
UC Merced
UC Merced Previously Published Works

Title
Solving Large-scale Stochastic Orienteering Problems with Aggregation

Permalink
https://escholarship.org/uc/item/5528t34f

ISBN
978-1-7281-6212-6

Authors
Thayer, Thomas C
Carpin, Stefano

Publication Date
2021-01-24

DOI
10.1109/iros45743.2020.9340899

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5528t34f
https://escholarship.org
http://www.cdlib.org/

Solving Large-scale Stochastic Orienteering Problems with Aggregation

Thomas C. Thayer Stefano Carpin

Abstract— In this paper we consider the stochastic cost
orienteering problem, i.e., a version of the classic orienteering
problem where the cost associated with each edge is a random
variable with known distribution. Such a model is relevant
when travel costs are variable, e.g., when a robot moves in
uncertain terrain conditions. We model this problem using a
composite state space tracking both how much progress the
robot has made towards the goal and how much time it has
left. On top of this state space, we compute a time-aware policy
that allows the robot to dynamically adjust its path and avoid
missing the temporal deadline. This policy is determined using
a Constrained Markov Decision Process that allows tuning
the accepted failure probability upfront. This approach suffers
from a significant growth in the composite state space, and to
mitigate this problem we introduce an aggregation technique
where nearby vertices are compounded together, effectively
reducing the original routing problem to an instance with a
smaller state space. We then analyze this approach over large
scale problem instances associated with robotic irrigation on a
commercial grade vineyard.

I. INTRODUCTION

Orienteering is a combinatorial optimization problem de-
fined on undirected graphs where each vertex has a reward
and each edge has a cost. The objective is to determine a path
collecting the maximum possible reward whose cost does
not exceed a preassigned budget B. There exists multiple
variants of the problem that make different assumptions. For
example, the start and final vertices may be assigned, the path
may be constrained to be a circuit, there may be a team of
agents, and many more. Most of these problems are known to
be NP-hard (see Section II for more details). Many problems
arising in robotics can be conveniently studied as instances
of the orienteering problem, where the budget models the
constraint requiring a robot to periodically stop and recharge
its batteries, and it is therefore important that it reaches a
suitable location where recharging is possible before it runs
out of energy.

In our recent works [16], [17], [18], [19] we presented
our ongoing RAPID project where robots are deployed in
a vineyard to make adjustments to variable rate emitters,
accurately regulating the amount of water delivered to each
vine (see figure 1). Given the large scale of commercial
vineyards, the robot cannot exhaustively visit all emitters, but
rather should focus on adjusting those where the mismatch

T.C. Thayer and S. Carpin are with the Department of Computer Science
and Engineering, University of California, Merced, CA, USA.

This material is based upon work that is supported by the USDA-NIFA
under award number 2017-67021-25925 (National Robotics Initiative). T.C.
Thayer was also partially supported by the NSF under grant DGE-1633722.
Any opinions, findings, conclusions, or recommendations expressed in this
publication are those of the authors and do not necessarily reflect the view
of the USDA and NSF.

Fig. 1. A robot adjusting water emitters placed on irrigation lines (from
our former paper [17]).

between the current and desired setting is large. Moreover,
the robot needs to carefully plan its path to make sure
it can return to the deployment site or recharging station
before its battery is completely depleted. For this problem the
orienteering framework offers a convenient formalism, but its
inherent computational complexity calls for the development
of domain-specific heuristics that can solve instances with
graphs containing large numbers of vertices (more than
50, 000).

Most classic literature on the orienteering problem con-
siders the deterministic case where costs and rewards are
known constants. However, when the orienteering framework
is used to study robotics problems, a stochastic model for
these quantities is often more appropriate. For example, the
time it takes to move between two locations is in general
variable, and so may be the reward collected when reaching a
certain place of interest. In our project, the largest uncertainty
is in the time it takes to move from one emitter to the
next, or equivalently, the travel time between two vertices in
the graph. Additionally, when a robot physically reaches an
emitter, through visual seroving [2] it must latch its gripper to
the emitter and perform the desired adjustment. This phase
may require more or less time, as the robot may need to
repeatedly reposition itself to successfully turn the emitter.
In this case, as the robot progresses through its path, it should
consider that the remaining time is a random variable and
therefore should adjust its path on the fly. This adjustment,
while possibly eliminating visits to some areas of interest,
helps to contain the risk of the robot emptying its battery
before it returns to a location where it can recharge.

In this paper we solve the problem using an approach in

three stages. First, an initial path solving the orienteering
problem utilizing the expected travel time of edges is de-
termined using one of the heuristic algorithms we formerly
proposed in [17]. Then, this path is used to produce a routing
policy π that, based on where the robot is along the path and
how much time is left, may decide to execute a shortcut and
skip some vertices, ensuring that the final location is reached
before the deadline expires. This policy is formulated on a
composite state space featuring both position and time, and
computed using a framework based on Constrained Markov
Decision Processes (CMDPs). This last step, however, does
not allow solving very large problems because explicitly
tracking time causes the number of states to quickly grow
leading to instances that cannot be solved quickly (or at all
because they require too much memory). To address this
issue, in between the two steps we introduce an aggregation
stage where successive vertices in the path are logically
combined into a single vertex, allowing control over the
number of states. To the best of our knowledge this is the
first paper providing an aggregation solution the orienteering
problem with stochastic costs that allows solving arbitrarily
large instances. Our findings are validated on real world
problems using data sets collected in a commercial vineyard.

The remainder of this manuscript is organized as follows.
Related work is presented in Section II, while the problem
formulation is given in Section III. Next, in Section IV we
introduce suitable models for computing time aware policies
and in Section V we develop our overall strategy including
the aggregation step. Our methods are validated on large data
sets in section VI, and conclusions are given in Section VII.

II. RELATED WORK

The Orienteering Problem (OP) was first formally intro-
duced in [20], shown to be NP-hard in [11], and demon-
strated as APX-hard in [5]. With a given graph, a reward
function and a cost function on the graph’s vertices and
edges, the goal of the OP is to compute a path that maximizes
the sum of rewards collected for visiting individual vertices
while constrained to a limited travel budget. Rewards for
each vertex can only be collected once, while costs are
accrued during every traversal of an edge. As mentioned in
Section I, there are many variants of this problem. A very
common formulation fixes both the start and end vertices of
the path, which is practical for real world applications, but in
general is not necessary. Others may include time windows,
multiple objectives (with multiple reward functions), time
dependent travel costs and rewards, a team of agents, etc.
For a more in-depth discussion of the OP, the reader is
encouraged to review [12] and [21].

While most OP variants have exact solution methods
available, due to the intrinsic computational complexity these
can only be used on graphs with a restricted number of
vertices (with the most efficient methods being unable to
solve instances with more than 1, 000 vertices). A plethora
of heuristic methods exist to solve larger problems, but many
of these also run into scalability issues. Our previous work
[17] considered the OP on a special class of graphs called

Irrigation Graphs (see figure 4 for an example). Although
this variant of the problem is still NP-hard, we proposed
domain specific heuristics that are able to efficiently solve
instances with over 100, 000 vertices.

This paper investigates the Stochastic Cost Orienteering
Problem (SCOP), whereby the edge costs are unknown at the
time of computation and are modeled as random variables
following some known distribution. The SCOP is a special
case of the Stochastic Orienteering Problem (SOP) - which
can have both stochastic costs and rewards. In most cases, the
stochastic variables all have the same type of random distri-
bution (normal, exponential, etc.) but usually have different
distribution parameters and are assumed to be independent.
A literature review revealed a limited body of research on
the SOP but exact, approximation, and heuristic methods do
exist, usually for special cases or variants of the SOP. For
example, [6] provides a general heuristic and exact methods
for some specific cases, considering the case where travel
times and service times (reward collection cost at vertex)
are stochastic and penalties are incurred when a job (vertex)
is committed to the path but goes unserviced. The methods
given in [13] and [14] provide approximation algorithms
for different methods of solving the SOP and prove the
existence of an Ω(log logB)-approximation algorithm with
O(log logB) run time. In [8] the SOP is solved while
considering the adaptivity of tours with precomputed policies
and online processing of newly revealed edge costs. Finally,
[9] provides a solution method for smaller problems that
converges to the optimum, and also a heuristic method that
is appropriately applied on larger instances.

In this work, we consider large problem sizes with tens
of thousands of vertices, which are too large to solve using
previous methods, and thus we are motivated to find a more
scalable solution approach combining heuristics and time
sensitive policies.

III. PROBLEM FORMULATION

Let G = (V,E) be an undirected graph, where V is
the set of vertices and E is the set of edges. Without loss
of generality let us assume G is a complete graph, i.e.,
E = V × V . Let r : V → R+ be the function associating
every vertex to a reward. For every edge ei ∈ E, let di
be a probability density function with non-negative support
and finite expectation E[di]. The distribution describes the
random variable for the stochastic time it takes to traverse
the edge in either direction. We assume that traversal times
are independent random variables, and we do not require
them to be identically distributed. Finally, let B be a positive
constant travel budget. A path P = v1, v2, . . . , vm is a
sequence of vertices in V , and the reward obtained traversing
the entire path is r(P) =

∑m
i=1 r(vi) with the additional

constraint that if a vertex is visited more than once its reward
is collected only once. The traversal time for the path is a
random variable T (P) = D1 +D2 + · · ·+DM−1 where each
of the Di is a random variable for the time it takes to go
from vertex vi to vertex vi+1 along the path. Moreover, for
i ≥ 2, let Ti = D1 + D2 + · · · + Di−1 be the random

variable for the time spent to reach vertex vi along the
path. While the statistical properties for T (P) and Ti can
be studied off-line, it is only while the path is executed that
specific realizations for those variables are obtained. For the
time being we assume that the path P is given and that
E[T (P)] ≤ B, i.e., the expected time to traverse the path is
not larger than the given budget for the SCOP.

A path can be seen as a policy π : V → V that, for
each vertex, determines where to go next. Without additional
information, such a policy is open loop, i.e., π(vi) is always
vi+1 and is not informed by the value Ti. Therefore, it
is unable to adjust the path on the fly and cannot, for
example, bypass some vertices in the path if there is a high
probability that T (P) > B with the current value of Ti. In
the following we study different time-aware policies that will
explicitly consider this time dependency and take actions in
a principled way. The general idea is depicted in figure 2.
At each vertex along the path the robot can decide to move
towards any of the following vertices (but not the previous),
possibly reducing the time necessary to reach the last vertex
vm. Of course, by skipping vertices along the path the robot
will also miss some of the rewards, so it is necessary to
strike a balance between the reduction in collected reward
and reduced probability of missing the deadline.

Fig. 2. The connectivity of vertices in the path. For 1 < i < j < m, a
robot at v1 may travel to any arbitrary vertex in P , a robot at vi may travel
to any vertex vj in P occurring later than vi, and eventually P terminates
at vm.

IV. TIME AWARE POLICIES

To account for the stochastic nature of the travel time
between vertices and to decrease the chances of violating the
temporal deadline B, we consider a model based on CMDPs
with composite states tracking both the vertex where the
robot is positioned and the time spent since starting the path.
The goal is to maximize in expectation a primary objective
function (collected reward) while ensuring that a second
objective function (travel cost) is bound in expectation.

A. CMDP Background

A finite Markov Decision Process (MDP) M =
(S,A,Pr, r) features the following elements (see [3] for a
comprehensive introduction):
• S is a finite state space
• A is a finite set of actions. In general different actions

are available in different states, and therefore A(s)
indicates the set of actions available at s ∈ S. In the
following it will be convenient to use the state/action
space defined as K = {(s, a) : s ∈ S, a ∈ A(s)}

• Pr : K × S → [0, 1] is a transition kernel for the
transition probabilities, i.e. Pr(s, a, s′) is the probability

that the next state is s′ when action a is executed from
state s

• r : K → R+ is the reward function, i.e. r(s, a) is the
reward obtained when action a is executed from state s

Extending that, a CMDP [1] is defined as CM =
(S,A,Pr, r, β, r, cj , Uj) where S,A,Pr, r are defined as
above and
• β is a mass distribution over S describing the probabil-

ity distribution of the initial state 1

• cj are J cost functions cj : K → R+

• Uj are J given positive constants
Under this CMDP formulation, a policy is a function π :
S → P(A) that associates to each state s a probability mass
distribution over the set of actions. Indeed, one notable dif-
ference between MDPs and CMDPs is that the optimal policy
for a CMDP is in general randomized and so in general the
policy maps states into random actions. Executing a policy
over a CMDP results in the collection of a reward r(s, a) and
the accumulation of J costs c1(s, a), c2(s, a), . . . , cJ(s, a).
Given a start state s ∈ S, a policy π induces a trajectory, i.e.,
a sequence of states defined by the policy and the transition
kernel.

In the associated literature, one normally finds two types of
(C)MDPs. The first one is the finite horizon (C)MDP where
it is a-priori established that the (C)MDP will execute only
N transitions, where N is given constant. In this case, the
reward associated with a trajectory is

∑N
i=1 r(si, π(si)). The

second one is the discounted infinite horizon (C)MDP where
an infinite number of transitions are executed, but rewards
are scaled by a discount factor γ < 1. In this case the reward
associated with a trajectory is

∑+∞
i=1 γ

nr(s(i), π(si)). Both
choices ensure that the sum of all rewards is bounded under
any possible trajectory. On the contrary, we do not make
these assumptions because they are inappropriate for our
problem, and instead impose that the CMDP is absorbing.
This means that there exists a special state sA ∈ S with a
single action aA such that:

1) for each policy π, the induced trajectory eventually
enters sA with probability 1

2) r(sA, aA) = 0
3) Pr(sa, aA, sA) = 1
4) cj(sA, aA) = 0 for 1 ≤ j ≤ J

The absorbing property ensures that under every policy the
absorbing state sA is eventually entered, where it does not
accumulate any more reward, and from which it cannot
leave or accrue any additional cost. Therefore, the reward∑+∞
i=1 r(s(i), π(si)) and J costs

∑+∞
i=1 cj(s(i), π(si)) are

still bounded for each policy, even though it is neither
discounted nor based on a finite horizon assumption.

For a given CMDP CM, the reward and costs are random
variables indicated as r(π) and cj(π) to outline their depen-
dency on the policy π. The CMDP problem, therefore, is to

1For CMDPs the optimal policy in general depends from the distribution
β. However, in our problem the start state will be known with certainty and
therefore the dependency on β is dropped. The reader is referred to [1] for
details about how β influences the policy.

compute

π∗ = arg max
π

E[r(π)]

s.t. E[cj(π)] ≤ Uj 1 ≤ j ≤ J

i.e., we want to find a policy that maximizes in expectation
the accumulated reward r(π) while at the same time ensuring
that each of the J additional costs does not exceed the
associated upper bounds Uj in expectation.

While MDPs and CMDPs share many traits, there are
a couple of differences with regard to policies. First, for
MDPs the optimal policy can be determined by writing the
Bellman equation for the value function and then solving
iteratively using the Value Iteration algorithm. To determine
the optimal policy for a CMDP problem, one needs to write
a constrained linear optimization problem with a number of
variables equal to |K|, i.e., one for each state/action pair.
Second, it is well known that one can determine the optimal
policy for an MDP by considering only deterministic time-
invariant policies, however the optimal policy for CMDPs is
generally stochastic. Details about the CMDP linear program
formulation can be found in [1], [10].

B. Stochastic Orienteering using CMDPs

Starting from what we discussed so far, we now introduce
a CMDP built upon a common bi-dimensional state space S
where the first component is a vertex along the path and the
second component is a temporal interval. More specifically,
let Ns be a discretization step for the temporal deadline B
and let ∆ = B/Ns. States in S are of the type (v, n) where
v ∈ V and n ∈ {1, . . . , Ns}. State (vj , i) models the fact
that the robot is at vertex vj and the random variable Dj is in
the interval [(i−1)∆, i∆). In addition, we add an absorbing
state sA to make the CMDP absorbing, as per our previous
definition. Finally, we add a failure state sF modeling the
event that the robot has violated the temporal deadline B.

Next, we introduce the action set A. For each state (vj , i)
with j < m the action set is vk for j + 1 ≤ k ≤ m
(recall that the path has m vertices). This means that at every
vertex along the path, the policy may select the next vertex
as one of any of the remaining vertices, i.e., it can execute a
shortcut like the one illustrated in Fig. 2. States of the type
(vm, i), i.e., states associated with the last vertex in the path,
have a single terminal action aT that will deterministicly go
to the absorbing state sA. States sF and sA, too, have a
single action (aF and aA, respectively). For the state (vj , n)
with j < m and action vk the transition kernel depends on
the probability density d associated with the edge (vj , vk).
Specifically, the transition probability between states (vj , n)
and (vk, l) for l ≥ n is

Pr((vj , n), vk, (vk, l)) =

∫ l∆

(l−1)∆

d(ψ − n∆)dψ

Conversely, the transition probability between (vj , n) and
(vk, l) for l < n is 0 because the robot cannot move
backwards in time. For action vk, the transition probability
between (vj , n) and sF is given by the probability that the

temporal deadline B expires before the robot reaches vk and
is given by the following expression:

Pr((vj , n), vk, sF) =

∫ +∞

Ns∆

d(ψ − n∆)dψ

Finally Pr((vm, i), aT , sA) = Pr(sF , aF , sA) = 1, i.e.,
when the robot reaches the last vertex along the path or
enters the failure state sF , it deterministicly moves to the
absorbing state sA. For the absorbing state sA, as per its
definition, Pr(sA, aA, sA) = 1, i.e., the state cannot be left
once it is entered.

A CMDP also requires the reward and cost functions to be
defined. For the state sF we set r(sF , aF) = 0 and for sA
we set r(sA, aA) = 0. For all other states s(vj , i) we define
r((vj , i), vk) = r(vk), i.e., the reward obtained when vk is
reached. We next introduce a the cost c1 as c1((vj , n), vk) =
0 and c1(sF , aF) = 1, i.e., a unit cost is incurred only when
the state enters sF . For this CMDP model, the significance
of introducing the failure state sF and the cost c1 that is
0 everywhere except for (sF , aF) is given by the following
theorem:

Theorem 1. Let CM be a CMDP defined as above. Then,
for any policy π, E[c1(π)] is the expected probability that a
trajectory induced by π goes through state sF , i.e., it is the
probability that by time B the robot has not yet reached the
final vertex of the path vm.

The detailed proof of this theorem is omitted for lack of
space, but it follows the same steps for the proof of Theorem
1 found in our former work [7]. Therefore, in the context
of stochastic orienteering, the CMDP formulation can be
used to determine policies that will miss the deadline with a
probability no larger than the constant U1.

There is an obvious tradeoff between the number of time
steps and the computational time. A finer grain discretization
is of course preferable, but as it causes a growth in the size
of the composite state space. In section VI we will discuss
this with more details.

V. METHODS

A. Initial Path Creation

In general, the initial path P can be created using any
method that solves a deterministic OP. When computing the
initial path, the traversal time between two arbitrary vertices
vx and vy is t(vx, vy) = E[D(vx, vy)], where D(vx, vy) is
the distribution of travel times between the two vertices. If
this sequence of vertices is included in the path, then vi →
vx, vi+1 → vy , and Di → D(vx, vy). The total traversal
time E[T (P)] =

∑M
i=1 E[Di] must not exceed the budget B

set for the original SCOP.

B. Vertex Aggregation

While CMDPs work well for computing optimal policies,
they are limited in the sizes of problems that can be solved
due to computation time and memory restrictions. In partic-
ular, the SCOP we wish to solve may have paths containing
arbitrarily long sequences of vertices. To overcome this issue,

we introduce the concept of vertex aggregation, where se-
quential vertices in a path vi . . . vj for 1 < i < j < m can be
aggregated into a single compound vertex vi,j that represents
a section of the path containing the aggregated vertices
(see figure 3 for connectivity). Here, the reward for the
compound vertex is r(vi,j) =

∑j
k=i vk and the travel time

to the compound vertex from any vertex vx outside of the
compound is D(vx, vi,j) = D(vx, vi) +

∑j−1
k=i D(vk, vk+1).

Fig. 3. An example of the connectivity of a compound vertex. vx can be
any compound vertex or non-aggregated vertex occurring in the path before
vi. vy can be any compound or non-aggregated vertex in the path after vj

Aggregation techniques for reducing the state space of
(C)MDPs have been used in the past (see [4] for an
overview). However, these techniques usually work by com-
pressing the state space, meaning similar states are grouped
together and special care must be taken when computing
the transition kernel since the states aggregated together in
general have unique transitions. On the contrary, we propose
aggregating vertices before building the state space, explicitly
defining the entry/exit vertices and the path between them
such that the travel time to compound vertices is merely a
sum of random variables.

A compound vertex has special connectivity requirements.
A compound vertex must be entered at the first vertex in the
aggregation vi and exited at the last vertex in the aggregation
vj . The aggregated vertices within a compound vertex are
connected sequentially as in P but all costs and rewards
are incurred at the same time. This means that the travel
times for traversing the vertices within the compound are
pushed in front of the compound, such that all vertices
aggregated together must be visited before a robot can be
considered at vi,j . This also has the effect of masking the
true collected reward until the robot arrives at vj , the last
vertex in vi,j , because the rewards are pushed towards the
end of the compound. Thus, going over the temporal budget
B sometime before reaching vj (and thus vi,j) means not
collecting any rewards in vi,j . A path may contain any
number of vertex compounds of various sizes as long as v1

and vn are not included in any compound. This is to ensure
that the computed policy π is not unnecessarily forced to
visit vertices that are not v1 and vn.

C. SCOP on Irrigation Graphs

Keeping with the focus of the RAPID project, we direct
our attention to building solutions for the SCOP on instances
where a robot must traverse a vineyard. That is, the graph
is of the form IG(h,w), which is an Irrigation Graph (IG)
with h rows and w columns. More information about IGs can
be found in [17]. The IG has an associated reward function

r(vx); vx ∈ V and time distribution D(e) = tmin+Exp(1−
tmin); e ∈ E, where tmin is a constant minimum bound
from 0 to 1 and is the same for all edges. Note that this time
function gives in expectation a value of 1 for all edges in
the IG, making it applicable to the deterministic IG Constant
Cost OP discussed in [17] (The expected time for each edge
can be any real non-negative value, here it is defined as 1
only for convenience). The time distribution was chosen as a
shifted exponential due to the physical nature of movement,
i.e. we do not expect the robot to ever finish a movement
faster than tmin but it may take an unexpectedly long time
to finish.

First we compute an initial tour using the Greedy Partial
Row (GPR) heuristic given in [17]. Due to the design of
GPR, the output will be a path that contains a series of full-
rows (total traversal across a row in the IG from one outside
column to the other) and partial-rows (traversal partway into
a row and back to the same outside column). Logically,
the sequence of vertices visited by a full-row or partial-
row will always be the same regardless of π, and they
therefore can be aggregated into a set of compound vertices
(as described in section V-B) with one full-row or partial-row
per compound. Because our travel time function is a shifted
exponential distribution, we can easily model the new travel
times between compound vertices using a shifted gamma
distribution D(vx, vi,j) = k · tmin + Γ(k, 1 − tmin), where
k is the number of vertices passed in the IG along the path
from vx to vi,j .

Next, these compound vertices can be compounded again
to reduce the number of vertices and therefore states for
our CMDP. One special consideration that must be made
for paths over IGs is that the next location (full or partial-
row) in a path must enter from the same side of the IG that
the previous location exited on. That is, the robot cannot
service a row from the left side of a vineyard if it is on the
right side of the vineyard. It must first traverse a full row
before it can service from the other side. The connectivity
between compound vertices must enforce that constraint,
where compounds that end on one side of the IG are only
connected to future compound vertices that begin on the
same side. Figure 4 shows this connectivity restriction.

Finally, a CMDP used to solve the SCOP on IGs can be
constructed from the path with compound vertices without
additional modification. The two variables that effect com-
putation time are the number of compound vertices in the
path and the granularity of time discretization, since these
determine the total number of state action pairs.

VI. RESULTS

To test the effectiveness of our technique, we applied it to
multiple SCOPs of large size built from 9 different IGs based
on a real-world commercial vineyard in California, USA.
These IGs contain h = 275 rows and w = 214 columns
(vines per row) totaling 58, 850 vines and therefore vertices
in the graph. Data collected for our previous work [18] was
used to determine the reward for each vertex. The vineyard
was sampled for soil moisture using a Hydrosense HS2P

Fig. 4. An example showing the connectivity of compound vertices on
an IG. The blue dots represent vertices in the original path, with each full
row or partial row grouped into a single compound vertex, and the blue
star represents the start and end vertex of the path. Dashed arrows represent
taking shortcuts and skipping one or more compound vertices.

from Campbell Scientific at 72 equally spaced locations on
9 separate days throughout the growing season. Moisture
values for locations between those sampled were estimated
using Kriging interpolation [15]. Reward for each vertex was
determined as the difference between a target soil moisture
value and the interpolated value obtained at that vertex
location.

The following results are averages compiled from the 9
IGs run with varying parameters, keeping the budget B and
the minimum transition cost tmin fixed, and normalizing for
the reward collected by the GPR when computing the initial
deterministic path. This allows for a fair comparison across
each IG. The minimum edge traversal time tmin was set to
0.75 and the failure probability U1 = Pr[T (P(π)) > B]
was fixed at 5%, however results look similar across a range
of different tmin and E[c1(π)] values. For the value of B
used (which was fixed at 1/4 the traversable distance of
the vineyard), the initial paths contained an average 14851
vertices, consisting of 76 full or partial rows. Therefore,
these were aggregated into an average of 76 initial compound
vertices (size 1 shown in the figures) representative of the
original 14851 vertices. We limited the paths to this length
due to time and memory constraints. When increasing the
size of compound vertices (and thereby reducing the number
of compound vertices), inevitably one compound vertex may
be smaller than the others because the compound size does
not divide evenly into the initial number of vertices, however
this does not noticeably effect performance.

Figure 5 shows how varying the size of each compound
vertex and the number of time steps Ns effects the expected
reward relative to the initial (deterministic) path. With larger
sizes of compound vertices, performance obviously degrades,

Fig. 5. A comparison of the average reward collected by compounding
different numbers of vertices.

but not as significantly as one might think. The difference
between expected rewards for size 16 and size 1 at Ns =
100 time steps is only 1.65% of the total reward on the
deterministic path. This shows that the loss in performance
when using more coarse compound vertices is not very
significant. With small compound vertex sizes 1, 2, and 4,
results are very comparable throughout the range of tested
Ns. Interestingly, the most fine-grain tests with compound
vertex sizes of 1 and 2 were not always the top performers.
This is due to the fact that a larger Ns is needed for the
CMDP to take advantage of the smaller granularity, which
occurs in our tests at around Ns = 30. With smaller Ns
values, the increased vertex resolution is actually a detriment,
because a large portion of state transitions can occur where
a new vertex is reached without crossing into new time
interval. This can occur with any size compound vertices,
and is related to the ratio of vertices vs the time steps used.

Fig. 6. Solid lines: a comparison of the average total computation time
required to solve an instance of the SCOP on an IG. This includes time to
build the state transition table in Matlab as well as solve the CMDP with
CPLEX. These results were obtained using an Intel i7 6700k with 32gb ram.
Dashed lines: the number of transitions where Pr((vj , n), vk, (vk, l)) > 0
in the state-action-state table of the CMDP.

Figure 6 shows how detrimental the size of compound

vertices and the number of time steps are to the amount
of time required to compute a solution for the SCOP. As
the number of time steps increases, the computation time in-
creases super-linearly. This is because more time steps means
there is a larger number of possible state transitions with non-
zero probability. But more significantly, larger compound
vertices greatly reduce the computational burden compared to
runs with non-aggregated vertices. As the number of vertices
increases, there are more possible actions to take at each
vertex, and the number of decision variables in the linear
program increases, thus requiring more time to compute.
Less compound vertices decreases this, and also makes for
a smaller state-action-state table because of the reduced
number of vertex transition pairs. A run with compound
vertex size of 16 and Ns = 100 completes in 0.91% of the
time needed to complete a run with compound vertex size of
1 and the same number of time steps. For the same number
of time steps but a compound vertex size of 4, the percentage
is 8.53%. Given that the computation time difference is so
substantial compared to the reward difference, we feel this
is a worthwhile trade-off when solving large problems.

VII. CONCLUSIONS

In this paper we studied a version of the OP where edge
costs are stochastic and given as independent continuous
random variables with positive support. The goal is to
compute a policy with two objectives; maximize the expected
reward collected and constrain the probability of exceeding a
given budget. Our proposed solution works in three phases.
First, we compute a path for the deterministic OP using
the expected values of edge costs. Second, we aggregate a
number of consecutive vertices into compound vertices that
represent visiting all of its constituents, collecting reward
and accruing cost along the way. This technique is useful for
decreasing computation time on problems of large size where
the initial path contains numerous vertices. Lastly, we formu-
late a CMDP that determines when to ”take shortcuts” or to
skip vertices in the path so that the probability of exceeding
the budget does not exceed a given constraint. To test our
solution method, we use a real world robotics problem where
a robot with limited battery life must travel within a large
vineyard to adjust irrigation emitters for optimizing water
usage. Our tests indicate that we can efficiently compute
policies maximizing expected reward and bounding failure
probabilities on these robotic irrigation problems.

There are a number of potential avenues for future research
with this approach. One such avenue is to thoroughly study
how different parameters, such as the bound on failure prob-
ability and the variance of edge costs, effect the efficiency
of this technique. Another is to consider adaptive replanning
that is able to iteratively update how vertices are aggregated
to compute policies which collect reward more efficiently.
Another is to explore adjusting the time intervals for each
vertex cluster to build more efficient policies. Finally, it
would be useful to explore dynamically adjusting the initial
path to visit different vertices when advantageous.

ACKNOWLEDGMENTS

We gratefully acknowledge Luis Sanchez and Nick
Dokoozlian from E&J Gallo Winery for having granted
access to their vineyards for data collection.

REFERENCES

[1] Eitan Altman. Constrained Markov Decision Processes. Stochastic
modeling. Chapman & Hall/CRC, 1999.

[2] Ron Berenstein, Roy Fox, Stephen McKinley, Stefano Carpin, and Ken
Goldberg. Robustly adjusting indoor drip irrigation emitters with the
toyota hsr robot. In IEEE International Conference on Robotics and
Automation, pages 2236–2243, 2018.

[3] Dimitri P. Bertsekas. Dynamic Programming & Optimal Control,
volume 1 and 2. Athena Scientific, 2005.

[4] Dimitri P. Bertsekas. Reinforcement Learning and Optimal Control,
chapter 6. Aggregation, pages 308–340. Athena Scientific, 2019.

[5] Avrim Blum, Shuchi Chawla, David R. Karger, Terran Lane, Adam
Meyerson, and Maria Minkoff. Approximation algorithms for ori-
enteering and discounted-reward tsp. SIAM Journal on Computing,
37(2):653–670, 2007.

[6] Ann M. Campbell, Michel Gendreau, and Barrett W. Thomas. The
orienteering problem with stochastic travel and service times. Annals
of Operations Research, 186(1):61–81, 2011.

[7] Stefano Carpin, Marco Pavone, and Brian M. Sadler. Rapid multirobot
deployment with time constraints. In IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, pages 1147–1154, 2014.

[8] Irina Dolinskaya, Zhenyu Shi, and Karen Smilowitz. Adaptive orien-
teering problem with stochastic travel times. Transportation Research
Part E, 109:1–19, 2018.

[9] Lanah Evers, Kristiaan Glorie, Suzanne van der Ster, Ana Isabel Bar-
ros, and Herman Monsuur. A two-stage approach to the orienteering
problem with stochastic weights. Computers and Operations Research,
43:248–260, 2014.

[10] Seyedshams Feyzabadi and Stefano Carpin. Planning using hierar-
chical constrained markov decision processes. Autonomous Robots,
41:1589–1607, 2017.

[11] Bruce L. Golden, Larry Levy, and Rakesh Vohra. The orienteering
problem. Naval Research Logistics, 34:307–318, 1987.

[12] Aldy Gunawan, Hoong Chuin Lau, and Pieter Vansteenwegen. Ori-
enteering problem: A survey of recent variants, solution approaches,
and applications. European Journal of Operational Research, pages
315–332, 2016.

[13] Anupam Gupta, Ravishankar Krishnaswamy, Viswanath Nagarajan,
and R. Ravi. Approximation algorithms for stochastic orienteering.
In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1522–1538, 2012.

[14] Anupam Gupta, Ravishankar Krishnaswamy, Viswanath Nagarajan,
and R. Ravi. Running errands in time: Approximation algorithms
for stochastic orienteering. Mathematics of Operations Research,
40(1):56–79, 2014.

[15] Margaret A. Oliver and Richard Webster. Kriging: A method of
interpolation for geographical information systems. International
Journal of Geographical Information Systems, 4(3):313–332, 1990.

[16] Thomas C. Thayer, Stavros Vougioukas, Ken Goldberg, and Stefano
Carpin. Multi-robot routing algorithms for robots operating in vine-
yards. In IEEE International Conference on Automation Science and
Engineering, pages 14–21, 2018.

[17] Thomas C. Thayer, Stavros Vougioukas, Ken Goldberg, and Stefano
Carpin. Routing algorithms for robot assisted precision irrigation. In
IEEE International Conference on Robotics and Automation, pages
2221–2228, 2018.

[18] Thomas C. Thayer, Stavros Vougioukas, Ken Goldberg, and Stefano
Carpin. Bi-objective routing for robotic irrigation and sampling in
vineyards. In IEEE International Conference on Automation Science
and Engineering, pages 1481–1488, 2019.

[19] Thomas C. Thayer, Stavros Vougioukas, Ken Goldberg, and Stefano
Carpin. Multi-robot routing algorithms for robots operating in vine-
yards. IEEE Transactions on Automation Science and Engineering,
17(3):1184–1194, 2020.

[20] Theodore Tsiligirides. Heuristic methods applied to orienteering.
Journal of Operational Research Society, 35(9):797–809, 1984.

[21] Pieter Vansteenwegen, Wouter Souffriau, and Dirk Van Oudheusden.
The orienteering problem: A survey. European Journal of Operational
Research, pages 1–10, 2010.

