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Abstract— We present TrueÆdapt, a model-free method to
learn online adaptations of robot trajectories based on their
effects on the environment. Given sensory feedback and future
waypoints of the original trajectory, a neural network is
trained to predict joint accelerations at regular intervals. The
adapted trajectory is generated by linear interpolation of the
predicted accelerations, leading to continuously differentiable
joint velocities and positions. Bounded jerks, accelerations and
velocities are guaranteed by calculating the range of valid
accelerations at each decision step and clipping the network’s
output accordingly. A deviation penalty during the training
process causes the adapted trajectory to follow the original
one. Smooth movements are encouraged by penalizing high
accelerations and jerks. We evaluate our approach by training
a simulated KUKA iiwa robot to balance a ball on a plate
while moving and demonstrate that the balancing policy can
be directly transferred to a real robot. A video presentation is
available at https://youtu.be/aNB0_tRxsuk.

I. INTRODUCTION

Robots frequently interact with their environment while
executing movements. Industrial applications include spray
painting, welding, bonding or grinding. In service robotics,
an illustrative use-case is a waiter robot trying to transport
glasses on a tray without spilling water.

If the behaviour of the environment is precisely known in
advance, motion planning can be performed offline. How-
ever, imperfect environment models or unforeseen external
disturbances may cause the initial motion plan to fail. For
instance, welding distortion might be hard to predict, elastic
components might cause problems during bonding and the
grinding behaviour might alter over time due to wear of the
abrasives. Reacting to unpredictable disturbances typically
implies online adaptation of the initially planned trajectory.
Designing a model-based control system for smooth trajec-
tory adaptation in task space is challenging, especially if
the robot is required to work near to kinematic singularities
or close to the velocity limits of its joints to meet time
requirements.

With TrueÆdapt, we replace the need for a plant model by
learning how to adapt trajectories from simulated experiences
using model-free reinforcement learning. Kinematic singular-
ities do not cause problems as the algorithm works in joint
space. Bounded and continuously differentiable joint veloc-
ities are guaranteed and smooth adaptations are favoured
since jerky movements are punished during training. We
demonstrate successful sim-to-real transfer for a dynamic
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Fig. 1: TrueÆdapt applied to a balancing task: The robot
has learned to keep a ball at the same spot on a plate while
moving along a reference trajectory.

balancing task, which is motivated by the aforementioned
job of a waiter robot. Like in the industrial applications
mentioned above, the environment is directly influenced by
the movements of the robot. However, the balancing task
does not alter the environment permanently, which facilitates
quantitative evaluation of the real-world performance. In ad-
dition, state-of-the-art physic engines allow fast simulation,
making the task attractive for research on sim-to-real transfer.

II. RELATED WORK

A. Trajectory Generation

With sampling-based motion planners [1], finding a suit-
able robot trajectory is typically split in two distinct phases
[2]. Firstly, a collision-free geometric path is generated.
Secondly, timestamps are added to the waypoints of the path,
leading to a time-parameterized trajectory. The approach
assumes that an appropriate path can be found without taking
the timing of the movement into account. Although this
assumption is not fulfilled for dynamic tasks like balancing,
sampling-based motion planner can be used to generate ref-
erence trajectories for TrueÆdapt. In [3], a method for time-
optimal online trajectory generation with bounded jerk and
acceleration is presented. For offline scenarios, time-optimal
trajectory parameterization can be performed considering
both kinematic [2] and dynamic joint constraints [4].

B. Reinforcement Learning in Robotics

In recent years, reinforcement learning (RL) has been
applied to a variety of robotic applications like locomotion
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Fig. 2: System components to learn online adaptations with TrueÆdapt. ∆tNN is the time span between network predictions.

[5], [6], grasping [7], [8] or dexterous manipulation [9], [10].
An RL-based method to smoothly track a jerky reference
path with an industrial robot in the presence of unknown
dynamical constraints is presented in [11]. The authors train
a neural network to predict joint velocities and penalize
the chosen action based on the distance to the reference
path. In contrast, we predict joint accelerations to ensure
continuously differentiable joint velocities and use a time-
parameterized trajectory as reference. In [12], movements are
learnt with a real robot by mapping a camera image directly
to motor torques. However, when training in simulation,
a very accurate dynamic model is required to generate
meaningful torque commands for a real robot.

C. Sim-to-real Transfer

Generating sufficient training data for model-free RL-
algorithms with real robots is costly and time-consuming.
Conducting training in simulation is an appealing and widely
used alternative. However, transfer from simulation to the
real world typically leads to a drop in performance. One
approach to bridge the so-called reality gap is randomization
of the simulation to learn a robust policy. Domain random-
ization can be applied to simulated images [13] as well as
to physical parameters like friction or damping [14]. Making
the simulation more realistic is another way to improve sim-
to-real transfer. In [15], generative adversarial networks are
trained to make synthetic renderings look like real images,
whereas [6] incorporates an accurate actuator model and
sensor latency to improve the simulation fidelity.

III. SYSTEM OVERVIEW

The most important system components of TrueÆdapt are
shown in Fig. 2. A neural network predicts joint accelerations
based on sensory feedback, the current state of the joints
and the following positions of a reference trajectory. The
predicted accelerations are clipped to ensure that jerk, accel-
eration and velocity limits are not violated. In addition, the
adapted trajectory is not executed if the adapted point devi-
ates too much from the reference trajectory, thereby avoiding
self-collision and violation of position limits. During train-
ing, a smoothness penalty penalizes jerky movements, while
a deviation penalty ensures that the adapted trajectory follows
the original one. A task-specific reward makes the system
learn the intended task like balancing a ball. Details on each
step will be explained in the following sections.

IV. GENERATION OF REFERENCE TRAJECTORIES

Suitable reference trajectories for TrueÆdapt should fol-
low the desired path of the movement, whereas dynamic in-
teractions with the environment do not have to be considered.
Our procedure to generate reference trajectories is illustrated
in Fig. 3. As a first step, Cartesian waypoints are sampled
randomly within predefined areas. Spline interpolation is
used to produce a smooth Cartesian path. After converting
the path to joint space via inverse kinematics, time-optimal
trajectory parameterization is performed with a method de-
scribed in [2]. As a final step, the trajectory is uniformly
sampled using the time span between network predictions
∆tNN , which we choose to be 50 ms for our experiments.



Each trajectory is assigned either to the training set or to
the test set.
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Fig. 3: Generation of reference trajectories.

We note, that an offline method like [16] can be used to
generate appropriate trajectories without the need to define
task-specific sampling areas.

V. LEARNING ONLINE TRAJECTORY ADAPTATIONS

A. Objectives
We define the following objectives for our online trajectory

adaptation approach:
• The primary goal is to accomplish the specified task

(e.g. balancing a ball).
• The adapted trajectory should stay close to the original

one.
• Jerk, acceleration, velocity and position limits of the

joints should not be violated.
• Self-collision should be avoided.
• The adapted trajectory should be smooth.

B. Formalization
The learning problem is formalized as a Markov Decision

Process (S,A,Ra), where S is the state space, A is the
action space and Ra is the immediate reward due to action
a. We use model-free RL for training a policy π : S 7→A to
maximize the expected sum of future rewards. Each element
of s ∈ S and a∈A is normalized to be in the range of [-1, 1].
Decisions are made in real-time during motion with a cycle
time of ∆tNN .

1) State Definition: The state st consists of the current
joint position pt , velocity vt and acceleration at as well as
sensory feedback ft and N future positions of the reference
trajectory pt+{1..N},re f . Instead of using measured values
for pt , vt and at , we use the setpoints from the previous
calculation step, thereby avoiding sensor noise and latency.
The results of ablation studies to identify the influence of
each part of the state can be found in TABLE I.

2) Action Definition: The action at determines at+1, the
normalized angular acceleration for each robot joint at the
beginning of the next time step. Jerk, acceleration and veloc-
ity limits are respected by clipping the predicted acceleration
at+1 accordingly. Linear interpolation between at and at+1
is performed to produce continuous accelerations within
the current time step. Intermediate setpoints for a position
controller are generated by integrating the accelerations
twice. We note that the movements of an untrained agent are
not influenced by the selected reference trajectory. Instead,
the network learns to stay close to the reference trajectory
because of a deviation penalty. With our approach, the
execution times of the adapted trajectory and the reference
trajectory are identical.

3) Reward Definition: The reward per decision step
Ra ∈ [0,1] is calculated by multiplying a task-specific reward
RT ∈ [0,1] with a smoothness penalty PS ∈ [0,1] and a
deviation penalty PD ∈ [0,1].

Ra = RT · (1−PS) · (1−PD) (1)

The smoothness penalty PS is composed of an acceleration
penalty PA ∈ [0,1] and a jerk penalty PJ ∈ [0,1].

PS =
PA +PJ

2
(2)

PA penalizes accelerations that are higher than a user-defined
threshold ath. In the following equation, aabs ∈ [0,1] is the
highest absolute value in at+1.

PA =


0 aabs ∈ [0, ath)(

1− 1−aabs

1−ath

)2

aabs ∈ [ath, 1]
(3)

The following definition of PJ is inspired by [17]. NJ corre-
sponds to the number of joint. jabs, t+1, i is the unnormalized
absolute jerk of joint i, while jabs, max, i is the unnormalized
jerk limit. c is a user-defined weighting factor.

jp =
NJ

∑
i=1

(
jabs, t+1, i

)2 (4)

jsat =
1
c
·

NJ

∑
i=1

(
jabs, max, i

)2 (5)

PJ =


(

jp

jsat

)2

jp ∈ [0, jsat ]

1 jp > jsat

(6)

The deviation penalty PD ensures that the adapted trajectory
stays close to the reference. ∆pmax is the greatest absolute
joint position deviation between pt+1 and pt+1,re f , while ∆pl
and ∆ph are thresholds that lead to a punishment of 0 and
1, respectively.

PD =


0 ∆pmax ∈ [0, ∆pl)(

∆pmax−∆pl

∆ph−∆pl

)2

∆pmax ∈ [∆pl , ∆ph]

1 ∆pmax > ∆ph

(7)
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Fig. 4: Consideration of velocity limitations.

4) Termination: A training episode terminates if the an-
gular deviation between pt+1 and pt+1, re f exceeds a fixed
threshold for at least one joint. The termination serves a
dual purpose: Firstly, the system learns to stay close to the
reference as termination leads to a smaller sum of rewards.
Secondly, violation of position limits as well as self-collision
are avoided, provided that the reference trajectory maintains
a certain safety distance.

C. Implementation

We use a fully-connected neural network with SELU
activations [18] and two hidden layers of size [256, 128]
to map states to actions. The training process is performed
in parallel using the Ray framework [19] and reference
implementations provided by RLlib [20]. Because of its
stability and reliability, the on-policy algorithm PPO [21]
is chosen for training. The batch size is set to 214.

VI. CONSIDERATION OF JOINT LIMITATIONS

When executing online adaptations with a real robot, joint
limitations have to be considered to avoid permanent damage
to the robot joints. The basic idea of our approach is to
calculate for each joint i and at each decision step the
acceleration range [amin,i , amax,i] that does not lead to a
violation of joint limits. As analytical expressions can be
derived, the calculation can be done in real-time. Computing
the range of valid accelerations for seven joints took at most
0.9 ms with an Intel i9-9900K CPU. Once the valid range is
known, adapting the network prediction at is straightforward:

at+1, i =


amin, i at, i < amin, i

at, i at, i ∈ [amin, i, amax, i]

amax, i at, i > amax, i

(8)

amax, i is the normalized minimum value of amax, j, amax,a
and amax,v, which are defined in the following. Equations
for amin, i can be derived correspondingly.

A. Jerk Limitation

Given that the jerk is constant within each control cycle,
the maximum valid acceleration can be computed as follows:

amax, j = a0 + jmax ·∆tNN (9)

We note that the linear interpolation of accelerations natu-
rally limits jerk to:

jmax, interpolation =
amax−amin

∆tNN
(10)

B. Acceleration Limitation

Restricting accelerations is trivial as the range of valid
accelerations corresponds to the specified acceleration limits.

amax,a = amax (11)

C. Velocity Limitation

To guarantee bounded velocities, it is no longer sufficient
to consider the next time step only. When working close
to the velocity limit at a high acceleration, there might
be no way to stay within the permitted velocity range
without violating jerk limitations. Our approach prevents
the robot from getting in such a situation. Fig. 4 illustrates
the main idea. The maximum acceleration at the next time
step amax,v must be followed by a deceleration with jmin.
In addition, amax,v has to be chosen in such a way that
the maximum velocity is reached at zero acceleration. For
v0 +

a0·∆tNN
2 < vmax, the following formula can be derived

amax,v =

jmin ·∆tNN

2
·
(

1−
√

1+
8 · (v0− vmax)+4 ·a0 ·∆tNN

jmin ·∆t2
NN

)
,

(12)

whereas

amax,v = a0 ·
(

1− 1
2
· a0 ·∆tNN

vmax− v0

)
(13)

applies for v0 +
a0·∆tNN

2 ≥ vmax.
The approach described above can cause oscillations, as

the velocity does not necessarily reach its maximum value
at a discrete decision step. In Fig. 4a, the area hatched in
orange indicates the difference between vmax and the velocity
at the next discrete decision step vn+1. The problem can be
mitigated by shifting amax,v, as shown in Fig. 4b.
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D. Validation

We validated our approach by running tests with
over 100 000 simulated trajectories without exceeding the
maximum velocities, accelerations and jerks. Fig. 5 illustrates
the system behavior if the maximum acceleration is chosen
at each decision step. As expected, the acceleration is first
restricted due to jerk constraints, followed by acceleration
and velocity limitations. In Fig. 6 random accelerations are
sampled from the calculated range of valid accelerations. The
figure shows that smooth velocities are generated and that the
joint limits are not violated.
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Fig. 6: Exemplary trajectory when choosing random accel-
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VII. EXPERIMENTAL SETUP

We evaluated our approach with two versions of a dynamic
ball-on-plate task performed by a KUKA iiwa robot with
seven degrees of freedom. While the basic task is to balance
a ball on a plate during motion, the first version allows the

ball to move within a large area of the plate (“on plate”). In
contrast, the second version tries to keep the ball as close
as possible to its initial position (“in place”). Fig. 9 shows
how the task-specific reward is defined for both cases. The
second version is related to traditional control tasks as there
is one fixed setpoint for the ball position.

A. Reference Trajectories
The training dataset consists of 150 000 reference trajecto-

ries at different heights with sampling areas like those shown
in Fig. 7. For reasons of symmetry, each trajectory can be
mirrored along two planes, leading to a total of 600 000
trajectories.

IIWA7

x

P1

P2

P3

y

Fig. 7: Top view on the sampling areas to generate waypoints
for an exemplary balancing task.

B. Sensory Feedback
Feedback on the task execution is given by adding the

current and the last ball position to the state. For the “in
place” task, we additionally include the two-dimensional
distance to the initial ball position, which serves as a measure
of the control error.

Fig. 8: Real-world setup for sim-to-real transfer.

C. Physics Simulation
The physics engine PyBullet [22] is used to generate

training data in simulation. With the aim to learn a robust
policy, we randomize the ball characteristics (mass, friction,
radius) and model the measuring error of the ball position
by adding noise to the corresponding signal.
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Setting Success rate Trajectory fraction Error distance Acceleration Jerk
Reference trajectories (no adaptations) 4.2 % 40.4 % - 1.7 % 0.5 %
TrueÆdapt: test set 89.6 % 97.6 % - 7.0 % 3.7 %
TrueÆdapt: training set 90.7 % 97.9 % - 7.0 % 3.7 %
Open loop: evaluation only 8.9 % 53.4 % - 7.0 % 3.6 %
Open loop: training and evaluation 45.6 % 84.2 % - 7.1 % 4.1 %
State: no current position 0.1 % 30.8 % - 7.4 % 4.5 %
State: no current velocity 13.7 % 68.5 % - 5.4 % 3.2 %
State: no current acceleration 91.4 % 97.9 % - 20.8 % 16.0 %
State: no following positions 0.4 % 31.3 % - 8.8 % 5.4 %
State: ten following positions 92.9 % 98.3 % - 20.2 % 15.5 %
Punishment: no jerk penalty 87.5 % 96.7 % - 23.0 % 18.1 %

O
n

pl
at

e

Punishment: no acceleration penalty 50.6 % 79.3 % - 62.4 % 50.4 %
Reference trajectories (no adaptations) 0.3 % 22.1 % - 2.0 % 0.3 %
TrueÆdapt: test set 98.6 % 99.7 % 1.2 cm 6.4 % 3.4 %
TrueÆdapt: real robot 82.0 % 96.1 % 1.7 cm 6.9 % 3.6 %
Open loop: evaluation only 34.3 % 73.0 % 2.4 cm 6.6 % 3.3 %

In
pl

ac
e

Open loop: training and evaluation 61.7 % 91.7 % 1.6 cm 6.7 % 4.1 %

TABLE I: Average values of the success rate, the successful trajectory fraction and the distance to the initial ball position
for different configurations. The mean of the normalized absolute accelerations and jerks is averaged over all joints.

D. Real Setup

A picture of the real setup is shown in Fig. 8. For real-
world experiments, the current ball position is detected by a
resistive touch panel with a size of 34 cm × 27 cm. The robot
is controlled via position commands at a rate of 200 Hz.

VIII. EVALUATION

We define two metrics to measure the performance of the
task execution, namely the success rate and the successfully
executed trajectory fraction. For the “on plate” task, a
trajectory is considered as successful if the ball does not
touch the border of the plate, while the “in place” task
allows a deviation of at most 6 cm from the initial ball
position. The performance of the “on plate” task is evaluated
after 32 million training steps, whereas 220 million training
steps were conducted for the “in place” task. To generate
the performance metrics in simulation, 10 000 trajectories
from the test set were executed. Real world performance
was evaluated with 50 trajectories and five different initial
ball positions as indicated by the yellow spots in Fig. 8.
For the “on plate” task, a trajectory fraction of 97.6 % and
a success rate of 89.6 % was achieved. The “in place” task
accomplished a trajectory fraction of 99.7 % and a success

rate of 98.6 %. Transferring the policy to a real robot led to a
a trajectory fraction of 96.1 % and a success rate of 82.0 %.

A. Ablation Studies

Ablation studies were performed to analyze the influence
of individual system components. The results are listed in
TABLE I. As expected, the network was not able to learn the
task when omitting the current position or the next position of
the reference trajectory from the state. Poor performance was
achieved when omitting the current velocity. Our experiments
show that the acceleration penalty is crucial for successful
task execution. Without the penalty, jerky movements are
produced, making it potentially harder to control the ball.
The jerk penalty further improves the smoothness of the
generated trajectories. Adding more than one future refer-
ence position to the state had a marginal impact on the
performance. However, having access to more points might
be crucial for tasks with a longer planning horizon.

B. Importance of Sensory Feedback

To assess the importance of closed loop feedback, we
analyzed the performance of a network trained with sensory



Fig. 10: Exemplary trajectory execution. Top: The reference
trajectory fails to keep the ball on the plate. Bottom: When
adapting the trajectory without updating the sensor signals,
the ball stays on the plate but not at the desired spot.

feedback without updating the sensor signals during evalu-
ation (open loop). For the “in place” task the success rate
dropped from 98.6 % to 34.3 %, showing that the feedback is
essential for the network. An exemplary rollout is illustrated
in Fig. 10. Training a policy from scratch without sensory
feedback led to a success rate of 61.7 %. We conclude that
the network has, to a certain extent, learned to anticipate
future movements of the ball.
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C. Deviation to the Reference Trajectory

Fig. 11 shows the mean position deviation from the
reference trajectory for the “in place” task. On average,
all joints stay close to their reference. During real-world
execution, stronger adaptations are predicted, especially for
joint 1 and joint 6. This appears reasonable as the movement
of the ball is harder to predict if the target domain differs
from the training domain.

D. Sim-to-Real Transfer

Assuming that the actual joint positions closely follow
their setpoints, we use setpoints instead of actual values
for the robot state. Fig. 12 visualizes the tracking accuracy
of the trajectory controller in simulation and in the real
world. During fast movements a small delay can be noticed.
However, as the delay appears in both simulated and real
data, the policy can learn to cope with it.
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Fig. 12: Tracking performance of the trajectory controller in
simulation and in the real world. Setpoints are shown as solid
lines. Actual values are represented by dashed black lines.

Fig. 13 shows a successful rollout of the “in place” task
for both simulation and real execution.
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Fig. 13: Comparison of simulated and real setpoints for an
exemplary trajectory execution of the “in place” task.

As shown in the accompanying video, the sim-to-real
transfer could be successfully conducted with various balls,
differing in mass, size and material.



IX. CONCLUSIONS

We presented a real-time capable approach for learning
online adaptations based on sensory feedback and a method
to ensure that the jerks, accelerations and velocities of the
adapted trajectories are bounded. The effectiveness of our
approach was demonstrated by learning to balance a ball on
a plate while moving. The policy was trained in simulation
and successfully transferred to a real robot. The evaluation
showed that the adapted trajectories stay close to their
reference and that sensory feedback is crucial for successful
task execution. In future work, we intend to analyze the
performance of our approach for tasks that require further
deviation from the reference trajectory. In addition, we aim
to develop a more sophisticated method for avoiding position
limits and self-collision during motion.
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