Loading [a11y]/accessibility-menu.js
Collaborative Semantic Perception and Relative Localization Based on Map Matching | IEEE Conference Publication | IEEE Xplore

Collaborative Semantic Perception and Relative Localization Based on Map Matching


Abstract:

In order to enable a team of robots to operate successfully, retrieving accurate relative transformation between robots is the fundamental requirement. So far, most resea...Show More

Abstract:

In order to enable a team of robots to operate successfully, retrieving accurate relative transformation between robots is the fundamental requirement. So far, most research on relative localization mainly focus on geometry features such as points, lines and planes. To address this problem, collaborative semantic map matching is proposed to perform semantic perception and relative localization. This paper performs semantic perception, probabilistic data association and nonlinear optimization within an integrated framework. Since the voxel correspondence between partial maps is a hidden variable, a probabilistic semantic data association algorithm is proposed based on Expectation-Maximization. Instead of specifying hard geometry data association, semantic and geometry association are jointly updated and estimated. The experimental verification on Semantic KITTI benchmarks demonstrate the improved robustness and accuracy.
Date of Conference: 24 October 2020 - 24 January 2021
Date Added to IEEE Xplore: 10 February 2021
ISBN Information:

ISSN Information:

Conference Location: Las Vegas, NV, USA

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.