting state
distribution S, and takes primitive action a € Apriy. The next
state is determined by 7' (s',a,s), the probability distribution
over subsequent state s’ given current state s and current
action a. The agent receives external reward as a function of
the current state and action R(s,a) — R. The return g, is the
discounted sum of rewards: g, = Y'I, ¥ 'R(s;,a;), where 7 is
the discount factor. A policy 7(s|a) is defined the probability
of an action a given state s. Reinforcement learning searches
for the policy that maximizes this total expected return.

B. Hierarchical Skills via Options

Our skill hierarchy is based on the options framework [7].
An option @ is defined by the tuple (I, 7y, Bw), where I,
is the initiation set, 7, is a policy within the option, and
Bw : S —[0,1] is the termination condition. We simplify the
initiation set to say all options are available everywhere:
selyVseS VYo e Q.

An option hierarchy [4] is a sequence of sets of options
[Q1,Q,...€,], where the action space for option { @y ; € Q;}
are the options defined in €;_, and the action space for Q
are the primitive actions. Thus, executing an option from Q,
executes an option from Q,_1, which itself executes an option
from Q,_» and so on, until an option from Q; executes a
primitive action.

The HyPE algorithm learns object specific option sets to
learn a hierarchy of object control, treating primitive actions
as the first object. Deﬁne an object state for object o; at time
t by the mapping ¢,, (s () from raw state to object factorized
state. In this work, the object state is limited to an (x,y)
position, but this can be extended to any function of the state
in future work. An object option set Q; contains K options,
ay; € €;, where the terminal set of each option is

Bri = {57, sV, (s) — 90, sy m i}, (D)

and where py is a single-step displacement corresponding
to option @y ;. The policy 7 ; of this option uses options
from €;_; as the action space which are recursively defined
as single step displacement of ‘%4(50))‘ For example, in
breakout Qpa use Qpudqe displacements as actions, and
controls displacements in @y (s®). We simplify ¢,,(s"))
to (bi(t). Figure [2| describes this object option hierarchy for
the Breakout domain.

III. METHODS

In this section we introduce the HyPE loop, which at each
iteration learns an object identification function ¢;(s) and
adds an option set to an object option hierarchy .7, starting
from Qprim and @prim, the options and state space for primitive
actions. @prim takes on the action on the current time step as

state, and pim is the set of primitive actions. Each iteration
performs three sub-steps. 1) discovers a new target object by
learning an object identification function @, (s). This function
tracks the object in the scene, learning ¢, using correlations
with a source object o;. 2) proposes hypotheses about how the
object can be controlled using €;, the options controlling the
source object. 3) uses deep reinforcement learning to learn
these options which produce the proposed control as the
termination set B, of that new option. If the policy achieves
non-trivial reward, HyPE adds Q. to % and keeps track of
Orar- The HyPE loop then iterates again using @prim, - - -, Grar
to discover additional new objects, terminating when it has
achieved high task reward (The object option hierarchy ¢
is task specific). See Algorithm

Algorithm 1 HyPE Loop

Input: MDP Environment E

Initialize Object option hierarchy # with a single option

set Qprim’ ¢prim

Data 2 = | Jrandom policy data

repeat
Object Discovery: learn ¢, (s), where the {¢t(;r> hep
interacts with a source object ¢;, by optimizing Equation
(Section III.A) with black box optimization
Hypothesis Proposal: Propose {py wr}5_, which define
the termination conditions B, for options controlling
Ogr. (Section II1.B)
Hypothesis Evaluation: Learn the policies 7 (o, for the
new set of options using Deep reinforcement learning.
(Section II1.C)
Update Add @y, Qear to JZ if the policy in Hypothesis
Evaluation is learnable

until A HyPE option achieves high extrinsic reward

A. Object Discovery

The object discovery step learns an object identification
function—the mapping from images to object state P (s)—
for target object oy, In order to learn this function, we
use the following insight: we can discover new objects by
tracking interactions with a source object o; learned in a
previous iteration of the HyPE loop. In practice, we represent
the object identification function ¢, (s) as a convolutional
neural network (CNN) which outputs a heatmap over the
input image s, and returns the (x,y) pixel coordinate with
highest intensity response.

For the object discovery step we optimize a loss function
over a sequence of object states of source object ¢; and the
target object (being learned) @, where @ = ((])k(l))lT:O

oo oW @)

T
L(9i: uar) = — F1 (6 Gar) + 21 Y, ’
=0

The F; criteria measures the relevance of correlated interac-
tions between @, and source object state ¢;. A correlated
interaction is when there is a changepoint, when the motion
of the target object changes significantly, during an eligible

time, which is when two objects are likely to be interacting.
We will define these formally. The second term penalizes the
12 distance between sequential outputs by @ur. L(0i; Par) is
optimized using a black box optimization algorithm, CMA-
ES, over the weights of the CNN.

To define eligible, we use spatial proximity as a physical
heuristic for the ability of objects to interact. Since our state
is defined by (x,y) coordinates of the objects, two objects
are eligible when

| Ptar — @il < Eprox 3)

The &,r0x hyperparameter specifies a pixel distance threshold.
This depends on the geometry of the objects, so though ideally
we would define the distance in terms of edges or nearest
point analysis, for the purpose of simplicity, in this paper we
use point distance. We define ¢ as an eligible time if (j)tatr) , d)i(t)
satisfy Equation [3]

We detect changepoints using Changepoint Detection using
Approximate Model Parameters (CHAMP) [13]. Change-
points {ci,...,cy} are timesteps in a trajectory. Each
pair of sequential time steps c¢,cn+1 defines a segment
[0]t lep.cnss]» Where a model gn(9}) € Q approximates

the state transition qm((btgr)) ~ (])t(a’:l) , We use the affine model
class for Q, such that q(¢t(atr)) = Dd)tgr) +d=~ ¢tgr+1)_ D is an
2 x 2 matrix and d is a length 2 vector, learned by linear
regression. The number of changepoints M is discovered
from data. With abstract objects like primitive actions, where
proximity does not make sense as a criteria for eligible, we
use changepoints in the object o; as eligible times.

When an eligible time co-occurs with a changepoint, we
call this a correlated interaction. The F1 score measures
the the harmonic mean of precision and recall between
eligible times and changepoints. The intuition is that for
the source object state to be correlated with the target
object state, there should be more changepoints than usual
when eligible—otherwise the changepoints can be seen
to be independent of the source. Using the F1 score to
quantify correlated interactions balances eligible times with
changepoints. Without balancing, the CNN might learn to
track the source object (always eligible) or constantly exhibit
difficult to model displacements (many changepoints).

Given a trajectory [(])i(l),q)t(a?],T:O, we can define length T
binary vectors for eligible times e and changepoints ¢, which
are 1 at an eligible time/changepoint respectively, and 0
elsewhere. The F1 score for correlated interactions is

o 1
Fi (91 Prar) = Tel2 | Jel2
1y 1%

cle cle

“4)

This is just one possible instantiation of eligibility and
changepoints—future work could use heuristics or learned
metrics.

The score achieved by the F1 component of L(¢;;)
provides a measure used to verify that object discovery has
learned an object that is likely to be controllable through o;.
If the final F1 score after learning is low, this means that
the learned ¢, (s) does not map to a feature that has many

correlated interactions o;, and might be noise. This is a good
criteria for deciding when object discovery should move to
a different source object 0;. In Breakout, for example, the
abstract object for primitive actions @iy has high F1 score
when locating the paddle, because changing actions is highly
correlated with changes in paddle motion. After the paddle
is learned, however, the F1 score for primitive actions in the
scene is low. This stopping criteria is:

Fi (5 Gar) < €F1)

Though the vision system is sufficient to achieve the
results we describe in Section IV, we acknowledge some
shortcomings: first, the loss is defined pairwise between
only two objects, meaning that objects which have multiple
simultaneous interactions are difficult to identify. Second, it
is necessary to remove already learned objects from s, or they
might be learned repeatedly. We do this by subtracting the
mean of a fixed region around an already learned object from
s, which masks out the learned object. Finally, the vision
loss uses a single image as input into a CNN of limited
size (due to the computational cost of running CMA-ES,
even for moderately sized neural networks). This will be
addressed in future work by taking in multiple frames as
input and designing a differentiable definition of eligibility
and changepoints.

B. Hypothesis Proposal

Object discovery determines that ¢, has correlated inter-
actions with o;, but does not specify how to learn options to
manipulate @,. Hypothesis generation constructs the set of
possible motions, the hypotheses, that o; can effect on @,,.
Each proposed motion py i, is @ hypothesis about the way
that o; can causally manipulate @,.. Learning these options in
hypothesis evaluation would verify that o; causes this desired
motion in Q.

Hypothesis proposal uses distinct motions py oy to define
the termination set for option @y € Q. Motion is rep-
resented as a single timestep change in @;: tgfl) — ¢t(a’2.
For states s*) followed by sU*1), the termination set Brtar
corresponding to hypothesized motion py or has the form

ﬁk,tar = {S<t>as(t+1) | ||¢tar(s(t+l)) - (Ptar(s(t)) - pk,tarH < 8k7ﬁ}
(6)

To define K motions {p;...pg}, we want to specify as
few motions as possible, while capturing all single timestep
motions over @, caused by o;. Limiting the number of py tar
reduces the cost of policy learning in hypothesis evaluation.
Thus, even though the set of p; could be all observed
single timestep displacement after a correlated interaction
(the set of correlated actions being CI = {t|e(r) -c(t) = 1}):
P={ q)&f b_ ¢t§2 }recr, this set would include many spurious
changepoints due to multi-object interactions and vision
failures. Instead, to reduce noise, take P as the training
set for a DP-GMM (Dirichlet process Gaussian mixture
model) [14] an unsupervised clustering model, and take
clusters with the number of data points assigned to them
above a fixed minimum nppgyMm. These cluster means are

used as parameters py . The € g are computed using the
cluster variance of the Gaussian model corresponding to the
respective cluster. This unsupervised method for discretizing
and denoising object changes is one choice of method for
defining the set of hypothesized control.

For the hypotheses: o; causes {pi tar- - - Pk tar }» We Dot only
want to propose a set of possible motions, but also ensure that
this set of motions is caused by o;. To do this, we specify the
input space and (output) action space of the policy which will
be learned to fulfill the termination condition. Thus, the input
state of the target options is the state of the source object
¢; and the target object ¢, only. For example, a paddle-
ball policy ignores block state. The action space is Q;, or
options manipulating o; by 0;_;. This ensures that the option
manipulates the target object oy, via the source object o;,
and is blind to objects other than the two it is learning the
interaction between.

In summary, hypothesis proposal generates a set of pos-
sible options Qar 1= {® tar, . .., Ok rar} distinguished by a
particular displacement motion that they effect on @, using
Q; as actions and ignoring all state except [@;, @rar]-

C. Hypothesis testing to determine causal links

Hypothesis testing differentiates correlation between two
objects, as observed in the previous two steps, and causal
relations, by attempting to learn the policies {7 tar, - - - , Tk tar t
corresponding to the proposed option set Q, using DRL.

Using DRL requires a reward function. We convert the
termination condition of the option into an intrinsic reward
for training the policy by:

R(S, Slv Pk,tar) = E(q)tara (pi)C((ptar)Bk((Ptar» (Ptlarv pk,tar) (7

E, C, B are a 0-1 indicator functions of eligibility, change-
points and termination set P, respectively (Equation
Section III.A, Equation @) This gives nonzero reward of 1
only for correlated interactions which produce the desired
single timestep displacement py (o

We use DRL with this reward function and test a variety of
different DRL algorithms, including actor critic (PPO) [15],
Actor (policy iteration), Critic (Q-learning) [16] and black
box (CMA-ES) [17].

In order to exploit the object factorized structure of [¢;, @ar,
we utilize a neural net which computes:

1 L
softmax (WffL Z o (Wemb Vi (9, (Ptar))) ®)
=0

Where y(-,-) are basic input features computed from ¢ (-),
such as relative position or velocity, while still including ¢;
and ¢, This network then expands each input feature into a
length N embedding, where W, is a N X 2 matrix of weights
(all input features have dimension 2), and ¢ is the rectified
linear unit. It takes the mean of all L embeddings vectors
and feeds these forward to action logits, using a softmax
operation to convert these to probabilities.

To train the K options simultaniously, corresponding to
each py or, we randomly switch between executing 7 i, for a

fixed duration, and perform off-policy updates when amenable.
When using an on-policy DRL algorithm, then we update
on-policy.

Hypothesis evaluation assesses the causal relation between
0i,0rr by comparing the expected return of the learned
policy E[g/|m o] (computed using the intrinsic reward in
Equation [7), with the expected return of a random policy
E [gr I nrandom] .

E[gtlﬂk.lar] - IE[gt|7trandom} 2 Ecausal (9)

A policy which satisfies the above criteria produces the
hypothesized state change p; more often than a random
policy. This is a usable option for manipulation of ¢, so
we add Q,, to the 7.

Since 7 ior uses option set Q; to manipulate ¢y, and 7y gy
has a limited input space only including [¢;, @], this policy
can be seen as an intervention where o; causally controls o;.
In addition, learning at least one option @y demonstrates
some control over o, by the agent, since the base node of
the object option chain is primitive actions.

D. Overall HyPE Loop

The HyPE algorithm applied to a new domain, as described
in Algorithm [T] repeatedly loops between object discovery,
hypothesis proposal and hypothesis evaluation. In order to
begin object discovery, historical data Z is initialized by
collecting data from a policy which takes random actions. This
sample also forms the baseline comparison for Equation [0

The only option set in 7 on the first iteration of the
HyPE loop corresponds to primitive actions. @pim collects
the actions taken, and @y prim corresponds to the the kth
primitive action. Option discovery optimizes Equation
with 0; = 0pim using trajectories from & as training data.
The object identification function ¢;(s) returns a ¢; with
correlated interactions with Apim. Then, hypothesis proposal
and evaluation will learn the option set ; to manipulate ¢y,
and add Q to 7.

The subsequent iterations of the loop will add new option
sets to the chain from the bottom up. The loop starts object
discovery with opiy as the source object. If optimizing
Equation [2] fails to learn a ¢y, that satisfies Equation [} or the
hypothesis evaluation fails (Equation [J), the object discovery
restarts with @;. This traversal heuristic assumes that objects
more directly manipulated will be easier to learn about. In
the case of multiple chains (i.e. multiple objects are directly
manipulated by some o0;), HyPE finds the shortest chain to
manipulate reward by discovering objects in a breadth-first
style search.

IV. RESULTS

We demonstrate the capabilities of the HyPE algorithm
in two domains. First, we show HyPE learns policies which
achieve good performance in a perfect perception robotic
pushing domain, where classical reinforcement learning
methods perform poorly. In the robotic domain, common DRL
baselines struggle to learn fairly intuitive policies because
of the state space bottlenecks in pseudo-physical domains.

RANDOM GRIPPER BLoOCK REWARD
2,000 2,000 1,500,000 1,000,000

TABLE I: Table of training times for each loop of HyPE when
learning the robotic pushing domain. “Random” stands for the
initial random states to start the loop, while “gripper”, “block”
and “reward” denote HyPE iterations learning to control each
of these objects.

We also show HyPE learns high scoring policies from pixels
in a sample efficient manner in the classic game (and deep
DRL benchmark task) Breakout, where standard deep DRL
policies take many more timesteps.

A. Robotic Pushing Domain

In Our 2-D robotic pushing domain, a gripper, controlled
in cardinal directions, manipulates a block by pushing it into
a target location. The agent receives non-zero reward of 1
only if the block contacts a target area. Episodes end when
the block contacts the target area, or after 300 timesteps.
All three objects have randomly initialized positions. This
domain is challenging for standard RL because the reward is
extremely sparse: a random policy takes on average 10,000
time steps to stumble upon non-zero reward.

In the pushing domain, we seek to demonstrate that HyPE
provides clear benefits beyond factorized state. Thus, the
robot pushing domain has perfect perception. Incorporating
perception with the full HyPE loop is the focus of the
Breakout experiments. The state consists of three pairs of
(x,y) pixel coordinates corresponding to the gripper, block,
and target. HyPE iterations in the robotic pusher domain start
with hypothesis proposal to learn relations between the paired
positions. Hypothesis evaluation learns options that perform
the desired behavior, utilizing Proximal Policy Optimization
(PPO) [15] with the 0-1 reward and Wy, with N = 4096 (as
defined in Section III.C).

The HyPE loop begins with only @pim and Qi € 77,
and initializes the dataset with random actions until it picks
up a correlation between primative actions and another state
variable, which takes ~ 1000 random steps. HyPE proposes
five motions over the gripper (px gripper) left, right, up, down,
and stationery, with £ ~ 2.4 pixels as cluster means of the
learned DP-GMM. Hypothesis evaluation learns a policies
corresponding to these options in ~ 5000 time steps.

The data from this step allows hypothesis proposal about
block control. However, because block changepoints occur
infrequently, the initial options only capture limited control of
the block, without rewarding all directions. After ~ 10,000
time steps, however, the options are re-specified with left,
right, up, down motions, four pyjockx. HyPE learns these
policies in an average of 1.5M time steps of training, leading
to policies which push the block in the desired direction.

The third iteration of the HyPE loop reveals that the
relationship between the block and target is correlated with
extrinsic reward (and end of the episode). HyPE proposes
options to control the extrinsic reward by controlling the block.

HyPE Performance on Simulated Pushing Domain

10

—— HyPE

— Baseline
08 1 | Block Training

Raw Reward Training

Average Episode Reward

00 o i

T u T i i i T
100k 400k 700k m 13m 16m 2.0m 2.5m

Number of Timesteps
Fig. 3: Graph of training in the robotic pushing domain.
Baseline methods A2C, PPO and Rainbow failed to achieve
better reward than random actions, even with reward shaping.
A reward-hacked baseline (red) is able to achieve better
than trivial rewards, but worse performance than HyPE. The
vertical lines dictate different iterations of the HyPE loop.

Since this is a multi-object interaction, where a changepoint in
extrinsic reward based on the relative positions of block and
target. We augmented HyPE hypothesis proposal by allowing
proximity between @plock, Prarger (Or any other pair of objects)
to be correlated with changepoints in @rewarq- The policy for
controlling extrinsic reward learns in an average of 500k
time steps. Figure [3] shows the full performance of HyPE in
the pushing domain. Learning the reward option set requires
fewer time steps than the block option set, because HyPE uses
control of the block as the action space for this option, and
only needs to plan using the block-target relative information.

By comparison, A2C [16], Proximal Policy Optimization
(PPO) and Rainbow [18] trained on the same domain, using
the baseline reward, return policies that do not perform better
than random even after 20M time steps. Even when given
a shaped reward, which is equal to —A||@iock — Prarget||1, @
scaled negative 11 norm shaped reward between the block
and the target, these standard RL algorithms fail to learn
meaningful policies. We constructed one baseline which
succeeded in pushing the block to the goal approximately
60% of the time after 15M time steps (as compared to the
90 — 95% success rate from HyPE). The specialized HyPE-
like reward gave +1 reward for moving the block, and a
41000 reward for end of episode. This demonstrates not only
that HyPE learns a very reasonable set of sub-tasks, but
also that the action hierarchy of HyPE, the main difference
between this baseline and HyPE, is invaluable in solving some
tasks. This results overall demonstrate how the object option
chain from HyPE can be used to solve problems which would
by standard RL be infeasible. Table |l shows the timesteps
needed for learning to control the different objects.

B. Breakout Domain

We add object discovery to the HyPE loop in Breakout
(Figure . As before, starting from only @pim and Qprim,
HyPE takes random actions until it discovers an object

HYPE
55,500

A2C & PPO
> 1,500,000

RAINBOW
~ 1,000,000

BASE
52,000

TABLE II: Table of training time to find evaluation policy
with 244 blocks hit in Breakout, the average test score of
HyPE after 55,500 frames of training (standard error 27, 20
trials). “Base” is a CMA-ES algorithm run on the relative
positions of the paddle and the ball, ball velocity, and ball
and paddle positions, from the true underlying game state.

correlated with primitive actions. After ~ 1000 frames of
random data, HyPE learn a object detection CNN to locate
the paddle by optimizing the loss defined in Equation [2| With
sufficient F1 score to pass Equation [5] the loop proposes and
learns to control the paddle £2 or 0 pixels in 2.5k timesteps.
The HyPE loop adds object identification function @padde and
option set Qpaddie-

Using the cumulative data, the HyPE loop then optimizes
the F1 score starting with opin, as the source object. With the
paddle removed from the image, the F1 score does not pass
Equation E} However, using opaddie, Object discovery learns a
CNN which tracks the ball. Due to the rarity of ball bounces,
the proposed option only bounces the ball off the paddle—it
groups all angles together, leaving a single ball control option.
Learning this option is sufficient to control extrinsic reward,
so HyPE terminates.

In Figure 4, We show that HyPE has an order of magnitude
improvement in sample efficiency when compared to standard
RL methods on Breakout. HyPE, at train time, achieves
average train reward per episode of 17.5 in 55k frames, while
Rainbow [18] takes 400k timesteps, and Proximal Policy
Optimization [15] and A2C [16] take roughly 1.4M timesteps
to achieve the same performance. However because CMA-
ES, which used to learn the HyPE policies in Breakout,
typically has substantially higher test than train performance,
comparing training performance understates the performance
of the learned policy. The evaluation policy learned by HyPE
after 55k frames achieves 244 average reward per episode
performance. Rainbow, the best performing baseline, takes
~ 1M timesteps to achieve the same performance.

Note that though the HyPE loop learns intuitive objects (the
paddle, ball), this is not encoded explicitly anywhere in the
algorithm but emerges from physical priors and controllability.
HyPE has the same information as the standard RL algorithms,
but uses object priors to achieve high sample efficiency.

V. RELATED WORK

This work combines ideas from causality and relational
learning, model-based reinforcement learning, and hierarchi-
cal reinforcement learning. It uses these ideas to construct
a hierarchical reinforcement learning problem with intrinsic
rewards.

Causal graphs: The hypothesis proposal and evaluation
ideas draw from causality literature [20]. These components of
HyPE relate to where causal graphs [21] and graph-dependent
policies [22] learned from interactions with the environment.

Training Sample Efficiency

—— Rainbow
2C

17.5 = —— PPO

—— Ewolutionary Strategies

— CMAES

15.0 4 — HyPE
Base

—— HyPE Train Performance at 55k frames

Average Reward per Episode

0o T T T
1k 10k 100k 500k

Number of Frames Experienced

Comparison of Rainbow and HyPE

—— Rainbow
250 —— HyPE Test Performance at 55k frames

200 -

150

100

Average Reward per Episode

T T T T T T T T T
100k 200k 300k 400k SO0k 600k 700k 80Ok 900k 1m

Number of Frames Experienced

Fig. 4: Performance comparison (average of 10 trials) between PPO, A2C (orange), Rainbow (blue) and HyPE (maroon),
evolutionary strategies [19], CMA-ES and a perfect perception, paddle-ball state only baseline (Base). The y-axis is average
episode return, and the x-axis is number of frames experienced, on a log scale. HyPE outperforms Rainbow [18], the best
baseline not using perfect perception, by 7x in training and 18x in test. HyPE testing performance at 55k frames matches
Rainbow performance after 1m time steps (see Table [[). Since the Baseline is a perfect reward, perfect perception equivalent

of HyPE, we expect it to lower bound HyPE performance.

HyPE also learns causal object relationships [23], [24], [25],
[26] which has similarities to object-oriented and relational
reinforcement learning [27], [28], [29], [30]. Though HyPE
uses a similar object-oriented relational structure, it learns
object-object interactions one at a time for highly efficient
hierarchical reinforcement learning and visual factorization.

Model-based RL: Model-based reinforcement learning
using a learned model has shown substantial improvements
in reinforcement learning sample efficiency in Atari games
[31]. These methods often learn to predict future raw state
[32], or latent space [33] in tandem to learning a useful policy
[34]. They then incorporate planning [35], [36], [37] with
constructed environment models [38]. HyPE makes loose use
of modeling to generate different options, but once it learns
control policies, it applies model-free reinforcement learning
and should be improved by incorporating Model-based RL.

Hierarchical RL and Exploration: Learning hierarchies
of control with options has been studied in detail [39], [3],
and can be used to define a system for learning skills and
state spaces [4], [40], [41], [42], [43], [44]. Exploration work
has used novelty [45], [46], [47], frontier states [48], [49],
model prediction error [50], [9], sub-goals from hindsight
[51], bottleneck regions [3] or contingency [52], [53] as other
exploration objectives. While the HyPE loop is inspired by
these works, it incorporates object option hierarchies and
physical priors.

VI. CONCLUSION

We introduced the HyPE algorithm, which explores physi-
cally inspired state space bottlenecks to efficiently learn to
hierarchically explore and control its environment. By taking
advantage of some physically inspired priors like proximity
and changepoints, this system learns high performing policies
in RL settings. Though this system is less application agnostic
than classic general-purpose RL algorithms, it achieves sample

efficiency that is an order of magnitude better than standard
RL methods on multiple domains. Future work can address
the practical issues required to extend HyPE to physical
real-world domains. Furthermore, the object option chain
structure generated by HyPE may have implications for both
explainable AI and transfer learning.

REFERENCES

[1] O. Kroemer, S. Niekum, and G. Konidaris, “A review of robot learning
for manipulation: Challenges, representations, and algorithms,” arXiv
preprint arXiv:1907.03146, 2019.

[2] O. Simgek and A. G. Barto, “Skill characterization based on between-
ness,” in Advances in neural information processing systems, pp. 1497—
1504, 2009.

[3] P-L. Bacon, J. Harb, and D. Precup, “The option-critic architecture,”
in Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[4] G. Konidaris, “Constructing abstraction hierarchies using a skill-symbol
loop,” in IJCAI: proceedings of the conference, vol. 2016, p. 1648,
NIH Public Access, 2016.

[5] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg,
D. Silver, and K. Kavukcuoglu, “Feudal networks for hierarchical
reinforcement learning,” in Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pp. 3540-3549, JMLR.
org, 2017.

[6] A. Sharma, S. Gu, S. Levine, V. Kumar, and K. Hausman, “Dynamics-

aware unsupervised skill discovery,” in Proceeding of the Interna-

tional Conference on Learning Representations (ICLR), Addis Ababa,

Ethiopia, pp. 26-30, 2020.

R. S. Sutton, D. Precup, and S. Singh, “Between mdps and semi-

mdps: A framework for temporal abstraction in reinforcement learning,”

Artificial intelligence, vol. 112, no. 1-2, pp. 181-211, 1999.

G. Ostrovski, M. G. Bellemare, A. van den Oord, and R. Munos,

“Count-based exploration with neural density models,” in Proceedings

of the 34th International Conference on Machine Learning-Volume 70,

pp. 2721-2730, JMLR. org, 2017.

D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven

exploration by self-supervised prediction,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition Workshops,

pp. 16-17, 2017.

[10] T. Hester and P. Stone, “Real time targeted exploration in large domains,”

in 2010 IEEE 9th International Conference on Development and
Learning, pp. 191-196, IEEE, 2010.

[7

—

[8

[t}

[9

—

[11]

[12]

[13]

[14]

[15]

(16]

[17]

[18]

[19]

[20]
[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

G. Konidaris and A. G. Barto, “Skill discovery in continuous reinforce-
ment learning domains using skill chaining,” in Advances in neural
information processing systems, pp. 1015-1023, 2009.

C. Florensa, D. Held, M. Wulfmeier, M. Zhang, and P. Abbeel, “Reverse
curriculum generation for reinforcement learning,” arXiv preprint
arXiv:1707.05300, 2017.

S. Niekum, S. Osentoski, C. G. Atkeson, and A. G. Barto, “Online
bayesian changepoint detection for articulated motion models,” in 2015
IEEE International Conference on Robotics and Automation (ICRA),
pp. 1468-1475, IEEE, 2015.

M. D. Escobar, “Estimating normal means with a dirichlet process
prior,” Journal of the American Statistical Association, vol. 89, no. 425,
pp. 268-277, 1994.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in International conference on machine
learning, pp. 1928-1937, 2016.

N. Hansen and A. Ostermeier, “Adapting arbitrary normal mutation
distributions in evolution strategies: The covariance matrix adaptation,
in Proceedings of IEEE international conference on evolutionary
computation, pp. 312-317, IEEE, 1996.

M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski,
W. Dabney, D. Horgan, B. Piot, M. Azar, and D. Silver, “Rainbow:
Combining improvements in deep reinforcement learning,” in Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

T. Salimans, J. Ho, X. Chen, S. Sidor, and 1. Sutskever, “Evolution
strategies as a scalable alternative to reinforcement learning,” arXiv
preprint arXiv:1703.03864, 2017.

J. Pearl, Causality. Cambridge university press, 2009.

K. Shanmugam, M. Kocaoglu, A. G. Dimakis, and S. Vishwanath,
“Learning causal graphs with small interventions,” in Advances in
Neural Information Processing Systems, pp. 3195-3203, 2015.

L. Buesing, T. Weber, Y. Zwols, S. Racaniere, A. Guez, J.-B. Lespiau,
and N. Heess, “Woulda, coulda, shoulda: Counterfactually-guided policy
search,” arXiv preprint arXiv:1811.06272, 2018.

P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez,
V. Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro,
R. Faulkner, et al., “Relational inductive biases, deep learning, and
graph networks,” arXiv preprint arXiv:1806.01261, 2018.

M. Garnelo, K. Arulkumaran, and M. Shanahan, “Towards deep
symbolic reinforcement learning,” arXiv preprint arXiv:1609.05518,
2016.

S. Toyer, F. Trevizan, S. Thiébaux, and L. Xie, “Action schema
networks: Generalised policies with deep learning,” in Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

K. Kansky, T. Silver, D. A. Mély, M. Eldawy, M. Lazaro-Gredilla,
X. Lou, N. Dorfman, S. Sidor, S. Phoenix, and D. George, “Schema
networks: Zero-shot transfer with a generative causal model of intuitive
physics,” in Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pp. 1809-1818, JMLR. org, 2017.

C. Diuk, A. Cohen, and M. L. Littman, “An object-oriented represen-
tation for efficient reinforcement learning,” in Proceedings of the 25th
international conference on Machine learning, pp. 240-247, ACM,
2008.

V. Zambaldi, D. Raposo, A. Santoro, V. Bapst, Y. Li, I. Babuschkin,
K. Tuyls, D. Reichert, T. Lillicrap, E. Lockhart, et al., “Relational
deep reinforcement learning,” arXiv preprint arXiv:1806.01830, 2018.
F. L. D. Silva and A. H. R. Costa, “Object-oriented curriculum
generation for reinforcement learning,” in Proceedings of the 17th
International Conference on Autonomous Agents and MultiAgent
Systems, pp. 1026-1034, International Foundation for Autonomous
Agents and Multiagent Systems, 2018.

N. Watters, D. Zoran, T. Weber, P. Battaglia, R. Pascanu, and
A. Tacchetti, “Visual interaction networks: Learning a physics simulator
from video,” in Advances in neural information processing systems,
pp. 45394547, 2017.

L. Kaiser, M. Babaeizadeh, P. Milos, B. Osinski, R. H. Campbell,
K. Czechowski, D. Erhan, C. Finn, P. Kozakowski, S. Levine,
et al., “Model-based reinforcement learning for atari,” arXiv preprint
arXiv:1903.00374, 2019.

D. Silver, H. van Hasselt, M. Hessel, T. Schaul, A. Guez, T. Harley,
G. Dulac-Arnold, D. Reichert, N. Rabinowitz, A. Barreto, et al.,

>

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42

[43]

[44]

[45]

[46]

[47]

(48]

[49

[50

[51]

[52]

[53]

“The predictron: End-to-end learning and planning,” in Proceedings of
the 34th International Conference on Machine Learning-Volume 70,
pp. 3191-3199, IMLR. org, 2017.

M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller, “Embed
to control: A locally linear latent dynamics model for control from
raw images,” in Advances in neural information processing systems,
pp. 27462754, 2015.

J. Schmidhuber, “On learning to think: Algorithmic information theory
for novel combinations of reinforcement learning controllers and
recurrent neural world models,” arXiv preprint arXiv:1511.09249, 2015.
A. Piergiovanni, A. Wu, and M. S. Ryoo, “Learning real-world robot
policies by dreaming,” arXiv preprint arXiv:1805.07813, 2018.

K. Lowrey, A. Rajeswaran, S. Kakade, E. Todorov, and I. Mordatch,
“Plan online, learn offline: Efficient learning and exploration via model-
based control,” arXiv preprint arXiv:1811.01848, 2018.

A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural network
dynamics for model-based deep reinforcement learning with model-free
fine-tuning,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA), pp. 7559-7566, IEEE, 2018.

S. Racaniere, T. Weber, D. Reichert, L. Buesing, A. Guez, D. J.
Rezende, A. P. Badia, O. Vinyals, N. Heess, Y. Li, et al., “Imagination-
augmented agents for deep reinforcement learning,” in Advances in
neural information processing systems, pp. 5690-5701, 2017.

R. S. Sutton, D. Precup, and S. Singh, “Between mdps and semi-
mdps: A framework for temporal abstraction in reinforcement learning,”
Artificial intelligence, vol. 112, no. 1-2, pp. 181-211, 1999.

T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum, “Hierar-
chical deep reinforcement learning: Integrating temporal abstraction
and intrinsic motivation,” in Advances in neural information processing
systems, pp. 3675-3683, 2016.

C. Daniel, G. Neumann, and J. Peters, “Hierarchical relative entropy
policy search,” in Artificial Intelligence and Statistics, pp. 273-281,
2012.

A. Barreto, W. Dabney, R. Munos, J. J. Hunt, T. Schaul, H. P. van
Hasselt, and D. Silver, “Successor features for transfer in reinforcement
learning,” in Advances in neural information processing systems,
pp. 4055-4065, 2017.

A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg,
D. Silver, and K. Kavukcuoglu, “Feudal networks for hierarchical
reinforcement learning,” in Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pp. 3540-3549, JMLR.
org, 2017.

K. Arulkumaran, N. Dilokthanakul, M. Shanahan, and A. A. Bharath,
“Classifying options for deep reinforcement learning,” arXiv preprint
arXiv:1604.08153, 2016.

G. Ostrovski, M. G. Bellemare, A. van den Oord, and R. Munos,
“Count-based exploration with neural density models,” in Proceedings
of the 34th International Conference on Machine Learning-Volume 70,
pp- 2721-2730, JMLR. org, 2017.

H. Tang, R. Houthooft, D. Foote, A. Stooke, O. X. Chen, Y. Duan,
J. Schulman, F. DeTurck, and P. Abbeel, “# exploration: A study of
count-based exploration for deep reinforcement learning,” in Advances
in neural information processing systems, pp. 2753-2762, 2017.

Y. Burda, H. Edwards, A. Storkey, and O. Klimov, “Exploration by
random network distillation,” arXiv preprint arXiv:1810.12894, 2018.
N. Savinov, A. Raichuk, R. Marinier, D. Vincent, M. Pollefeys,
T. Lillicrap, and S. Gelly, “Episodic curiosity through reachability,”
arXiv preprint arXiv:1810.02274, 2018.

A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune, “Go-
explore: a new approach for hard-exploration problems,” arXiv preprint
arXiv:1901.10995, 2019.

Y. Burda, H. Edwards, D. Pathak, A. Storkey, T. Darrell, and A. A.
Efros, “Large-scale study of curiosity-driven learning,” arXiv preprint
arXiv:1808.04355, 2018.

M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder,
B. McGrew, J. Tobin, O. P. Abbeel, and W. Zaremba, “Hindsight
experience replay,” in Advances in Neural Information Processing
Systems, pp. 5048-5058, 2017.

M. G. Bellemare, J. Veness, and M. Bowling, “Investigating contingency
awareness using atari 2600 games,” in Twenty-Sixth AAAI Conference
on Artificial Intelligence, 2012.

J. Choi, Y. Guo, M. Moczulski, J. Oh, N. Wu, M. Norouzi, and
H. Lee, “Contingency-aware exploration in reinforcement learning,”
arXiv preprint arXiv:1811.01483, 2018.

	I Introduction
	II Problem Formulation
	II-A MDP formulation
	II-B Hierarchical Skills via Options

	III Methods
	III-A Object Discovery
	III-B Hypothesis Proposal
	III-C Hypothesis testing to determine causal links
	III-D Overall HyPE Loop

	IV Results
	IV-A Robotic Pushing Domain
	IV-B Breakout Domain

	V Related Work
	VI Conclusion
	References

