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Abstract— Applying Deep Reinforcement Learning (DRL) to
complex tasks in the field of robotics has proven to be very
successful in the recent years. However, most of the publications
focus either on applying it to a task in simulation or to a task
in a real world setup. Although there are great examples of
combining the two worlds with the help of transfer learning, it
often requires a lot of additional work and fine-tuning to make
the setup work effectively. In order to increase the use of DRL
with real robots and reduce the gap between simulation and
real world robotics, we propose an open source toolkit: robo-
gym1. We demonstrate a unified setup for simulation and real
environments which enables a seamless transfer from training
in simulation to application on the robot. We showcase the
capabilities and the effectiveness of the framework with two real
world applications featuring industrial robots: a mobile robot
and a robot arm. The distributed capabilities of the framework
enable several advantages like using distributed algorithms,
separating the workload of simulation and training on different
physical machines as well as enabling the future opportunity
to train in simulation and real world at the same time. Finally,
we offer an overview and comparison of robo-gym with other
frequently used state-of-the-art DRL frameworks.

I. INTRODUCTION

Traditionally, industrial robots have been operating in
closed cells or warehouse areas with limited access. In most
cases, these robots perform well-defined, repeated opera-
tions on standard objects without interacting with human
operators. Programming a robot is often a lengthy task that
requires specialized knowledge of the machine’s software.
Recent trends in robotics aim to enable robots to work in
dynamic, open environments co-occupied by humans, which
present several new challenges. When working in these
complex scenarios, a robot must be equipped with certain
sensors that allow it to perceive its surroundings and the
objects it has to interact with. Integrating and exploiting
sensor data for planning the robot’s actions is not a trivial
task.

Research has shown that applying DRL to solve complex
robotics tasks is a promising solution to the shortcomings of
traditional methods. Many existing frameworks and toolkits
have been developed by researchers in the AI community to
test and compare their algorithms on a set of very complex
problems. The results obtained are very impressive, but the
applications are mostly confined to the simulation world and
are rarely transferred to the real world. Closing the gap
between simulation and real world is an incredibly promising
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Fig. 1. Industrial robot use case scenarios (left: real environment, right:
simulation environment). Mobile navigation with obstacle avoidance of
MiR100 on the top and end effector positioning of UR10 on the bottom.

mission on which many researchers are currently working.
However, DRL is a complex field of research that requires
in-depth knowledge in several areas, which in our experience
represents a barrier to entry for roboticists.

Our contribution, the robo-gym framework, is an open
source toolkit for DRL on real and simulated robots and cre-
ates a bridge between communities. By using a standardized
interface based on OpenAI Gym, we enable AI researchers
to test their algorithms on simulated and real world problems
involving industrial robots with little or no knowledge in the
robotics field. On the other hand, robotic researchers are able
to focus on the integration of new robots, sensors and tasks,
while exploiting many of the open source implementations
of DRL algorithms using the OpenAI Gym interface (e.g.
Stable Baselines [1]).

During the implementation of the proposed framework
we encountered several issues when dealing with real world
systems, and while there are examples of applications tested
on real robots, only few works share details about the
hardware setup and interfaces. To help the researchers set
up similar tasks, we provide examples of two industrial use
cases with a UR10 collaborative robot arm and MiR100
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mobile robot (see Figure 1).
We built robo-gym to be able to quickly develop and train

new applications on our own hardware, without having to be
tied to cloud services providers, and to deploy them in indus-
trial use cases. We provide this tool to the community with
the goal to accelerate research in this field; furthermore, we
commit to actively maintain the framework and continuously
extend it with new robot models, sensors and tasks.

The remainder of the paper is structured as follows:
Section II gives an overview of related work. Section III
describes each component of the robo-gym framework in
detail, introduces how the elements operate together, and how
to extend them. Section IV shows how we applied our frame-
work on two proof-of-concept use cases. Section V compares
robo-gym to other popular state-of-the-art frameworks and
the conclusion is given in Section VI.

II. RELATED WORK

A. Deep Reinforcement Learning in Robotics

In robot arm manipulation, tasks are differentiated accord-
ing to the given input. Some tasks use the robot’s proprio-
ceptive information, while others most often use visual data
from RGB cameras or even a combination of the two. Initial
research solved diverse robot arm manipulation tasks mainly
in simulation [2], [3], [4]. Other approaches trained directly
on the real robot, but this is difficult and requires to have a
lot of constraints on the movements of the robots [2], [5], [6],
[7]. A more recent work tried to combine the two domains
by pre-training models in simulation and continuing learning
in the real world [8]. Subsequently, latest advancements use
domain randomization to train models in simulation and
deploy them on the real robots, with [9], [10] or without
[11], [12], [13], [14] some additional fine tuning involved.

In mobile robot navigation, DRL has also demonstrated its
applicability, where it is very practical to map actions to large
sensory data. Renowned examples of problems solved both
in simulation and in the real world are: mobile navigation
with static [15] and dynamic [16] obstacle avoidance, de-
centralized multi robot collision avoidance [17] and socially-
compliant navigation in crowded spaces [18], [19].

B. Frameworks and Benchmarks

OpenAI Gym [20] has become the de facto standard for
benchmarking DRL algorithms; it includes a suite of robotics
environments based on the MuJoCo simulation engine [21],
but it does not serve all the needs of the robotics community.
As a consequence, several research groups and companies
have tried to set a standard for developing and benchmarking
DRL applications in robotics.

The DeepMind Control Suite [22] aims at providing a
benchmark for performance comparison of learning algo-
rithms on exclusively simulated physics-control problems.

The Surreal Robotics Suite [23] focuses on robotic manip-
ulation. It includes multiple simulated tasks with the Baxter
robot.

RLBench [24] aims at providing a large-scale benchmark
and learning environment specifically tailored for vision-
guided manipulation research.

The SenseAct framework [6] includes learning environ-
ments based on multiple real robots. The industrial robot
environments are developed only for the real hardware and
not in simulation.

The toolkit gym-gazebo2 [25], which is based on ROS2
and Gazebo, comes with environments using both the real
and the simulated MARA Robot formerly developed by
Acutronic Robotics; it is the most closely related to our work.

However, robo-gym is the only framework that allows
to train control policies on distributed simulations and to
exploit them directly with commercially available robots. A
more extensive comparison to related frameworks is given in
Section V.

C. Physics Engines

There is no clear preference when it comes to physics
engines for robotics simulation, mostly due to the fact that
each of the popular simulation platforms have strengths and
weaknesses on different kind of problems.

MuJoCo [21] is well known for the accuracy of its contact
and friction simulations and it has become very popular
among the AI community. It is used by several frameworks
and it is well suited for research on low level control of
complex physical systems with a high number of degrees
of freedom. On the negative side, it lacks integration with
other tools commonly used by roboticists. Furthermore, the
software is proprietary and it has prohibitive licence costs.

Coppelia Sim, formerly known as V-rep [26], and Gazebo
[27] are both popular simulation platforms within the
robotics community. Both of them can exploit different
physics engines like Open Dynamics Engine (ODE) or
Bullet. Coppelia Sim is proprietary although parts of the
software are open source whereas Gazebo is completely open
source.

The latter is a very popular choice for roboticists. Some
of the main benefits of using Gazebo are: the community
support, the vast library of robots and sensors as well as
the integration with the Robot Operating System (ROS).
Furthermore, the availability of ROS controllers and sensors
plugins allow to have similar interfaces for the simulated and
the real robots.

III. THE FRAMEWORK

A. The Components

The elements of the framework, depicted in Figure 2,
are introduced following a bottom-up approach, starting
from the hardware layer building up to the interface to the
Reinforcement Learning (RL) agent.

1) Real or Simulated Robot: This component includes the
robot itself, the sensors, and the scene surrounding the robot.

The interface to the robots and the sensors is implemented
in ROS for both real and simulated hardware. The interface
of the simulated robots is generally corresponding to the one



Fig. 2. The robo-gym framework.

of the real robots augmented with features that would be
impractical or too expensive to match in the real world. An
example is virtual collision sensors that detect any kind of
collision of a robot link. The simulated and the real robot
must use the same controllers.

The simulated scenes are generated in Gazebo and are
described using the SDFormat (SDF), an XML format. These
can be created and manipulated in multiple ways: online, via
API or GUI, and offline, by editing the SDF files.

2) Command Handler: Within the Markov Decision Pro-
cess (MDP) framework, it is assumed that interactions be-
tween agent and environment take place at each of a series
of discrete time steps. According to [28], in such a sys-
tem time does not advance between making an observation
and triggering a subsequent action. In a real-world system,
however, time passes in a continuous manner. It is therefore
necessary to make some adjustments to the real world system
so that its behavior gets closer to the one defined by the MDP
framework. The Command Handler (CH) implements these
aspects.

As explained in [6], the robot-actuation cycle time is the
time between the individual commands sent to the robot
controller and the action cycle time is the time between
two subsequent actions generated from the agent. The action
cycle time doesn’t have to be the same as the robot-actuation
cycle time, as the CH can repeatedly publish the same
command for multiple robot-actuation cycles.

The CH uses a queue with capacity for one command
message. When the component receives a command message
it tries to fill the queue with it. New elements get ignored
until the element in the queue gets consumed. The CH

continuously publishes command messages to the robot at
the frequency required by its controller. If, at the moment of
publishing, the queue is full, the CH retrieves the command,
publishes it to the robot for the selected number of times
and after that it empties the queue. In the opposite case,
the handler publishes the command corresponding to an
interruption of the movement execution. This corresponds
to either zero velocities for mobile robots or preemption of
the trajectory execution for robot arms.

The framework’s Command Handler supports the standard
diff drive controller and joint trajectory controller from
ROS controllers [29]. A wide range of robots can be con-
trolled using these; nevertheless, this component can be
easily implemented for any other ROS controller.

3) Robot Server: It exposes a gRPC server that allows to
interact with the robot through the integrated ROS bridge.

The first function of the server is to store updated infor-
mation regarding the state of the robot, that can be queried
at any time via a gRPC service call. The robot’s actuators
and sensors constantly publish information via ROS. The
ROS Bridge collects the information from the different
sources and stores it in a buffer as an array of values.
The actuators and the sensors update their information with
different frequencies. The buffer is managed with a threading
mechanism to ensure that the data delivered to the client is
consistent and containing the latest information.

The second function is to set the robot and the scene to
a desired state. For instance, the user might want to set the
joint positions of a robotic arm to a specific value when
resetting the environment.

Lastly, it provides a service to publish commands to the
CH.

4) Environment: This is the top element of the framework,
which provides the standard OpenAI Gym interface to the
agent. The main function of the Environment component is
to define the composition of the state, the initial conditions of
an episode and the reward function. In addition, it includes
a gRPC stub which connects to the Robot Server to send
actions, and to set or get the state of the robot and the scene.

According to the framework provided by the Gym, envi-
ronments are organized in classes, each constructed from a
common base one. In addition, robo-gym extends this setup
with a different wrapper for either a real or a simulated robot.
These wrappers differentiate regarding the constructor that is
being called. In the case of the simulated robot environment,
the argument for the IP address refers to the Server Manager,
whereas in the case of the real robot environment it refers to
the IP address of the Robot Server. The Server Manager for
simulated robots provides the address of the Robot Server
to which the Environment gRPC stub is then connected. On
the other hand, in the case of the real robot environment,
extra attention for the network configuration is needed to
guarantee communication with the hardware. Furthermore,
environment failures and eventual emergency stops must be
inspected by a human operator. As a consequence, the Server
Manager is currently not employed when using real robots



and the Environment gRPC stub is connected directly to the
Robot Server, which is started manually.

5) Server Manager: It is the orchestrator of the Robot
Servers, it exposes gRPC services to spawn, kill, and check
Robot Servers. When used with simulated robots it handles
the robot simulations as well.

Each cluster of Robot Server, CH and real or simulated
robot runs on an isolated ROS network. To achieve this, the
Server Manager launches each cluster in an isolated shell
environment handled with the help of tmux2.

This component implements error handling features to au-
tomatically restart the Robot Server and the robot simulation
in case of:
• an error in the connection to the Robot Server
• an exceeded deadline when calling a Robot Server

service
• a non responding simulation
• data received from simulation out of defined bounds
• a manual request of simulation restart

B. The Process

This subsection focuses on the run time behavior of
the framework. The most critical process that needs to be
established is the one behind the call of a step in the
environment. A RL agent uses Si, Ai, Ri, Si+1 tuples to
train on the given environment, where S is the state of the
environment at different time steps, A is the action taken in
the environment and R is the reward received. We will refer
to the time necessary for the learning algorithm to generate
the action as action generation time. Furthermore, we define
the sleep time as the difference between the action cycle time
and the action generation time.

Fig. 3. Process timeline of a step taken in the environment.

As shown in Figure 3, when calling a step in the envi-
ronment the gRPC stub of the Environment component calls
the Robot Server’s service to send an action to the robot.
The Robot Server then publishes the desired command to the
robot through the ROS bridge. Afterwards, it waits for the ac-
tion execution time before returning the result of the service
call. If no exceptions were raised during the execution, the
gRPC stub of the Environment receives a positive feedback.
Only after receiving the feedback, the Environment’s gPRC
stub queries the Robot Server’s service to get the latest state

2https://github.com/tmux/tmux

of the robot. The action is generated based on the state S′1
different from the state S1 at which the action is actually
executed. This is unavoidable for real world systems and it
highlights the importance of minimizing delays throughout
the framework [6]. Shorter action generation times allow
to have finer and smoother control of the robot. The exact
reference times for the two applications are further discussed
in Section IV-C.2.

To distribute the computational efforts of the training
process it is possible to run the framework across different
PCs. The Robot Server, CH, and real or simulated robot
clusters can be distributed across any PC connected to the
same network. To start the framework it is sufficient to start
a Server Manager on every PC and register its IP address.
Although this has not been tested yet, it is also possible to
train on real and simulated robots at the same time, due to
the modular architecture based on gRPC.

C. Extending the Framework

1) Extending Robotic Hardware: New robot models and
sensors can be easily integrated. In general for each different
robot model a specific Robot Server, CH and Real or Simu-
lated Robot are required. However, these can be implemented
with a minor effort by adapting the components provided
with the framework’s code. New sensors must be integrated
in the Robot Server in order to have the additional data
forwarded to the Environment.

2) Creating new Tasks: When creating a new task, the
only restrictions are those imposed by the simulator used.
Thus, starting with a widely adopted simulator as Gazebo
facilitates the process; since a large library of scenes and
models has been already developed by the community.

3) Using Other Real World Systems or Simulators: The
two main reasons behind the use of gRPC as a commu-
nication layer are that it is open source and that it comes
with libraries for multiple programming languages: C/C++,
C#, Dart, Go, Java, Node.js, Objective-C, PHP, Python and
Ruby. Thanks to the latter, it is possible to implement Robot
Servers for any real world robot controller that provides an
API in one of the supported languages. This is valid for robot
simulators as well, since any simulator that provides an API
in one of the gRPC supported languages could be integrated
in the framework. Nevertheless, we encourage the users to
use the ROS framework and Gazebo when available.

It is possible to use the existing framework with simulated
robots in Gazebo using a different physics engine. In the
provided environments, the default physics engine, ODE, was
used. Nevertheless, it is up to the user to select the physics
engine best suited to the given requirements.

IV. APPLICATION

To exhibit the flexibility of the framework and to prove its
usefulness we implemented two applications based on two
different types of industrial robots.

The first application features the MiR100, a differential
drive mobile robot with a maximum payload of 100 kg. This
robot is widely adopted in industry and research and it can be

https://github.com/tmux/tmux


employed for a number of different tasks, due to the multiple
extensions built by third party companies. Furthermore, the
backbone of the robot is based on ROS making it straight
forward to interact with it using the ROS framework.

The second application features a UR10, a collaborative
industrial robot with a maximum payload of 10 kg and a
1300 mm reach. The choice of the robot was motivated by its
popularity in industry and research as well as the availability
of a ROS driver.

The RL agent could successfully solve the given task for
both of the proposed applications. After the training process
was completed, the agent was then deployed on the real
robots without any further training. At least in these two
simple tasks it can be observed that the trained agent can be
applied with a similar success rate in the real world.

A. Problem Description

The initial release of robo-gym provides two environments
showcasing a navigation task with the MiR100 and a posi-
tioning task with the UR10, two common industrial use cases
shown in Figure 1.

1) Mobile navigation with obstacle avoidance of MiR100:
In this environment, the task of the mobile robot is to reach
a target position without touching the obstacles on the way.

In order to detect obstacles, the MiR100 is equipped with
two laser scanners, which provide distance measurements in
all directions on a 2D plane. At the initialization of the en-
vironment the target is randomly placed on the opposite side
of the map with respect to the robot’s position. Furthermore,
three cubes, which act as obstacles, are randomly placed in
between the start and goal positions. The cubes have an edge
length of 0.5 m, whereas the whole map measures 6x8 m.

The observations consist of 20 values. The first two are
the polar coordinates of the target position in the robot’s
reference frame. The third and the fourth value are the
linear and angular velocity of the robot. The remaining
16 are the distance measurements received from the laser
scanner distributed evenly around the mobile robot. These
values were downsampled from 2*501 laser scanner values
to reduce the complexity of the learning task.

The action is composed of two values: the target linear
and angular velocity of the robot.

The base reward that the agent receives at each step is pro-
portional to the variation of the two-dimensional Euclidean
distance to the goal position. Thus, a positive reward is
received for moving closer to the goal, whereas a negative
reward is collected for moving away. In addition, the agent
receives a large positive reward for reaching the goal and a
large negative reward in case of collision.

2) End effector positioning of UR10: The goal in this
environment is for the robotic arm to reach a target position
with its end effector.

This task is similar to UR5 Reacher [6], but with less
constraints on the initial and final conditions. The target end
effector positions are not confined inside a small boundary
box, but are uniformly distributed across a semi-sphere

of radius 1200 mm, which is close to the full working
area of the UR10. Potential target points generated within
the singularity areas of the working space are discarded.
In addition, the starting position is not the middle of the
boundary box, but a random robot configuration.

The observations consist of 15 values: the spherical coor-
dinates of the target with the origin in the robot’s base link,
the six joint positions and the six joint velocities.

The robot uses position control; therefore, an action in the
environment consists of six normalized joint position values.

The reward function is similar to the one of Problem 1 with
the difference that the Euclidean distance is calculated in the
three-dimensional space. Both self collisions and collisions
with the ground are taken into account and punished with a
negative reward and termination of the episode.

B. The Learning Algorithm

To showcase a proof of concept regarding the learning as
well as the distribution capabilities within the framework,
an implementation of Distributed Distributional Deep De-
terministic Policy Gradients (D4PG) [30] was chosen. This
includes the proposed extensions of n-step returns, prioritized
experience replay [31], [30] and a critic value function
modeled as a categorical distribution [32], [30]. Furthermore,
D4PG has shown state-of-the-art performance in continuous-
control tasks [33].

Hyperparameters were chosen according to the proposed
benchmarks for DDPG and D4PG in [33] with only minor
changes. The values can be found together with the applica-
tion videos on the framework’s web page.

C. The Hardware Setup

1) Computer Setup for training: Both of the models have
been trained using 21 instances of the environment, 20 for
actual learning running on one PC (36 CPU cores) and one
for supervision of the learning process running on another
PC (4 CPU cores). The learning algorithm was running on
a third computer (1 NVIDIA Tesla P100 GPU + 16 CPU
cores).

2) Real World Setup: For the real world experiments of
Problem 1 an area, resembling the one used in simulation,
was reproduced in our laboratory. Standing barriers were
utilized to delimit the area and to create obstacles. During
the tests, the obstacles’ positions have been changed every 10
episodes. The RL agent, the Environment, the Robot Server
and the CH were running on a PC connected via Wi-Fi to
the MiR100’s network. The robot-actuation cycle time and
the action cycle time were both 100 ms.

For Problem 2 the UR10 has been installed on a welding
table. The RL agent, the Environment, the Robot Server, the
CH and the ROS Driver3 were running on a PC connected via
Ethernet to the UR10’s controller. The robot-actuation cycle
time was 8 ms whereas the action cycle time was 40 ms.

3https://github.com/UniversalRobots/Universal_
Robots_ROS_Driver

https://github.com/UniversalRobots/Universal_Robots_ROS_Driver
https://github.com/UniversalRobots/Universal_Robots_ROS_Driver


D. Experimental Results

With the setup proposed in Section IV-C.1 the learning ca-
pabilities within the framework were evaluated using D4PG
to train two agents to solve the two problems.

First, a different agent was trained on each of the environ-
ments using only experience gathered in the simulation. After
the training process was completed the resulting models
were tested in simulation as well as in the real world
environments. The trained agents were able to solve the
real world environments with almost the same success rate
achieved in simulation. As a consequence we show that the
models trained in simulation can be deployed in the real
world scenarios without any adaptation or further training
needed. See the accompanying video for an example of the
performance of the two models.

1) Results for Problem 1: The agent was trained for the
task of mobile navigation with obstacle avoidance until the
actors experienced about 4500 episodes each in the sim-
ulation environments. However, after the actors completed
400 iterations the success rate did not improve further and
remained steady between 89 and 100 percent over 100
consecutive episodes (see Figure 4).

Fig. 4. Development of the success rate while training for both problems.
Success rate values are the ratio of successfully completed episodes over
the last 100 consecutive episodes.

For the final evaluation, the trained agent was tested for
100 episodes in the simulation environments as well as in the
real world environments. In simulation the agent completed
93 episodes with success, 3 with collision with an obstacle
and 4 times the agent could not reach the goal in time;
resulting in a 93 % success rate. In the real world the agent
completed 95 episodes with success and 5 with a collision
with an obstacle; resulting in a 95 % success rate.

2) Results for Problem 2: The results obtained for the
end effector positioning task were very similar to Problem
1. The agent was trained for 5000 episodes for each actor in
the simulated environment. Again, training converged earlier
at around 600 episodes with steady success rates between
95 and 100 % (see Figure 4). The test was run for 100
episodes in both of the environments. In simulation the agent

completed 96 tasks with success, 3 with a collisions and once
it could not reach the goal in time; resulting in a 96 % success
rate. In the real world the agent completed 98 episodes with
success, one with a self collision and once it exceeded the
maximum number of steps; resulting in a 98 % success rate.
In Figure 5 we display the positions of the targets generated
during the tests together with the results of the tasks.

Fig. 5. Shows all the generated goal positions and their corresponding
terminal state for the end effector in the final evaluation of the positioning
task. Goal positions are generated evenly across the working space of the
UR10.

V. FRAMEWORK EVALUATION
The selection of a framework or toolkit is not a trivial

task; it is essential to understand the intended use and its
limitations in advance. To help the reader in the selection of
a framework or toolkit, we describe and report in Table I a
set of properties we found to be relevant for the use of DRL
in robotics:

a) Community Support: A good quality indicator for a
framework is the level of adoption and support received
from the community. As an indicator of that, we report
the number of forks of the source code repositories.

b) Diversity: To help the development of more general AI
it is crucial to test the algorithms on a diverse set of
problems. This will be reported as the number of tasks
and the robots included.

c) Extensibility: It is important to facilitate the extension
of a framework to different robots and sensors to allow
research from other groups and companies. It is chal-
lenging to objectively evaluate this property without first
hand experience with the frameworks; as a consequence,
we leave the assessment of this property to the reader.

d) Heterogeneity: Collecting experience from both real
and simulated hardware and scenarios can be beneficial
for the robustness of trained models. The support for
real and simulated hardware is listed.

e) Scalability: Machine Learning algorithms require large
quantities of data to train on. Being able to scale and



Framework
Community
Support Diversity Heterogeneity Scalability Software

Licensing

Number
of Forks Robots Number

of Tasks

Simulated
Hardware
Support

Real
Hardware
Support

Distributed
Hardware
Support

Simulation
Platform

OpenAI Gym - Robotics Suite 5600 Fetch Arm
Shadow Hand 8 Yes No No MuJoCo

DeepMind Control Suite 291 5 DOF Manipulator 5 Yes No No MuJoCo

SURREAL Robotics Suite 60 Baxter 6 Yes No Yes MuJoCo

RLBench 30 Franka Panda, Mico,
Jaco, Sawyer 100 Yes No No Coppelia

Sim

SenseAct 31 UR5, iRobot Create 2,
Dynamixel actuator 5 No Yes No None

gym-gazebo-24 53 MARA 6 Yes Yes No Gazebo

robo-gym X MiR100, UR10 2 Yes Yes Yes Gazebo

TABLE I
TABLE OF COMPARISON OF DRL FRAMEWORKS FOR ROBOTIC APPLICATIONS ACROSS THE PROPERTIES LISTED IN SECTION V.

parallelize data generation is fundamental to speed up
the learning of new tasks. The capability of a framework
to handle distributed hardware and software out of the
box is outlined.

f) Software Licensing: Open source software has often
accelerated research in multiple fields. It is important
that not only the framework’s code base but also the
tools on which it relies are open source. Proprietary
tools may have prohibitive costs that prevent researchers
from engaging in the field. We report on which simula-
tion platform each framework is based, while informa-
tion on their licences is given in Section II-C.

g) Transferability: To accelerate the adoption of DRL
techniques in real world scenarios, it is necessary to
provide tools to simplify the transfer from simulated to
real world. We specify whether a framework allows for
this.

Table I shows that one of the current limitations of robo-
gym is the number of tasks implemented. On the other hand,
it highlights that all the works aside from robo-gym and
gym-gazebo-2 are based on proprietary simulation software,
and this poses obvious limitations. In addition, it is shown
that most of the existing frameworks only have support for
simulated hardware, while SenseAct provides support for
real hardware but not for simulated one, thus limiting the
data collection capabilities. The only other framework that
provides support for simulated and real hardware at the same
time is gym-gazebo-24; however, this has been implemented
only for the MARA robot, which is not produced anymore.
Furthermore, robo-gym provides multiple additional features:

• integration of two commercially available industrial
robots

• out of the box support for distributed hardware
• real and simulated robots interchangeability

4The project is not active anymore

As a result robo-gym is the most suitable option for
developing DRL robotics applications that:

• feature mobile robots and robot arms providing a ROS
interface

• can be trained in simulation on distributed hardware
• can be transferred to real world use cases
• can be developed and trained without incurring in

licensing costs

VI. CONCLUSION AND FUTURE WORK

We introduced robo-gym, the first open source and freely
available framework that allows to train DRL control policies
in distributed simulations and to apply them directly to the
real world robots. The framework is built on open source
software allowing the user to develop applications on own
hardware and without incurring in cloud services fees or
software licensing costs. The effectiveness of the framework
has been proven with the development and evaluation of two
industrial use cases featuring a mobile robot and a robot arm.

This is the first necessary step towards the development
of a tool chain that allows to develop new robot appli-
cations in simulation and to seamlessly transfer them to
industrial scenarios. Future efforts will go into extending
the framework with new robot models and sensors and
the integration of tools that simplify the implementation
of increasingly complex problems. The goal is to have a
continuously growing toolkit that can serve as a solid base
for developing research within the field of DRL in robotics.

APPENDIX

The video attachment shows the experiments conducted in
the lab demonstrating the control policies trained purely in
simulation and directly deployed on the real robots.
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