
Feedback Enhanced Motion Planning for Autonomous Vehicles

Ke Sun, Brent Schlotfeldt, Stephen Chaves, Paul Martin, Gulshan Mandhyan, and Vijay Kumar

Abstract—In this work, we address the motion planning
problem for autonomous vehicles through a new lattice planning
approach, called Feedback Enhanced Lattice Planner (FELP).
Existing lattice planners have two major limitations, namely the
high dimensionality of the lattice and the lack of modeling of
agent vehicle behaviors. We propose to apply the Intelligent
Driver Model (IDM) [1] as a speed feedback policy to address
both of these limitations. IDM both enables the responsive
behavior of the agents, and uniquely determines the acceleration
and speed profile of the ego vehicle on a given path. Therefore,
only a spatial lattice is needed, while discretization of higher
order dimensions is no longer required. Additionally, we propose
a directed-graph map representation to support the implementa-
tion and execution of lattice planners. The map can reflect local
geometric structure, embed the traffic rules adhering to the road,
and is efficient to construct and update. We show that FELP is
more efficient compared to other existing lattice planners through
runtime complexity analysis, and we propose two variants of
FELP to further reduce the complexity to polynomial time.
We demonstrate the improvement by comparing FELP with an
existing spatiotemporal lattice planner using simulations of a
merging scenario and continuous highway traffic. We also study
the performance of FELP under different traffic densities.

I. INTRODUCTION

Motion planning for self-driving vehicles remains challeng-
ing, not only because dynamically feasible trajectories for the
ego vehicle should be generated in a structured environment,
but also because the behavior of agent vehicles has to be
predicted to avoid collisions. A common approach to address
the motion planning problem is based on decomposing it into
two sub-problems, namely behavior planning and trajectory
planning [2]. The underlying heuristics is that solving the
two sub-problems is easier than solving the original motion
planning problem directly. Behavior planners [3]–[6] generally
serve two purposes: 1) generating high-level commands, such
as lane keeping or changing; 2) predicting the intentions of
the agent vehicles. Trajectory planners [7]–[9] then solve a
smooth trajectory often through convex optimization, utilizing
the output from the behavior planner.

While decomposition approaches achieve promising results,
two issues remain hard to resolve in this framework. First,
as pointed out by McNaughton [10], behavior planning often
relies on a flawed model of the underlying trajectory planning.
This mismatch may lead to unstable or, worse, infeasible

Ke Sun, Brent Schlotfeldt, and Vijay Kumar are with GRASP Lab,
University of Pennsylvania, Philadelphia, PA 19104, USA, {sunke,
brentsc, kumar}@seas.upenn.edu. Stephen Chaves, Paul
Martin, and Gulshan Mandhyan are with Qualcomm Technologies
Inc., Philadelphia, PA 19146, USA, {schaves, pdmartin,
gmandhya}@qti.qualcomm.com. We gratefully acknowledge
the support of Qualcomm Research who sponsored this work.

trajectory optimization. Sadat [11] discusses the second limita-
tion of the decomposition framework: behavior and trajectory
planners optimize different objective functions. As a result,
changes in the objective function of behavior planning may
have a negative impact on the final trajectory, which then
requires re-tuning or re-designing the objective function for the
trajectory planner. Lattice planners [12] could be a potential
solution to resolve the issues. Instead of decomposing the mo-
tion planning problem into behavior and trajectory planning,
lattice planners address the problem directly by discretizing
the spatiotemporal space and finding the optimal trajectory
through graph search.

State lattice approaches [13] are originally designed for
rover-like vehicles operating in unstructured environments.
Ziegler [14] extends the concept to a spatiotemporal lattice by
introducing time as the extra dimension. Although it is efficient
to search for an optimal solution within the spatiotemporal
lattice, constructing the lattice is time-consuming. This limita-
tion makes the method impractical for continuous autonomous
driving tasks, where repetitive lattice construction is required
as the local environment around the ego vehicle changes.

McNaughton [10] leverages the fact that the path and
velocity of a trajectory can be decoupled [15]. In [10], position
is discretized explicitly. Clothoid paths [16] are used to con-
nect positions close to each other. For each path, trajectories
are obtained by applying different constant accelerations.
Hence, instead of explicit discretization, velocity and time
are induced by the starting state and the applied acceleration.
Generating velocity profiles with constant acceleration echos
another regime of creating a state lattice [17], where the state
lattice is no longer obtained by explicitly discretizing the
state space, but rather induced by motion primitives obtained
by discretizing the control space. The performance of the
algorithm in [10] depends heavily on the set of constant
accelerations. An overly coarse set results in jerky trajectories,
while a fine set significantly increases running time.

Recently, Ajanovic [18] proposes another way of construct-
ing the spatiotemporal lattice in the same spirit as [10]. In
addition to the differences in the constraints and types of
paths, the velocity dimension is discretized explicitly in [18],
leaving position and time to be induced from the initial state
and the applied constant acceleration. Since the algorithm
structure remains the same, the method in [18] has the same
computation complexity as [10] and has the same limitation
caused by a finite set of constant accelerations.

Limitations of lattice planners, such as those in [10],
[14], [18], are notable. As discussed above, lattice planners
require discretization, either explicitly or implicitly, of the

ar
X

iv
:2

00
7.

05
79

4v
1

 [
cs

.R
O

]
 1

1
Ju

l 2
02

0

spatiotemporal space which is often of high dimensionality.
The high dimensionality makes the lattice expensive to be
repeatedly constructed to adapt to changing environments.
Another limitation of existing lattice planners is the lack of
modeling of agent vehicles’ responsive behavior. In [10], [14],
[18], agent vehicles are assumed to maintain constant velocity.
Compared with decomposition frameworks, behavior planning
provides such modeling, where advanced prediction of agent
vehicles’ behavior [3]–[5] is possible at the cost of abstracting
the controls to only a few high-level maneuvers. However, it
is not clear how to apply these methods to lattice approaches.

Additionally, the efficiency of the planning algorithms relies
on the representation of the local environment, i.e. the map.
The map should satisfy three requirements: 1) reflect the
geometric structure of the local environment; 2) encode the
traffic rules adhering to the road (e.g. an exit-only lane); and 3)
be constructed, accessed and updated efficiently. Widely used
map formats include OpenStreetMap [19], OpenDrive [20],
Lanelet [21] and Lanelet2 [22], which are designed for large
scale environments. Although these can be used for motion
planning in theory, repeatedly retrieving information from such
map representations can be time-consuming. Few papers in the
motion planning literature discuss the map representation. [10]
briefly reports that the local environment is represented with
an occupancy grid map. However, occupancy grid maps [23,
Ch.9] are not designed for structured environments, satisfying
none of the above requirements.

Contributions: In this work, we propose a Feedback En-
hance Lattice Planner (FELP), addressing the motion planning
problem of self-driving vehicles in highway scenarios. Our
major contributions are summarized as follows:

First, we use an Intelligent Driver Model (IDM) [1, Ch.11]
as the feedback policy to control the speed for both the ego and
agent vehicles. Given a speed feedback policy for the ego, the
velocity at the end of a trajectory and the time used to execute
the trajectory are determined uniquely knowing the path and
the starting state. Thus, discretization of acceleration, velocity,
and time dimension is no longer required. The lattice remains
in the 2-D spatial space. Meanwhile, IDM provides an efficient
way to model the responsive behaviors for agent vehicles,
which integrates seamlessly with lattice planning approaches.

Second, we propose a directed-graph map representation.
The proposed representation satisfies all of the previously dis-
cussed map requirements. In addition to representing the static
environment, vehicles can also be registered onto the map,
simplifying the process of collision checking and identifying
the relative positions of vehicles.

Finally, we show that the runtime complexity of FELP is
significantly reduced compared to the lattice planners in [10],
[18]. While the complexity still grows exponentially with the
spatial planning horizon, we propose two variants of FELP
that bring down the complexity to polynomial time.

II. PROBLEM FORMULATION

We start the problem formulation by considering the dy-
namics of a single vehicle. As in [16], a vehicle is modeled

as a unicycle,

ẋ(t) =
(
ẋ(t), ẏ(t), θ̇(t), v̇(t)

)
> = f(x(t),u(t)) =

(v(t) cos θ(t), v(t) sin θ(t), v(t)κ(t), a(t))>.
(1)

The state, x = (x, y, θ, v)> ∈ X , consists of 2-D position
(x, y), orientation θ, and speed v. The control u = (κ, a)> ∈
U is composed of curvature κ and acceleration a. More
precisely, a is the norm of tangential acceleration.

By stacking the dynamics of a single vehicle in Eq. (1), the
dynamics of the local traffic can be constructed as,

ẋs(t) =


ẋe(t)
ẋ0(t)

...
ẋM−1(t)

 =


f(xe(t),ue(t))
f(x0(t),u0(t))

...
f(xM−1(t),uM−1(t))

 , (2)

where xe is the ego state, xi, i = 0, 1, . . . ,M−1 are the states
of agent vehicles. Together, xs =

(
x>e ,x

>
0 , . . . ,x

>
M−1

)> ∈
XM+1 is the traffic state.

With the assumption that agent vehicles are lane followers,
curvature for the agent vehicle i can be generated based
on the lane geometry, denoted as κ(xi) : X 7→ R. By
modulating vehicle speed with IDM, acceleration for the
agent vehicle i can be generated by a feedback function
ξ(xi,yi,λi) : X ×X ×Λ 7→ R. In ξ(·), yi is the state of the
leading vehicle of agent vehicle i. λi ∈ Λ consists of the IDM
hyper-parameters for agent vehicle i. In this work, we assume
that λi are known for all agents. Therefore, ξ(xi,yi,λi) can
be simplified to ξ(xi,yi) : X ×X 7→ R, embedding the IDM
hyper-parameters as constants in ξ(·). Combining κ(·) and ξ(·)
gives the feedback policies for agent vehicles,

πi(xs) = (κ(xi) ξ(xi,yi))
>. (3)

The traffic dynamics in Eq. (2) is updated as a result of the
introduced feedback policies in Eq. (3),

ẋs(t) =


ẋe(t)
ẋ0(t)

...
ẋM−1(t)

 =


f(xe(t),ue(t))
f(x0(t), π0(xs))

...
f(xM−1(t), πM−1(xs))

 , (4)

which is of the form ẋs(t) = fs(xs(t),ue(t)). In practice, the
behavior of agents may not exactly follow the assumed model
in Eq. (3). In this work, FELP is applied in the framework of
Receding Horizon Control (RHC), which re-plans at a fixed
frequency to utilize the latest traffic state.

With the dynamics of the traffic system, the motion planning
problem for autonomous driving can be formulated as the
following optimal control problem,

min
ue(t), tf

∫ tf

t0

cg(xs(τ),ue(τ))dτ + ct(xs(tf))

subject to (1) ẋs(t) = fs(xs(t),ue(t))

(2) collision avoidance
(3) traffic rules.

(5)

In Eq. (5), tf is the free final time, cg : XM+1 × U 7→ R
is the running cost, and ct : XM+1 7→ R is the terminal
cost. Note that IDM ensures collision-free driving assuming no
acceleration constraints. However, in our implementation, the
vehicle acceleration is bounded by physical limits. Therefore,
an additional collision avoidance constraint is still required.

A. Motion Primitives of the Ego Vehicle

In this work, the set of motion primitives are feedback
control policies instead of open-loop policies as in [17].
Similar to Eq. (3), the jth motion primitive for the ego is
of the form,

πe,j(xs) = (κe,j(xe) ξ(xe,ye)). (6)

Some differences between Eq. (6) and Eq. (3) should be noted.
First, κe,j(·) is not determined by the lane geometry, but rather
a specific path to be followed by the ego. Second, as the
ego may change lanes, ye, the ego’s leading vehicle, should
be determined with special care. In this work, we define the
leading vehicle of the ego as the agent which is on the same
lane as the front of the ego. For example, if the ego is changing
lanes, it switches its leader once its front bumper passes the
lane boundary.

A few observations can help simplify the representation of
the motion primitives in Eq. (6). First, function ξ(·) is the
same across all motion primitives. This can be potentially
removed from the representation of a motion primitive and
embedded in the traffic dynamics in Eq. (4). Second, the
path for each motion primitive, determining κe,j(·), can be
constructed knowing the bounding conditions (position, ori-
entation, and curvature at the two end points). In this work,
we use the optimization method from [16] to construct such
paths. Considering an ego-centric frame where the starting
point of a path is fixed at the origin, the path can be determined
by only providing the end point p = (x, y, θ, κ)> ∈ R4.
Combining the two observations, the set of motion primi-
tives M is simply a collection of end points of paths, i.e.
M =

{
pj ∈ R4, j = 0, 1, . . .

}
with each pj representing πe,j

in Eq. (6).
Given the representation of M, only a spatial lattice,

instead of spatiotemporal lattice, is required. More specifically,
discretization over acceleration, velocity, or time is no longer
needed. Acceleration and velocity of the ego and the time
to complete a given path are determined by the starting
traffic state and the ego speed feedback policy ξ(·). Note that
although pj ∈ M is in R4, only the longitudinal and lateral
dimension of the road needs to be discretized. As in [10],
orientation and curvature at pj are determined by the road
geometry in order to ensure the path is conformal to the road.

B. Directed-graph Map Representation

The proposed directed-graph map, G = (V, E), consists of
vertices, V , and directed edges, E . Vertices are waypoints,
consisting of position, orientation, and curvature, regularly
sampled along the lane centers. Directed edges model the
connectivity between vertices. Each vertex in V can at most

Algorithm 1: Directed-graph Map Construction
Input: p0: the starting waypoint.

rm: longitudinal range of the map.
r0: longitudinal resolution of the map.

Output: G = (V, E)
range(p)← 0
E ← ∅, V ← {p0}, Q ← {p0}
while Q is not empty do

p← pop(Q)
// Extend the map forward.
F ← frontWaypoints(p, r0)
pf ← onRoute(p, F)
if pf exists then

if pf /∈ V and range(p) + r0 ≤ rm then
range(pf)← range(p) + r0
V ← V ∪ {pf}, Q ← Q∪ {pf}

end
if pf ∈ V then E ← E ∪ {(p,pf)}

end
/* Extend the map to the left and right with similar

steps using interfaces leftWaypoint and
rightWaypoint. */

...
end

(a) (b)

Fig. 1. (a) shows a mini directed-graph map example demonstrating the
connections of a vertex, A, with its four neighbor vertices. A, B, and D are
on the same lane. D → A→ B is the direction of the traffic. Therefore, the
connections between A, B, and D are one-way. C and E are on adjacent
lanes of A. A two-way connection between A and C implies that vehicles
can change lanes both from A to C and C to A. In contrast, lane changing is
only allowed from A to E. (b) is an illustration for the function d(·) and φ(·).
In (b), w0 and r0 are the metric length of the lateral and longitudinal edges.
The length of shortest path from both A to B and A to C, is w0 + 2r0,
i.e. d(A,B) = d(A,C) = w0 + 2r0. However, φ(A,B) = 3, i.e there
are three paths (shown in blue) from A to B with the shortest length, while
φ(A,C) = 1 (shown in red).

connect to its four neighbors. A direct edge from vertex A to
B means that a vehicle can “hop” from a waypoint at A to B
without violating any traffic rules, i.e. only kinematics need
to be considered. Fig. 1a shows a mini directed-graph map
example demonstrating possible connections between vertices.
Fig. 2 shows an example of the directed-graph map on a
highway environment of a larger scale.

The map construction requires interfacing with the map file
(e.g. with OpenDrive format) of the environment at a larger
scale and route information. Only four queries need to be made

Fig. 2. A directed-graph map overlaid on a highway environment. The
right lane (lower) is discontinuous because of the off-ramp and on-ramp.
In the middle section of the roads, left (upper) and center (middle) lanes are
separated with solid lines preventing lane changes. Therefore, waypoints on
adjacent lanes are not connected. No vertex is constructed at the initial section
of the on-ramp on the right lane since this section is inaccessible to a vehicle
already on the highway. Vehicles, shown as transparent red rectangles, are
registered at the corresponding vertices, shown as red dots. If a vehicle is in
the process of changing lanes, it occupies vertices on both lanes.

repeatedly: given a waypoint p at a lane center, 1) what are
the accessible waypoints if a vehicle moves forward x meters
from p; 2) what is the waypoint to the left of p; 3) what is the
waypoint to the right of p; 4) is p on the pre-defined route.
The first three queries are related to the environment and the
last is to the route. Both are assumed to be known a priori.
Alg. 1 shows the construction of the directed-graph map.

The directed-graph map can be updated incrementally, ex-
tended, shortened, or shifted (a combination of extension and
shortening). This can be achieved by maintaining the set of
entrance and exit vertices. Entrance vertices are the ones with
no vertex connecting to it from the back. Exit vertices are
the ones with no vertex connected to its front. The procedure
of extending the map is similar to Alg. 1. The difference is
that Q, in Alg. 1, is initialized with the set of exit vertices,
instead of just the starting waypoint p0. Shortening the map
is slightly different. Vertices, with the associated edges, have
to be removed starting from the set of entrance vertices. The
removal process stops until the desired range is met.

The directed-graph map can also be used to register the
position and orientation of vehicles. Based on the state and
the length of a vehicle, corresponding vertices in the directed
graph are occupied. Fig. 2 shows a directed-graph map with
registered vehicles. Using the registered map, relative positions
of the vehicles can be easily extracted. For example, one can
follow the vertices on the same lane as the ego to identify its
leading/following vehicle or its left and right leaders/followers
using the vertices on adjacent lanes.

In order to specify the constraints (2) and (3) in Eq. (5), we
define a few functions operating on the directed-graph map.
For all p ∈ V , define s(p) and l(p) as the coordinates of p
in the Frenet frame of the road curve. In the case that p /∈ V ,
define s(p) = s(q) and l(p) = l(q) where q is the projection
of p on the graph, i.e. q ∈ V and ‖q − p‖2 ≤ ‖q′ − p‖2 for
all q′ ∈ V . Define d(p, q) as the length of the shortest path
connecting p and q, where path, in this case, is a sequence of
edges in E . Since there might be more than one shortest path,
φ(p, q) is defined as the number of shortest paths between p
and q. If either p or q is not in V , d and φ take their projections
on the graph. Fig. 1b provides examples to illustrate the
definitions of d(·) and φ(·). Finally, we define the function

O(x(t)), mapping the state of a vehicle to the set of vertices
occupied by the vehicle. Note that the vehicle length is also
required to determine the occupied vertices, but not included
in x(t). However, we keep the notation O(x(t)) for brevity.

C. Consolidated Problem Formulation

With definitions for the ego motion primitives and the
directed-graph map, we are able to consolidate the problem
formulation in Eq. (5). First, we reformulate Eq. (5) without
the constraints of collision avoidance and traffic rules,

min
pk, k=1,2,...

∑
k

cs(pk) + ct(xs(tf))

subject to p0 = (xe(t0), ye(t0), θe(t0), κe(t0))>

pk ∈ V, s(pk) ≤ sm
s(pk)− s(pk−1) = r0 · n0
|l(pk)− l(pk−1)| ≤ w0

(7)

Instead of directly optimizing ue(t), the optimization is over
the motion primitives of the ego, represented as the end points,
pk’s, of paths. Because optimization variables have changed,
the objective function must be updated. Integrating the running
cost cg gives the stage cost cs,

cs(p) =

∫ t2

t1

cg(xs(τ),πe,p(xs(τ)))dτ,

where t1 and t2 are the start and end time for executing the
motion primitive represented by p. The final time tf is no
longer a variable to be explicitly optimized. Instead, tf is
implicitly determined by the traffic dynamics and the selected
sequence of motion primitives. The first constraint in Eq. (7)
fixes p0 at the initial state of the ego, which is not necessarily
at a vertex in the directed-graph map. pk ∈ V ensures the end
points of paths are vertices in the map. s(pk) ≤ sm sets the
spatial planning horizon to sm. The remaining two constraints
instruct the selection of motion primitives. Paths of motion
primitives are of constant arclength r0 · n0 in the longitudinal
direction of the road. The constant arclength of paths is defined
using r0, the longitudinal resolution of the map, and n0, the
length of path in terms of edges in the longitudinal direction.
In addition, each motion primitive should perform at most one
lane change. We note that the last two constraints in Eq. (7)
only provide one possible way of selecting motion primitives.
Depending on the computation budget, different methods in
selecting motion primitives can be applied. The same problem
formulation should fit seamlessly. Fig. 3a shows a feasible
solution to the problem in Eq. (7).

Thanks to the functions defined on the directed-graph map,
the constraints of collision avoidance and traffic rules adhering
to the road structure can be formulated. Collision avoidance
means vehicles should not overlap,

O(xe(t)) ∩ O(xi(t)) = ∅
t ∈ [t0, tf], i ∈ {0, 1, . . . ,M − 1}.

(8)

In Eq. (8), collision checking among agent vehicles is ignored.
Speeds of agent vehicles are modulated with IDM. As long

(a)

(b)

Fig. 3. (a) shows a feasible solution (blue paths) to the problem in Eq. (7)
using the directed-graph map in Fig. 2. As in Fig. 1b, w0 and r0 are the metric
length of the lateral and longitudinal edges of the map. In this example, the
planning horizon sm = 12r0. Longitudinal arclength of paths is 3r0, i.e. n0

in Eq. (7) is 3. (b) shows the paths (blue) constructed in the search process
of Alg. 2. q0, q1, and q2 are terminal waypoints. The traffic states at these
waypoints constitute the terminal set, T , in Alg. 2. The solid path sequence,
with end points marked from p0 to p4, is the possible optimal solution.

as initial states are reasonable, collision among agent vehicles
rarely happens as we experience in the experiments. Addition-
ally, the constraint of traffic rules adhering to the road are,

φ(pk−1,pk) =
|l(pk)− l(pk−1)|

w0
· n0 + 1 (9)

d(pk−1,pk) ≤ r0 · n0 + w0. (10)

Eq. (9) prevents illegal lane changes (e.g. C to B in Fig. 3a).
Eq. (10) forbids paths connecting waypoints on the same lane
of a discontinuous road (e.g. A to B in Fig. 3a).

To complete the problem formulation, we comment on the
cost functions implemented in our work. Running cost cg
includes the acceleration and headway of the ego reflecting
both comfort and safety. Since IDM is used to model agent
vehicles, it is implicitly assumed that agents would always
yield to the ego. To avoid inconsiderate behavior, braking
of agents are also included in the running cost. Therefore,
aggressive maneuvers of the ego are discouraged. Terminal
cost depends on the difference between the terminal and
desired speed and travelled distance. The cost of the travelled
distance helps the ego avoid exit-only lanes. For example, in
Fig. 3b, the path option ending at q3 is likely to be avoided
because of the short travelling distance.

III. ALGORITHM

In this section, we introduce the solution to the problem
in Sec. II, and compare the runtime complexity of FELP
against [10], [14], [18]. Since the complexity of FELP grows
exponentially with the spatial horizon, we propose two variants
with polynomial runtime complexity.

Alg. 2 shows the solution algorithm to the problem in
Sec. II. Starting from each waypoint p in Q, three possible
options are evaluated including lane keep, left and right lane
change. For each option, the evaluation starts by locating the
end point p′ of the path segment. A dynamically feasible path
segment, σ, is then constructed connecting p and p′ using
the optimization algorithm in [16]. Once the path segment

Algorithm 2: Searching for Optimal Motion Primitives
Input: xs(t0): the initial traffic state.

G: the directed-graph map.
Output: pk’s: the optimal motion primitives.
S ← {(xs(t0),p0, 0)}, Q ← {(xs(t0),p0, 0)}
while Q is not empty do

xs,p, c← pop(Q)
// Lane keep option.
p′ ← frontEndPoint(p, G)
if satisfyConstraints(p,p′, G) then
S,Q ← extendGraph(xs,p, c,p

′,S,Q)
end
// Examine left and right lane change options.
...

end
T ← terminals(S)
xs,p, c← optimalTerminal(T)
return backtrace(xs,p, c)

Function S,Q ← extendGraph(xs,p, c,p
′,S,Q)

σ ← dynamicalPath(p,p′)
x′′s ,p

′′, cg ← simulate(xs,σ)
if collision then return S,Q
if p′′ is p′ then
Q ← Q∪ {(x′′s ,p′′, c+ cg)}

end
S ← S ∪ {(x′′s ,p′′, c+ cg)}
return S,Q

end

is available, traffic dynamics can be forward simulated from
xs at p to x′′s at p′′. Note that it is not necessary that p′′

overlaps with p′, since the ego may not reach p′ within finite
duration (e.g. the traffic congestion). If so, x′′s , together with
p′′, will not be added to Q for further extension, but is treated
as a terminal state. Once the spatial horizon is reached, the
optimal terminal traffic state is identified, backtracing from
which produces the optimal sequence of motion primitives.
An example of the constructed paths is shown in Fig. 3b.

In the following, we compare the runtime complexity of
FELP with [10], [14], and [18]. The runtime complexity is
quantified with the number of evaluated trajectories. Variables
that determine the complexity include the discretization den-
sity of the 2-D position, 2-D velocity, 2-D acceleration, and
time. n and l denote the density of the discretization along the
longitudinal and lateral directions of a road, where l is often
less than n. To avoid cluttering of expressions, we use n to
also denote the discretization density of other dimension.

In [14], there are ln6 nodes in the lattice (In order to
avoid confusion with the vertices in the directed-graph map in
Sec. II-B, we use “node” to refer to the vertices in the lattice).
Assuming the trajectories going out from a node only connect
to the nodes one unit away in the longitudinal dimension, the
out-degree of a node is ln5. Therefore, the total number of

(a) Alg. 2 on [10] (b) FELP

(c) C-FELP (d) R-FELP

Fig. 4. (a), (b), (c), and (d) shows evaluated trajectories for Alg. 2 applied to
the problem in [10], Sec. II, and its two variants in Sec. III-A and Sec. III-B
respectively. Each figure shows the paths (blue) created for a road with l
lanes, although only two lanes are drawn. The vertical dash lines marks the
discretization of the longitudinal dimension. Next to each node (black) marks
the number of trajectory segments ending at the node, the sum of which for
the nodes on the same column is marked at the top. The total number of
evaluated trajectories can be obtained by summing the values on the top row
of each figure.

trajectories to be evaluated is ln6 · ln5 = O
(
l2n11

)
.

Both [10] and [18] use hybrid A* [24] to reduce runtime
complexity, which prunes the induced position, velocity, or
time using a pre-defined grid. Hybrid A*, as an approximation
to graph search algorithms, may fail to find the optimal
solution. Therefore, we consider the complexity of using
authentic graph search algorithms, such as Alg. 2, for the
problems in [10] and [18]. As discussed in Sec. I, both [10]
and [18] share the same runtime complexity. We focus only
on [10] because of its similarity with this work. Fig. 4a shows
the growth of the number of evaluated trajectories as the
spatial horizon extends. The total number of trajectories is∑n

k=1 l
knk = O(lnnn). Note that since n is often less than

10, the running time of [10] may not be more than [14].
Fig. 4b shows the growth of the trajectories of FELP.

The total number of trajectories is
∑n

k+1 l
k = O(ln). The

significant reduction of the runtime complexity is due to
the usage of IDM as the speed feedback policy in the ego
motion primitives. Unlike [10], one no longer has to discretize
acceleration, evaluate different constant accelerations over the
same path, producing more trajectories. Instead, in FELP, the
trajectory of the ego is uniquely determined by its initial
state and a path. Constructing paths requires a spatial lattice
only. Although the runtime complexity is significantly reduced
compared to [10], it still grows exponentially with spatial
horizon, n. In the following, we propose two methods to
further reduce the runtime to polynomial.

A. Introducing Additional Constraints (C-FELP)

One possible way to reduce the runtime complexity of
a graph search is introducing additional constraints, thereby
eliminating a significant number of options. In C-FELP, we
introduce a new restriction for the ego where at most one lane
change is allowed over the entire planning horizon. Consider-
ing the spatial planning horizon for a local trajectory planner is
on the order of one hundred meter, the new restriction is sen-
sible. Effectively, this is equivalent to replacing the constraint
|l(pk)− l(pk−1)| ≤ w0 in Eq. (7) with |l(pk)− l(p0)| ≤ w0.

Algorithm 3: Modified extendGraph

Function S,Q ← extendGraph(xs,p, c,p
′,S,Q)

σ ← dynamicalPath(p,p′)
x′′s ,p

′′, cg ← simulate(xs,σ)
if collision then return S,Q
if p′′ is not p′ then
S ← S ∪ {(x′′s ,p′′, c+ cg)}
return S,Q

end
if p′′ ∈ S then

x′′′s ,p
′′, c′′′ ← snapshotAt(S,p′′)

if cg + c ≥ c′′′ then return S,Q
S ← removeSnapshotAt(S,p′′)
Q ← removeSnapshotAt(Q,p′′)

end
S ← S ∪ {(x′′s ,p′′, c+ cg)}
Q ← Q∪ {(x′′s ,p′′, c+ cg)}

end

All path end points are either on the same lane or adjacent
lanes to p0. Fig. 4c shows the growth of trajectories with the
new constraint. The total number of constructed trajectories is∑n

k=1 kl = O(n2l).

B. Removing Traffic States (R-FELP)

The underlying reason of the O(ln) runtime complexity
of FELP is the fast growing of traffic states at the nodes.
Different traffic states at a node are created if the ego can
reach the node through different combination of paths. A
direct way to address this is to ensure that only one traffic
state is maintained at each node. We propose to use the
cost-to-come of trajectories to determine which traffic state
should be maintained at the nodes. Alg. 3 is an update of the
function extendGraph reflecting this idea. Fig. 4d shows
that the runtime complexity of the modified algorithm is∑n

k=1 l
2 = O(nl2). It should be noted that, although the

complexity is reduced compared to O(ln), the principle of
optimality is violated. To see this, the optimal sequence of
motion primitives may have higher cost-to-come compared to
another sequence that reaches the same intermediate waypoint.
As a result, the optimal sequence is removed at an early stage
of the algorithm, and thus the returned sequence of motion
primitives is non-optimal, in general.

IV. EXPERIMENT

In the experiments, We compare FELP and its variants with
the spatiotemporal lattice planner in [10] through a merging
scenario and highway traffic simulations. In addition, we show
the performance of FELP with different traffic densities. For
ease of reference, we call the method in [10] STLP, which is
the most similar to FELP in terms of the planning method-
ology. In our implementation of STLP, six accelerations are
provided, {−8,−4,−2,−1, 0, 1}m/s2. To ensure reasonable
runtime, hybrid-A* is applied. Longitudinal speed is dis-
cretized to three intervals, while the temporal dimension is

Fig. 5. The merging scenario where the ego (blue) merges into the left lane.
The three snapshots shows the traffic at different time, 0.0s, 1.5s, 3.25s
respectively. Next to each vehicle marks the speed (m/s) of the vehicles at
the corresponding time.

left undiscretized. All simulations are built with CARLA [25].
The planning algorithms are implemented to run with a single
CPU core. The reported timing of the following experiments
are obtained with Intel Core i9-9920X running at 3.5GHz.
Implementations of the algorithms in this work can be found at
https://github.com/KumarRobotics/conformal lattice planner.

A. Merging Scenario

In this scenario, the ego is moving at 15m/s, 20m behind
a leading vehicle with the same speed, trying to merge to the
left. Two vehicles on the left lane are faster moving at 20m/s,
20m ahead and behind the ego respectively. The scenario
simulates a typical on-ramp merging case. Since agent vehicles
are assumed to move with constant velocity in STLP, lane
changing will cause a collision in prediction, and thus is not
allowed at this moment. As a result, the ego may fail to merge
and has to take the exit. However, lane changing is possible
with FELP as agents are modeled with IDM. Fig. 5 shows
traffic snapshots with the ego planned with FELP.

As discussed in Sec. II, the assumption that agents would
always yield may lead to inconsiderate behavior of the ego.
Therefore, the cost induced by agents’ braking is used to
prevent aggressive actions from the ego. In this example, one
can tune the cost function in case more conservative behavior
is desired. However, tuning the cost function does not help in
producing a lane-change option in STLP.

B. Highway Traffic

The highway traffic simulation is set on the map Town04,
a default map in CARLA. To simulate the limited perception
range of the ego, traffic is maintained in the neighborhood of
the ego vehicle, specifically, 100m ahead and 50m behind the
ego. Within the 150m range, 8 agent vehicles are maintained.
In the case that an agent vehicle moves out of the range, a
new vehicle is added close to either the end or the front of the
perception range, simulating the detection of new vehicles. As
in Sec. II, all agent vehicles are lane followers with the speed
modulated by IDM. The desired speed of the agent vehicles
are set to around 20m/s, close to the desired speed of the ego.
In order to improve the similarity with real-world scenarios,
behavior of agents are randomized through two ways. First,
the IDM hyper-parameters of the agents deviate from nominal

values. Second, the online desired speed of agent vehicles is
perturbed with slow varying Gaussian noise.

Table I reports the performance of different methods with
a one-hour highway traffic simulation. Average values for the
metrics are almost the same for all methods, thus omitted.
Instead, the percentile data are shown to reflect the extreme
statistics. A few observations can be made. Comparing jerk
and acceleration, FELP and its variants are less aggressive,
implying an improvement in the comfort. This is because
IDM produces continuous acceleration if no abrupt change
is observed from the traffic. The proposed methods also sig-
nificantly improve the running time agreeing with the analysis
in Sec. III. According to the induced brake, FELP and its
variants may expect harder braking from the followers on
the target lanes when the ego changes lanes. As discussed
in Sec. IV-A, the induced brake can be reduced by tuning the
objective function. Comparing C-FELP, R-FELP, and FELP,
the performance is almost the same per the metrics, although
C-FELP and R-FELP generates sub-optimal trajectories in
terms of the objective function. However, C-FELP and R-
FELP do further reduce the planning time, which makes them
more suitable for online usage.

C. Effect of the Traffic Density

The performance of FELP is also compared with different
traffic densities. The setup of the experiments is similar to that
in Sec. IV-B. The difference is the number of agent vehicles
is configured to 4, 8, and 12 respectively to simulate various
traffic densities. Table II reports the experimental results. As
the number of agent vehicles increases, both the comfort
(reflected by jerk and acceleration) and the safety (reflected by
headway and induced brake) of the trajectories are affected,
which agrees with the normal driving experience. It is also
worth noting that the planning time of FELP increases linearly
with the traffic density, making FELP suitable for applications
in dense traffic scenarios.

V. CONCLUSION

In this work, we propose a new lattice planning approach,
FELP. FELP applies IDM as the speed feedback policy to
modulate the speed of the ego and predict the behavior of
agents. IDM enables the responsive behavior of agent vehicles.
We show that such modeling can prevent over-conservative be-
havior of the ego in a merging scenario simulation. Combining
IDM with paths, we are able to construct ego motion primitives
as feedback policies. With the velocity and acceleration deter-
mined by the motion primitives, only spatial dimensions need
to be discretized. The reduction in the lattice dimensionality
significantly improves the efficiency of FELP. We show this
by comparing runtime complexity and actual online planning
time of FELP with other lattice planners.

Two directions of extending the current work are promising.
First, FELP remains a deterministic planning approach, relying
on receding horizon control to cope with the mismatch be-
tween the prediction and actual scenarios. Stochasticity can be
introduced in modeling the motion of agent vehicles. Planning

https://github.com/KumarRobotics/conformal_lattice_planner

TABLE I
COMPARISON OF DIFFERENT METHODS WITH ONE-HOUR HIGHWAY TRAFFIC SIMULATIONS

jerk1(m/s3) acceleration1(m/s2) speed1(m/s) headway1, 2 (s) induced brake3(m/s2) planning time (ms)

STLP −10.00/10.00 −4.00/1.00 16.70/20.00 1.15/4.70 2.00 1631

FELP −0.43/0.51 −0.52/0.54 15.45/20.00 1.23/4.75 3.04 276

C-FELP −0.36/0.36 −0.41/0.38 16.04/20.00 1.29/4.80 3.04 153

R-FELP −0.35/0.38 −0.41/0.34 15.95/20.00 1.26/4.75 1.79 232

1 The data represents 1% and 99% percentile.
2 Headway is computed whenever there is a leading vehicle for the ego. Otherwise, headway is not defined.
3 Induced brake refers to brake of the follower on the target lane when the ego changes lanes. The data represent the 1% percentile.

TABLE II
PERFORMANCE OF FELP IN ONE-HOUR HIGHWAY TRAFFIC SIMULATIONS WITH DIFFERENT TRAFFIC DENSITY1

agent # jerk (m/s3) acceleration (m/s2) speed (m/s) headway (s) induced brake (m/s2) planning time (ms)

4 −2.87× 10−3/0.0 0.00/8.28× 10−3 19.92/20.00 1.80/4.80 1.35 239

8 −0.43/0.51 −0.52/0.54 15.45/20.00 1.23/4.75 3.04 276

12 −0.50/0.61 −0.60/0.54 15.18/20.00 1.21/4.78 2.62 317

1 Data is in the same format as Table I.

with the new model promises the capability of considering
various possible future scenarios. Another future direction is
extending the current work to urban environments. Compared
with highways, urban driving is more challenging because of
more complicated traffic rules and more types of dynamical
obstacles in addition to agent vehicles.

REFERENCES

[1] M. Treiber and A. Kesting, “Traffic flow dynamics,” Traffic Flow
Dynamics: Data, Models and Simulation, Springer-Verlag Berlin Hei-
delberg, 2013.

[2] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of
motion planning and control techniques for self-driving urban vehicles,”
IEEE Transactions on intelligent vehicles, vol. 1, no. 1, pp. 33–55, 2016.

[3] C. Hubmann, M. Becker, D. Althoff, D. Lenz, and C. Stiller, “Decision
making for autonomous driving considering interaction and uncertain
prediction of surrounding vehicles,” in 2017 IEEE Intelligent Vehicles
Symposium. IEEE, 2017, pp. 1671–1678.

[4] E. Galceran, A. G. Cunningham, R. M. Eustice, and E. Olson, “Multipol-
icy decision-making for autonomous driving via changepoint-based be-
havior prediction: Theory and experiment,” Autonomous Robots, vol. 41,
no. 6, pp. 1367–1382, 2017.

[5] Z. N. Sunberg, C. J. Ho, and M. J. Kochenderfer, “The value of inferring
the internal state of traffic participants for autonomous freeway driving,”
in 2017 American Control Conference. IEEE, 2017, pp. 3004–3010.

[6] C. Hubmann, J. Schulz, G. Xu, D. Althoff, and C. Stiller, “A belief state
planner for interactive merge maneuvers in congested traffic,” in 2018
21st International Conference on Intelligent Transportation Systems.
IEEE, 2018, pp. 1617–1624.

[7] J. Ziegler, P. Bender, T. Dang, and C. Stiller, “Trajectory planning for
berthaa local, continuous method,” in 2014 IEEE intelligent vehicles
symposium proceedings. IEEE, 2014, pp. 450–457.

[8] H. Fan, F. Zhu, C. Liu, L. Zhang, L. Zhuang, D. Li, W. Zhu, J. Hu,
H. Li, and Q. Kong, “Baidu apollo em motion planner,” arXiv preprint
arXiv:1807.08048, 2018.

[9] J. Chen, W. Zhan, and M. Tomizuka, “Autonomous driving motion
planning with constrained iterative lqr,” IEEE Transactions on Intelligent
Vehicles, vol. 4, no. 2, pp. 244–254, 2019.

[10] M. McNaughton, C. Urmson, J. M. Dolan, and J.-W. Lee, “Motion plan-
ning for autonomous driving with a conformal spatiotemporal lattice,”
in 2011 IEEE International Conference on Robotics and Automation.
IEEE, 2011, pp. 4889–4895.

[11] A. Sadat, M. Ren, A. Pokrovsky, Y.-C. Lin, E. Yumer, and R. Urtasun,
“Jointly learnable behavior and trajectory planning for self-driving
vehicles,” arXiv preprint arXiv:1910.04586, 2019.

[12] L. Claussmann, M. Revilloud, D. Gruyer, and S. Glaser, “A review of
motion planning for highway autonomous driving,” IEEE Transactions
on Intelligent Transportation Systems, 2019.

[13] M. Pivtoraiko, R. A. Knepper, and A. Kelly, “Differentially constrained
mobile robot motion planning in state lattices,” Journal of Field
Robotics, vol. 26, no. 3, pp. 308–333, 2009.

[14] J. Ziegler and C. Stiller, “Spatiotemporal state lattices for fast trajectory
planning in dynamic on-road driving scenarios,” in 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE,
2009, pp. 1879–1884.

[15] K. Kant and S. W. Zucker, “Toward efficient trajectory planning:
The path-velocity decomposition,” The international journal of robotics
research, vol. 5, no. 3, pp. 72–89, 1986.

[16] A. Kelly and B. Nagy, “Reactive nonholonomic trajectory generation
via parametric optimal control,” The International Journal of Robotics
Research, vol. 22, no. 7-8, pp. 583–601, 2003.

[17] M. Rufli and R. Siegwart, “On the design of deformable input-/state-
lattice graphs,” in 2010 IEEE International Conference on Robotics and
Automation. IEEE, 2010, pp. 3071–3077.

[18] Z. Ajanovic, B. Lacevic, B. Shyrokau, M. Stolz, and M. Horn,
“Search-based optimal motion planning for automated driving,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2018, pp. 4523–4530.

[19] M. Haklay and P. Weber, “Openstreetmap: User-generated street maps,”
IEEE Pervasive Computing, vol. 7, no. 4, pp. 12–18, 2008.

[20] M. Dupuis, E. Hekele, A. Biehn, et al. Opendrive. [Online]. Available:
http://www.opendrive.org

[21] P. Bender, J. Ziegler, and C. Stiller, “Lanelets: Efficient map repre-
sentation for autonomous driving,” in 2014 IEEE Intelligent Vehicles
Symposium Proceedings. IEEE, 2014, pp. 420–425.

[22] F. Poggenhans, J.-H. Pauls, J. Janosovits, S. Orf, M. Naumann, F. Kuhnt,
and M. Mayr, “Lanelet2: A high-definition map framework for the
future of automated driving,” in 2018 21st International Conference on
Intelligent Transportation Systems. IEEE, 2018, pp. 1672–1679.

[23] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT press
Cambridge, 2000, vol. 1.

[24] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Practical search
techniques in path planning for autonomous driving,” Ann Arbor, vol.
1001, no. 48105, pp. 18–80, 2008.

[25] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proceedings of the 1st
Annual Conference on Robot Learning, 2017, pp. 1–16.

http://www.opendrive.org

	I Introduction
	II Problem Formulation
	II-A Motion Primitives of the Ego Vehicle
	II-B Directed-graph Map Representation
	II-C Consolidated Problem Formulation

	III Algorithm
	III-A Introducing Additional Constraints (C-FELP)
	III-B Removing Traffic States (R-FELP)

	IV Experiment
	IV-A Merging Scenario
	IV-B Highway Traffic
	IV-C Effect of the Traffic Density

	V Conclusion
	References

