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Abstract— With the recent development of autonomous vehi-
cle technology, there have been active efforts on the deployment
of this technology at different scales that include urban and
highway driving. While many of the prototypes showcased
have been shown to operate under specific cases, little effort
has been made to better understand their shortcomings and
generalizability to new areas. Distance, uptime and number of
manual disengagements performed during autonomous driving
provide a high-level idea on the performance of an autonomous
system but without proper data normalization, testing location
information, and the number of vehicles involved in testing,
the disengagement reports alone do not fully encompass system
performance and robustness. Thus, in this study a complete set
of metrics are applied for benchmarking autonomous vehicle
systems in a variety of scenarios that can be extended for
comparison with human drivers and other autonomous vehicle
systems. These metrics have been used to benchmark UC San
Diegos autonomous vehicle platforms during early deployments
for micro-transit and autonomous mail delivery applications.

I. INTRODUCTION

Autonomous vehicle technology has been under active
development for at least 30 years [1] [2] [3] [4]. Since the
time the technology was first conceived [5], a wide range
of applications have been explored from micro-transit to
highway driving applications but more recently has started
to become commercialized. With the variety of use cases
in question, one important topic involves safety. This has
received the attention of state officials, and in many cases,
regulations and policies have been imposed.

In some states, the Department of Motor Vehicles requires
a summary of disengagement reports from each entity per-
forming tests on public roads to provide a better understand-
ing on the number of annual interventions each self-driving
car entity is generating. In the state of California alone, the
Department of Motor Vehicles (DMV) requires autonomous
vehicle companies with a valid testing permit to submit
annual reports with a summary of system disengagements.
At the time this paper is being written, 66 tech entities hold a
valid autonomous vehicle testing permit and only three hold
a driverless testing permit.1

Even though many of these reports include certain infor-
mation to estimate the number of disengagements performed
in an entire year, most of the publicly available disengage-
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ment reports2 are not time and distance normalized: did the
vehicle experience five disengagements during the course
of 10 miles or 10,000 miles? Or did it experience five
disengagements over the course of 10 minutes or 2,000
hours?

Given the lack of spatiotemporal information, in many
cases, these unnormalized reports make it impossible to
quantify the performance and robustness of the autonomous
systems and most importantly quantify their overall safety
with respect to other autonomous systems or human drivers.

This study aims to shed light on autonomous system
technology performance and safety by leveraging spatiotem-
poral information and metrics geared towards benchmarking
Level 3 to Level 5 autonomous vehicle systems.3 Our key
contributions consist of three different parts:
• We introduce the concept of intervention maps for

disengagement visualization and analysis. Additionally,
the metrics we introduced in [6] have been extended in
order to account for safety driver dependability.

• With spatial information as a function of time, we
separate the results into different road types to provide
more realistic and objective comparisons across differ-
ent platforms without biasing4 the results.

• A four-month data collection phase is performed using
UCSD’s Autonomous Vehicle Laboraty autonomous ve-
hicles; the data is analyzed using the metrics proposed.

With the methods introduced in this study, our team plans
on open sourcing an online tool for autonomous vehicle
benchmarking to encourage autonomous vehicle entities to
report their data in order to objectively quantify system safety
and long term autonomy capabilities.

II. RELATED WORK

The areas of autonomous vehicle benchmarking have
remained relatively unexplored. Prior related work in the area
of benchmarking sheds light on performance measures for
intelligent systems in off-road and on-road unmanned mil-
itary applications[9]. While the performance measures pro-
posed may serve for certain unmanned military applications,
autonomous vehicle applications in public road conditions
often require safety drivers to ensure the vehicles will not
behave erratically and pose danger for road users if failure
cases arise.

2https://www.dmv.ca.gov/portal/dmv/detail/vr/autonomous/
disengagement_report_2019

3https://www.nhtsa.gov/technology-innovation/automated-
vehicles-safety

4We define unbiased in the context of making objective comparisons
across different vehicle platforms without biasing towards a specific system.
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With road user safety and failure cases in mind, [10]
focuses on estimating the number of miles a self-driving
vehicle would have to be driven autonomously in order
to demonstrate its reliability with respect to human drivers
and proof of their safety. This study specifically shows that
self-driving vehicles will take tens to hundreds of years to
demonstrate considerable reliability over human drivers with
respect to fatalities and injuries. In addition, this naturally
leads to the questions, how can the autonomous vehicle
progress in between be measured objectively?

While certain self-driving car entities have identified the
flaws with current disengagement data reported by the DMV
[11] [12] [13], to the best of our knowledge, our team is the
first to make objective comparisons of autonomous systems
by studying their long term autonomy implications using real
autonomous vehicle data collected from diverse and realistic
urban scenarios.

III. METRICS

In this section, the metrics and tools used to benchmark
an autonomous vehicle during a four-month study at UC San
Diego are defined with the goal of fully characterizing the
performance of the systems over time.

A. Direct System Robustness Characterization

For direct system robustness characterization, the metrics
of choice are given by Mean Distance Between Interventions
(MDBI) and Mean Time Between Interventions (MTBI).
These metrics provide a normalized means of benchmarking
system robustness over time by including temporal and
spatial information. This makes them ideal for comparing
performance against other systems. In contrast, unnormalized
data cannot be used to perform objective comparisons across
different autonomous vehicle systems as one cannot estimate
how often the disengagements are happening in terms of time
and distance. For this reason, we do not use intervention
counts alone to quantify performance. By definition, the
MDBI and MTBI statistics can be computed as shown in
Equation 1 and 2.

MDBI =
Total Distance

Number of Interventions
(1)

MTBI =
Total Uptime

Number of Interventions
(2)

While the definitions for MDBI and MTBI are direct,
the measurements for distance, uptime and the number
of interventions require the data to be separated into two
different categories: the first corresponds to the time elapsed
and distance traveled in autonomous mode and the second
to the time elapsed and distance traveled during manual
driving. By separating these into two different sets of data,
the effective system robustness can be measured in regards
to its dependence on a safety driver if one or more manual
interventions are performed. Nevertheless, in order to sepa-
rate the manual and autonomous data, vehicle disengagement
information must be recorded as a function of time as close
to real-time as possible; this can be visualized in Figure 1.

Fig. 1. Enable/disable (disengagement) signal as a function of time.

In the figure, manual and autonomous driving segments are
represented by orange and blue colors, respectively, where
the separation is given by an intervention or a system re-
enable signal. Given that a manual intervention could be
performed for an arbitrary length of time, it is important to
accurately measure the disengagement signals in real-time
by associating them with a system timestamp. While these
measurements can be performed by manual annotation, this
introduces human error. Therefore, in the measurements per-
formed in this study, each autonomous vehicle was retrofitted
with a logging device that records the enable and disable
signals over time by using Unix time. This device operates
in an encapsulated environment and records serialized data
for vehicle pose, speed, enable signals, as well as their
corresponding timestamp. Given this data, measuring the
time elapsed between a disengagement and a re-enable signal
can be measured by the difference in timestamps. On the
other hand, two methods can be employed for measuring
the distance traveled in between any two given timestamps ti
and ti+k, where ti < ti+k as shown in Equation 3 and 4–where
the vehicle position at time t is given by Xt = [xt ,yt ,zt ]

> and
speed is given by vt . For the measurements performed in this
study, Equation 3 was used for estimating distance given that
vehicle pose estimates are provided with a high degree of
precision by the LiDAR based Normal-Distributions Trans-
form localization algorithm [7]. The devices used for these
measurements are also introduced in our previous work on
the lessons learned from deploying autonomous vehicles [6]
and a high level description will be provided in the next
section.

i+k

∑
τ=i+1

‖Xτ−Xτ−1‖ (3)

i+k

∑
τ=i+1

vτ (tτ− tτ−1) (4)

By measuring the distance covered by the ego-vehicle
along with its associated uptime in between a disengagement
and a re-enable signal (manual mode) or in between re-enable
signal and a disengagement (autonomous mode), MDBI and
MTBI can be extended to cover both, manual driving and
autonomous driving as shown in Equations 5-8

MDBIA =
Total Auto Distance

Number of Interventions
(5)

MTBIA =
Total Auto Uptime

Number of Interventions
(6)



MDBIM =
Total Manual Distance

Number of Interventions
(7)

MTBIM =
Total Manual Uptime

Number of Interventions
(8)

MDBIA, MTBIA, MDBIM and MTBIM measure the overall
system robustness but also provide additional measures on
how dependent the system is on a safety driver if any
disengagements are performed: MDBIA and MTBIA measure
the average distance and time an autonomous car is capable
of driving without any interventions, while MDBIM and
MTBIM measure the average manual input required by a
safety driver in terms of distance and time elapsed in a mean
sense. In an ideal system, the number of interventions is zero;
we can address the limit forms as follows: MDBIA = C

0 →∞,
MTBIA = C

0 → ∞, MDBIM = 0
0 → 0, and MTBIM = 0

0 → 0.

B. Intervention Maps

Although with the metrics introduced, a statistical analysis
can be performed across multiple vehicles with different
autonomous systems, different road types can influence the
metrics, i.e, did the vehicle drive on a testing track or did it
engage in high-traffic scenarios? To incorporate the diverse
environments an autonomous vehicle must navigate through
into our benchmarking tools, we introduce the concept of
intervention maps and separate the data by different road
types.

Intervention maps are specific to testing routes or geo-
graphical areas during benchmarking and are encoded in an
occupancy grid format that contains normalized disengage-
ment counts over time. This information can be extracted
by associating disengagement information with spatial data
as given in Algorithm 1 but also be useful for estimating
MDBI and MTBI for a specific area or region. With this
intervention occupancy map, the normalized values [0,1] can
be mapped to a color gradient for visualization purposes.
Furthermore, by declaring a time and distance range for
a particular location, these maps can help visualize disen-
gagement patterns and also provide a sense on the quality
of the data based on the location, MDBI and MTBI. This
approach makes it a much more adequate benchmark across
self-driving platforms.

1) Enhancing Intervention Map Representation: While in
the Results sections, a number of patterns are identified
based on the observations from intervention maps, to provide
additional context to the information that is being visualized,
additional road network information can be incorporated.

In this case, we separate every trip into individual road
segments depending on a set of predefined conditions: (1)
Dynamic Road, (2) Regular Road, (3) Freeway, and (4)
Development/Private. A dynamic road corresponds to road
segments without explicit lane definitions that include dy-
namic interactions with other road users such as alleys
and pedestrian walkways. Regular roads on the other hand
correspond to well-defined and roads with speed limits and
fully defined right-of-way rules. Freeway road segments

Algorithm 1: Intervention Count and Normalization
using an occupancy grid.

Data: Enable/disable signal
DBW = [DBW1,DBW2, ...,DBWn], Vehicle
Pose X = [X1,X2, ...,Xn]

Result: Normalized intervention occupancy grid M
#Disengagement and pose association
DBWPose = []
M = [][]
for Xi ∈ X and DBWi ∈ DBW do

DBWPose.append((Xi, DBWi, closest timestamp))
end
#Populate occupancy grid
for DBWPosei ∈ DBWPose do

if DBWPosei[1] == False then
M[bDBWPosei[0][0]c][b(DBWPosei[0][1]c]
+= 1

end
end
#Normalize
M /= max(M)

correspond to roads with continuous lane definitions and no
intersections. Development or private roads correspond to
testing-and-evaluation road segments that are well-controlled
for system development whereas (1)-(3) correspond to realis-
tic and uncontrolled environments. Lastly, each road segment
is associated with a speed limit.

A sample occupancy grid map with arbitrary road defini-
tions and types can be seen in Figure 2. With the distance
of each road segment and the class types, each trip or
planned mission can incorporate road information in terms
of a percentage of the total distance traveled. For instance,
this particular trip corresponds to 2.4% dynamic roads,
39.0% regular roads, and 58.6% freeway road segments.
With this type of data separation, one can define a sequence
of benchmarks between one or more autonomous vehicle
platforms under the same road types, distances and their
associated MTBI and MDBI metrics.

Fig. 2. Sample intervention map with different route types.



C. Autonomous vs Manual Driving Benchmarking

An extension to MDBIA, MTBIA, MDBIM , and MTBIM ,
involves human driver to autonomous system comparison.
Table I corresponds to an additional set of metrics introduced
in our previous work [6] that can further explain the differ-
ences between human drivers and autonomous vehicles in
terms of energy consumption, maintenance cost, and control.
For example, depending on the steering, acceleration and
braking control inputs, more energy may be required to drive
along the same routes if a system overcompensates for small
errors. As a result, this can impact energy consumption, brake
and tire wear. These cumulative effects can affect the overall
cost of ownership of a vehicle, as well as the environmental
impact. For benchmarking purposes, the measured steering,
acceleration and braking status reports can be compared in
the frequency domain for autonomous and manual driving.

While in the experiments section, human driver data
is not included for direct comparison in terms of energy
consumption or maintenance cost, these methods have been
used for benchmarking level-4 autonomous trucks as part of
a joint TuSimple/UC San Diego effort.[14]

TABLE I
METRICS FOR BENCH MARKING AUTONOMOUS VS MANUAL DRIVING.

Trigger Metric Type
Energy Miles per Gallon (MPG) or

Charged Consumed
Continuous

Maintenance
Cost

Brakes and Tire Wear Continuous

Up-time Time Elapsed Per Trip Event Driven
Control Speed, Acceleration, Steering An-

gle Fourier Transform
Continuous

IV. DATA COLLECTION

As part of a collaborative effort between UC San Diegos
Autonomous Vehicle Laboratory (AVL), Mailing Center,
Fleet Services, and Police Department, a GEM e6 electric
vehicle (Figure 3) retrofitted with a complete drive-by-wire
system and full sensor suites was used for conducting field
tests at the UC San Diego campus. The design strategies
and implementations used in the course of this study are
described in [6]; however, the data and results presented in
this paper are not part of it.

Fig. 3. UC San Diego’s autonomous mail delivery vehicle carrying
packages and mail.

A. Vehicle Signals Recorded

For the data collection process, our team worked closely
with the mailing center to deploy the vehicles for au-
tonomous mail delivery applications over Summer and Fall
2019 while continuously monitoring the systems and col-
lecting data. The vehicle operated under highly dynamic and
stochastic environments such as areas with high pedestrian
and vehicle interactions, and construction sites. To record
the various signals required for benchmarking, two tools
were used as the basis for data logging: the ROSBAG
format [8], as well as a Raspberry Pi logging device that
received serialized data and stored it in SQLite databases.
Table II corresponds to the different signals recorded as
functions of epoch/Unix timestamps. It should be noted that
for every autonomous mission, manual notes were taken
to log the type of interventions performed, safety driver5

information, and the weather conditions. These notes are
most useful for understanding bottlenecks and improving
system performance.

TABLE II
VEHICLE SIGNALS RECORDED.

Signal Representation
Vehicle Pose (local map
frame)

P = [X>,Q>]>
X = [x,y,z]> (meters)
Q = [q0,q1,q2,q3]

>

(quaternion)
GPS Latitude

Longitude
Altitude (ft)

IMU a = [ax,ay,az]
> (m/s2)

w = [wx,wy,wz]
> (s−1)

Vehicle Speed v (m/s)
Vehicle Target Speed v (m/s)
Enable/Disable Signal 0 - Disabled

1 - Enabled
Acceleration [0,1] (Unitless)
Brake Control [0,1] (Unitless)

B. Missions

The autonomous mail delivery missions performed in this
study consist of two routes within the UC San Diego campus:
Warren College and Sixth College–where a trip or mission
is defined to be as a round trip from the mailing center to
the drop point and back. Round trip distances to Warren
College and Sixth College correspond to 1,903m and 1,588m,
respectively. In total, there are 24 trips to Warren College and
29 trips to Sixth College.

For the intervention map representation of the areas cov-
ered, the different segments have been classified as either
dynamic or regular roads. A map generated using the vehicle
pose with the corresponding road types is represented in
Figure 4, where a trip to Warren College consists of 412m
of dynamic road segments and 1,492m of regular road
segments. On the other hand, a trip to Sixth College consists

5During the data collection process, the same safety driver performed all
of the manual interventions.



of 916m of dynamic road segments and 672m of regular
road segments. In other words, 21.6% of Warren College
trips correspond to dynamic road navigation and 57.7% of
Sixth College trips correspond to dynamic road navigation.

For every trip performed, a trained safety driver was
responsible for supervising the vehicle continuously. At
the same time, a second team member recorded manual
notes about trip information, intervention details, as well as
monitored the system.

Fig. 4. Warren and Sixth colleges routes with road type information and
speed limits.

V. RESULTS
A. MTBI and MDBI Results

Between the summer and fall 2019 mail delivery missions,
the data from a single autonomous vehicle corresponds to
89.9km and 6.9 hours in autonomous mode.

The MTBI and MDBI statistics are represented in Table
III for summer and fall quarters respectively. The collective
statistics from both quarters are shown in the third row.

TABLE III
MDBI (METERS/INTERVENTION) AND MTBI

(SECONDS/INTERVENTION) INTERVENTION SUMMARY FOR SUMMER

AND FALL QUARTERS

Quarter MDBIA MTBIA MDBIM MTBIM
Summer 2019 414.201 113.82 24.0 12.77

Fall 2019 283.08 84.44 19.25 11.54
Overall 380.42 106.25 22.77 12.46

From the MDBIA and MTBIA metrics in Table III, one
can infer that, on average, the vehicle drove autonomously
380m or for 106 seconds before an intervention was made.
In terms of the safety driver dependability that the MDBIM
and MTBIM metrics model, on average, the safety driver
intervened for 22.77m or for 12.46 seconds. Furthermore, it
can be observed that the statistics significantly vary between
summer and fall quarters. This significant difference can be
explained by campus traffic and ongoing activities experi-
enced early in fall quarter. In the fall, the mail delivery routes
experience higher traffic and foot activity from students
moving in or starting classes. Separating these results based

on time and testing location can help explain trends and
traffic patterns. At the same time, it is important to estimate
collective averages to make note of the impact of the software
release versions on the overall robustness.

B. Intevention Map

By applying the intervention map tools introduced, the
automatically generated occupancy grid map with raw inter-
vention count data can be seen in Figure 5. For better visual-
ization, these maps have been re-scaled and superimposed as
shown in Figure 6. This figure corresponds to the aggregate
data from summer and fall quarters and includes construction
zones to better understand the campus dynamics.

Fig. 5. Automatically generated intervention maps for summer (left) and
fall (right) 2019 quarters. Units in meters.

Fig. 6. Overall intervention map

In general, the areas with higher interventions occur
around intersections but also along dynamic environments
and construction sites. Without including this information,
it is not straightforward to identify short-comings while
processing large collections of data. More specifically, the
Warren College mailing center path corresponds to a fork
between a wide pedestrian walkway and the main road that
is used during mail delivery. While our autonomous vehicle
is permitted to drive along those areas while enforcing a 2m/s
speed limit, the stochastic interactions with pedestrians are
challenging.6 This same pedestrian walkway is protected by
metallic bollards, requiring a manual intervention quite often
since the spacing of the bollards leaves approximately 11cm
of clearance on each side of the vehicle.

6By law, the campus speed limit is set to 25mph but in order to ensure
safety along pedestrian-shared paths, the autonomous vehicle must adjust
to different roads. Therefore, some roads require speed adjustments to be
performed.



As previously noted, the data collected from both quarters
is a combination of regular and dynamic roads. Out of the
1,903m round-trip to Warren College, 411.96m correspond
to dynamic road segments and 1,492m correspond to regular
roads. On the other hand, out of the 1,588m round-trip to
Sixth College, 916.2m correspond to dynamic roads and
671.98m to regular roads. In terms of the road categories
considered here, Figure 7 allows us to visualize the variation
and complexity on the types of roads in which the vertical
axis corresponds to the distance for each road category.
This illustrates the importance of the quality of the data
being benchmarked: while the autonomous vehicle covered
similar overall distances to each college, the variation be-
tween regular and dynamic roads is significant. Although
our autonomous vehicle did not engage in highway/freeway
driving, objective comparisons with respect to other systems
can still be performed by defining separate benchmarks for
each of the road types. In our case, our vehicles are not
intended for highway driving.

Fig. 7. Distances travelled for urban mail delivery routes: Warren and
Sixth colleges. AVs did not engage in highway/freeway driving.

VI. CONCLUSION AND FUTURE WORK

With the autonomous vehicle data collected from mail
delivery missions at UC San Diego during the an initial
deployment phase, the overall vehicle performance has been
quantified in terms of its capabilities to operate without
assistance (MTBIA and MDBIA), its dependability on human
input (MTBIM and MDBIM), by utilizing the concept of
intervention maps, and the type of road conditions that are
influenced by variation and the quality of the data. While, in a
mean sense, the autonomous mail delivery vehicle required a
safety driver intervention every 380m with an average human
intervention lasting 23m, the techniques introduced in this
study have provided a means of analyzing patterns from the
mail delivery missions that are being actively used to address
system shortcomings such as improvements on pedestrian
and vehicle intent recognition and dynamic planning. To en-
courage other autonomous vehicle entities to benchmark their
autonomous vehicle systems with the methods proposed, our
team plans on open-sourcing the data collected from the mail
delivery missions along with an online tool to objectively
compute the overall system robustness as a function of the
quality of the miles traversed, the georeferenced locations of

the data collected, and the safety considerations introduced
by [10]. We expect that the dissemination of these methods
and tools will raise awareness on the overall performance
of state-of-the-art autonomous vehicle technology in order
to better understand the shortcomings of todays technology
and collectively design better performing systems.
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