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Abstract— Force modulation of robotic manipulators has
been extensively studied for several decades but is not yet
commonly used in safety-critical applications due to a lack
of accurate interaction contact modeling and weak perfor-
mance guarantees - a large proportion of them concerning the
modulation of interaction forces. This study presents a high-
level framework for simultaneous trajectory optimization and
force control of the interaction between manipulator and soft
environments. Sliding friction and normal contact force are
taken into account. The dynamics of the soft contact model
and the manipulator dynamics are simultaneously incorporated
in a trajectory optimizer to generate desired motion and
force profiles. A constrained optimization framework based on
Differential Dynamic Programming and Alternative Direction
Method of Multipliers has been employed to generate optimal
control inputs and high-dimensional state trajectories. Experi-
mental validation of the model performance is conducted on a
soft substrate with known material properties using a Cartesian
space force control mode. Results show a comparison of ground
truth and predicted model based contact force states for
multiple Cartesian motions and the validity range of the friction
model. The proposed high-level planning has the potential
to be leveraged for medical tasks involving manipulation of
compliant, delicate, and deformable tissues.

I. INTRODUCTION

Robotic applications in the medical domain have gained
increasing attention over the past few decades [1], [2]. Within
medical domain, planning and control of the interaction
forces between a robot and its environment are essential
to a variety of safety-critical tasks. For instance, the inter-
action force should be modulated accurately in compliant
environments, such as those in a surgical setting, micro-
assembly, or biological tissue manipulation. Force control
based on identifiable physical models is essential to identify
instability modes (e.g., those caused by the bandwidth and
structure) and maintain reliable force interaction to guarantee
safety. Thus, a model-based trajectory planning method with
a high-fidelity contact force model is essential for successful
deployment with satisfactory motion tracking and contact
force performance.

Unlike rigid contact models, soft contact models are
subject to challenges posed by non-linear material properties
and non-uniformity as well as intensive computation burden.
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Fig. 1: KUKA manipulator experimentation setup. A manipulator perform-
ing a force controlled motion task on a soft surface. XY Z{world} is the
world frame.

Numerous contact models have been presented in the litera-
ture to model interactions involving elastic deformation [3].
These models have broad applications and are essential in
many engineering areas such as machine design, robotics,
multi-body analysis, to name a few. For contact problems
that involve elasticity, Hertz adhesive contact theory has been
well established [4]. In this study, we focus on robotic tasks
interacting with soft tissues, the contact behavior of which is
determined by not only external and viscous forces, contact
geometry, but also material properties (see Figure 1). The
soft contact mechanics are crucial in the physical model
identification for applications in surgical robots.

Simultaneous trajectory generation and force control en-
able sophisticated manipulation tasks while interacting with
complex objects. As a promising approach along this direc-
tion, trajectory optimization with contact models has been
extensively investigated in the robotics community [5]–[11].
By incorporating the contact dynamics into the optimiza-
tion, contact-dynamics-consistent motions can be planned
for complex robot behaviors, such as dynamic locomotion
or dexterous object manipulation. A majority of them fo-
cused on rigid contact dynamics [5]–[8]; whereas [9]–[11]
directly integrated a soft contact model inside the system
dynamics, and implicitly optimized both contact force and
other control inputs. In [12], a soft contact model was taken
into account inside the optimization formulation for Whole-
Body locomotion Control. However, most of the works above
assumed spring-damper type soft contact models, which
still largely mismatched the contact surface deformation or
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elasticity in reality. In this study, we leverage a distributed
optimization algorithm proposed recently in [13] to solve
a constrained trajectory optimization with a high-fidelity
soft contact model. This algorithm provides a general op-
timization framework to iteratively solve decomposed rigid
body dynamics, articulated robot kinematics, and inequality
constraints in a computationally efficient manner.

Manipulator contact models are naturally framed and
executed in the task space. In safety-critical tasks such as soft
material manipulation and medical applications, force-torque
control plays a significant role. These include interaction
with humans in proximity or with direct physical contact.
In approaching the contact interaction problem, data-driven
techniques have been explored to learn the interaction be-
tween robotic manipulators and the environment [14], [15].
Unlike rigid contacts, the soft environment is stochastic in
nature. Thus, it is challenging to learn the contact model and
robot dynamics simultaneously through data. In this study,
we present a model for contact interaction and embed it into
the high-level motion planning via enforced constraints.
The main contributions of this study are listed below:
• Presentation of a dynamic interaction model based on

soft contact mechanics for a predefined geometry with
Hertz visco-static theory.

• Incorporation of the interaction model with a distributed
DDP-type trajectory optimization with constraints to
generate the desired Cartesian path and force profile.

• Experimental validation of the derived contact dynami-
cal model and implementation of the proposed trajectory
optimization algorithm.

II. RELATED WORK

Elastic contact mechanics [4] have been extensively stud-
ied in various research fields where contact modeling is
imperative for safety and performance requirements. Existing
works in [16]–[19] have used soft contact models for both
modelling and control. These works include quasi-static
assumptions and studies of [20], [21] explore cases where
high-velocity impacts on soft material are considered. In the
impact cases, visco-elastic models have been widely inves-
tigated. For instance, studies in [16], [20] compared various
visco-elastic models with experimental validations. Overall,
a majority of these works have shown that the Hertzian-
based Hunt-Crossey model is the one most suitable for visco-
elastic cases. Furthermore, fundamentals of frictional sliding
motion are established in the works of [22], [23], where the
main focus is on rigid body contacts but generalizable to soft
contacts. More recent works in [24], [25] propose contact-
area-based models.

Trajectory optimization (TO) is a powerful tool to generate
reliable and intelligent robot motions. Various numerical
methods have been proposed to solve a TO [26]–[28].
Among them, Differential Dynamic Programming (DDP) and
iterative Linear Quadratic Regulator (iLQR) have aroused
much attention in solving TO in the context of unconstrained
problems, where only dynamics constraint is enforced in
the forward-pass. The Ricatti-like backward pass in DDP
or iLQR effectively reduces the complexity of solving an

approximated LQR problem over the entire horizon, and
the optimization is solved in an iterative fashion. In [29],
DDP is used in a balancing task of a humanoid robot with
high degrees of freedom (DoFs). A more recent work [30],
demonstrates a Model Predictive Control (MPC) implemen-
tation based on DDP. However, standard DDP algorithms are
not capable of addressing constraints. In [31]–[33], DDP-
type variants are proposed to cope with state and control
constraints. Instead, our approach employs an augmented
Lagrangian method named as Alternating Direction Methods
of Multipliers (ADMM) [13], [34]–[36] to address various
constraints. This ADMM framework is capable of tack-
ling more constraints by introducing additional optimization
blocks, making the algorithm suitable for parallel computing.

III. SOFT CONTACT MODELING

A. Contact modeling via Hertz’s theory
In this section, we model the interaction dynamics between

an application tool mounted on a manipulator and a soft
tissue in terms of contact geometry and mechanics. In the
example shown in this study, the contact part of manipulation
is assumed to be a spherical indentation (for simplicity, but
not limited to). Further, we assume that the application tool
used is rigid and has a high stiffness compared to the contact
surface. Along with these assumptions, we derive a dynamic
model based on the contact friction theory and Hertz visco-
static theory. According to Hertz’s theory, the largest static
indentation is achieved at the central point of the circle (see
Figure 2) and can be expressed as:

d =

[
9F 2

16E2R

] 1
3

(1)

where E is the reduced Young’s modulus of tool and surface,
R is the radius of the tool end, F is the force imparted on
the surface by manipulator end-effector. Combined Young’s
modulus of the tool and the soft contact surface material can
be lumped to one term as:

1

E
=

1− ν21
E1

+
1− ν22
E2

where E1, E2 and ν1, ν2 are Young’s moduli and Poisson
ratios of the end-effector and contact surface material, re-
spectively. In our scenario, we assume the contact part as a
rigid object and thus the Young’s module of the spherical
cap E2 is approximated as infinity. Accordingly, we have
E = E1/(1 − ν21). The deformation and stress distributions
on the surface are approximated by the universal Hooke’s
law and Hertz’s theory. Details of normal, radical, and hoop
(i.e., moving direction) stress distributions within the contact
area in the cylindrical coordinate system are provided in the
Appendix.

Accordingly, the deformation distribution is derived from
the stress distribution equations as follows:

uz =



3π
8a

[
1−ν2

E

]
pm(2a2 − r2), (r ≤ a)

3
4a

[
1−ν2

E

]
pm

[
(2a2 − r2) sin−1

(
a
r

)
+a(r2 − a2)

1
2

]
, (r ≥ a)



Fig. 2: A graphical illustration of the soft contact model between surface
and the end-effector tool

where pm = F/(πa2) is the average stress applied in contact
part by manipulation and a =

√
Rd is the radius of contact

area (see Figure 2). The dynamic contact model for a contact
spherical cap (i.e., spherical geometry) is applied with a force
vector F at an angle θF to the perpendicular and moves in
a circular path of radius R with a uniform velocity ve in
frame {sphere}. It represents the scenario of manipulating
an application tool to work with soft tissues. For simplicity,
our model focuses on sliding friction and ignores other
frictional sources such as adhesion and rolling induced by
deformation. Due to the symmetry of our contact scenario,
σθ represents the principal stress within the contact circle.
Thus, we can represent the stress tensor of any contact point
(r, θ, z) in cylindrical coordinates relative to frame {sphere}
via the Cauchy stress theory [4].

σ =

 σr 0 σrz
0 σθ 0
σzr 0 σz

 (2)

Since the task is defined in the Cartesian frame, we con-
vert parameters to Cartesian coordinates from cylindrical
coordinates. The stress tensor in Cartesian coordinate is
σc = TTσT , where the transformation matrix T is defined
in the Appendix VII.

At an arbitrary point on contact surface (x, y, z){sphere},
the normal vector from this point to centroid of spherical
cap is n = [sθ 0 cθ]T .1 Then, the normal stress of the
contact surface is σn = nTσcn with

σn = σrc
2θs2θ + σθs

4θ + σzc
2θ + 2σzsθc

2θ

Given this stress expression, the overall friction force of the
contact surface is represented as

df = µσndS = µσn × 2πr
dr

cθ
(3)

f =

∫
dfcθ = 2πµ

∫ a

0

σnrdr (4)

where, df, dr, dS are the differential elements of the friction,
r and contact area. In the surface normal direction, it is
assumed that the surface is in contact with the end point
of the tool. As a result, Eq. (1) always holds. The derivative
form of Eq. (1) is

ż = −ḋ = −
[

1

6E2RFz

] 1
3

Ḟz (5)

1we denote cos θ = cθ and sin θ = sθ.

where z represents the position along the surface normal
direction of the contact point and force along the normal
direction is defined as Fz = F cos θF . In the moving
direction, by using Eq. (4) and µFz to get the frictional
force caused by the normal force Fz , total friction is:

Fθ = f = µFz

[
1 + (2ν − 1)

3a2

10R2

]
+ kdve (6)

where kd is a damping coefficient in the moving direction.
By substituting a =

√
Rd and Eq. (6), we have the derivative

form of Eq. (6)

Ḟθ = ḟ = µḞz +
3µ(2ν − 1)

10R

(
Ḟzd− Fz ż

)
+ kdv̇e (7)

In the radial direction, we have Fr = mv2/Rc, where m is
the mass of the tool and Rc is the radius of the curvature
path. Then the derivative of Fr is

Ḟr = 2mvv̇/Rc (8)

B. Other visco-elasticity contact models

Apart from the Hertz model that we used, there exist other
visco-elastic contact models [16], [20] that are proven to
effectively estimate the interaction between the soft material
and tools. The well-received models are:

1) KelvinVoigt (KV) Model: model consists of a spring in
parallel with a damper.

Fe = Kδx+D ˙δx︸︷︷︸
A1

2) Hunt and Crossey Model: This model is a modification
to the Hertz quasi-static model with a non-linear damping
term.

Fe = Kδxn + λδx ˙δxn︸ ︷︷ ︸
A2

where, δx is the indentation depth, K and D are stiffness and
damping coefficients, and Fe is the contact force associated
with it along the surface normal.

Visco-elastic models yield better results when there exist
hard impacts or high velocities involved in the direction
of penetration. This is due the presence of A1 and A2

damping terms in the model. The work of [20] presented a
quantitative study on a comparison of different visco-elastic
models. This is in-fact useful in force modulation in non-
stationary environments where penetration depth changes
frequently. We limit our scope to the Hertz quasi-static model
in our formulation, but it could be extended to the models
mentioned above.

IV. MANIPULATION DYNAMICS AND TOOL MODEL

A. Manipulator and application tool model

This section formulates the manipulator dynamics as well
as the dynamics of the tool in the optimization. We use the
wrench control capability of the manipulator as described in
IV-D. In general, the dynamics of a manipulator model can
be expressed as:

q̈ = M(q)
−1

(τu −C(q, q̇)q̇−G(q)− JTWu) (9)



Fig. 3: Simultaneous motion and force control on a soft surface. Mathemat-
ical notations are shown for the contact forces and deformable surface.

where q is the joint state vector, M(q) is the joint space mass
matrix, C(q, q̇) is the Coriolis term, G(q) is the gravity
term, τu is the torque applied at joints, J is the end-effector
Jacobian and Wu is the external Cartesian wrench at the
end-effector.

Remark 1: In this study, manipulator and tool dynamics
are modeled separately. The underlying motivation is driven
by our experimental design procedure and is due to the fact
that the manipulator model inertial parameters are not very
well-identified.

We model the application tool as a rigid body with a
contact point and an wrench input Wu as shown in Figure
3. This is independent from the manipulator model in the
previous section. The Cartesian position of the contact point
is defined as xe = [xe ye ze]{world} in the {world} frame.
For brevity we omit the reference frame notation. The tool
dynamics can be represented as:[

ẍc
ω̇c

]
= H−1

[
Wu +mg − Fe

rcb ×Wu + rce × Fe

]
(10)

where H = diag[m, . . . , Ixx, Iyy, Izz] ∈ R6×6, m is the
mass of the tool and Ixx,yy,zz are the moments of inertia

around center of mass. ẍc, ω̇c ∈ R3 are the linear and
angular centroidal dynamics of the tool while Fe ∈ R3 is
the force vector at the tool contact point.

ωe = ωc, ω̇e = ω̇c

[ψ̈e ϑ̈e ϕ̈e]
T = T−1e [ω̇e − Ṫe[ψ̇e ϑ̇e ϕ̇e]

T ]

where ωc,e = T[ψ̇ ϑ̇ ϕ̇]T is the angular rate of the tool,
ω̇c,e = T[ψ̈ ϑ̈ ϕ̈]T + Ṫ[ψ̇ ϑ̇ ϕ̇]T , T is the corresponding
mapping from the Euler rate2 [38] to the angular rate.

The Cartesian path to track is defined at the tooltip.
To obtain the tooltip dynamics, we project the centroidal
dynamics to the tooltip along the rigid body by:

ẋe = ẋc + ωc × rce

ẍe = ẍc + ω̇c × rce + ωc × (ωc × rce)

B. Contact model
Let the moving direction (unit vector) of the tool be nv

and the direction orthogonal to the moving direction as
n⊥, where n⊥ × nv = N[i]. N[i] is the surface average
normal vector at ith time-step (as precept by the force-torque
sensor). In this study, we use N =

[
0 0 1

]T
{world}, when

2see Euler error section (chapter 2) of [37]

contact surface is horizontal.3. Then, we combine Eqs. (5, 7,
8) to obtain dynamics of the contact force vector Fe.

Ḟe =
( (

6E2RFz
) 1

3 ḋ
)
nz

+
(
µḞz +

3µ(2ν − 1)

10R

(
Ḟzd+ Fz ḋ

))
nv +

2mvv̇

Rc
n⊥

(11)

where d is the deformation at central point of contact circle
and calculated from Eq. (1), and ḋ = NT ẋe = że. Fz is the
vertical force (the surface normal direction) applied on the
surface by the manipulator and v = ‖ẋe‖2 is the moving
velocity of the tool contact point.

C. Trajectory optimization formulation

The state for our trajectory optimization is represented
as: the end-effector state xE = [xe ye ze ψe ϑe ϕe],
the 7-DOF manipulator joint state xM ∈ R7, x =
[xM ẋM xE ẋE Fe]

T ,u = [Wu τu]. Orientation is rep-
resented by Euler angles.

The overall optimization problem is formulated as:

min
φ

N∑
i=0

force tracking︷ ︸︸ ︷
δF[i]TQF δF[i] +u[i]TRu[i]

+ Wp

∥∥FK(xcM [i])− xde [i]
∥∥
2︸ ︷︷ ︸

pose tracking

(12a)

s.t. x[i+ 1] = F(x[i],u[i]),∀i = 1, . . . , N − 1 (12b)
x[0] = x0 (12c)
xM ≤ xM ≤ x̄M (12d)
Wu ≤Wu ≤ W̄u (12e)
mv2

Rc
≤ µNTFeN + G(xe) (12f)

where δF[i] = (Fc[i] − Fd[i]) is the current force state
error with respect to reference Fd[i], QF ∈ R3×3 and
R ∈ Rm×m are the state and control weighting matrices,
FK(·) ∈ SE(3) is the forward kinematics function for the
manipulator and xde [i] ∈ SE(3) is the desired Cartesian pose.
Wp is a scalar weighting coefficient. xcM [i], xdM [i] ∈ R7 are
the current and desired joint vectors. For simplicity, we use
φ = (x[0, . . . , N ],u[0, . . . , N−1]) to represent the sequence
of state-control pairs. v = ‖ẋe‖2 and Rc is the curvature (see
Figure 3) of the radius of the path tracked and G is a general
term to compensate for added deformation (rolling) friction.
Eq. (12f) represents the frictional constraint in the orthogonal
direction to the moving direction to maintain the motion.

D. Manipulator wrench control

The manipulator used in our experiment was a 7-DOF
KUKA LBR R820. Inertial parameters for this manipulator
were not accurately identified to the precision of generating

3In reality N[i] varies with the surface deformation and inclinations. It
can estimated through an external force-torque sensor attached to the end-
effector. For brevity, we represent N[i]→ N



small external wrenches using torque control. As an alter-
native, KUKA FRI (Fast Research Interface [39]) allows
users to accurately command external wrenches at the end
effector. It uses the proprietary internal dynamic model of
the manipulator to generate commanded external wrenches.
This allows us to define a desired Cartesian impedance for
the manipulator. The commanded input applies a wrench to
the base of the application tool. The manipulator control
law is expressed with combined feed-forward and feedback
components as:

W̄u = Wu + K (xe,c − xe,d) (13)

where K ∈ R3×3 stands for the user specified proportional
gain, i.e., stiffness in cartesian space. xe,c − xe,d ∈ R3 is
the distance between the current pose and the desired pose
of end-effector (with the tool part).4 In our optimal control
problem in Eq. (12), we take the external wrench (Wu) as a
part of the control input. The control input was implemented
on the manipulator with a closed-loop position control to
mitigate error compounding as governed by the Eq. (13).

V. CONSTRAINED TRAJECTORY OPTIMIZATION WITH
CONTACT DYNAMICS

Given the manipulator and tool models in Sec. IV-A and
the proposed contact dynamics in Sec. IV-B, Differential
Dynamic Programming (DDP) is used in this section to
generate desired joint and Cartesian motion as well as force
profiles obeying dynamic constraints.

DDP is well received for effectively solving unconstrained
trajectory optimization. It represents an indirect method
which only optimizes control inputs, and the dynamics
constraint is implicitly satisfied during the forward trajec-
tory rollout. Given an initial guess of control inputs, an
updated state trajectory is generated by forward propagating
the differential equation of rigid-body dynamics. Then a
quadratic approximation is constructed for the cost function
and dynamics around the current trajectory so that a Riccati
recursion can be used to derive the optimal feedback control
law. By iteratively updating the state and control trajectories,
the optimization will converge to an optimal solution.

One limitation of DDP stems from its difficulty in ad-
dressing constraints. Since our contact model enforces state,
control, frictional constraints, it is desired to incorporate
these contact constraints along with the state and control
constraints. The work in [13] proposed an iterative solve pro-
cess based on Alternating Direction Method of Multipliers
(ADMM) to address a variety of constraints. In this work,
we will employ this ADMM to handle the constraints, in
particular those involved in contact dynamics.

The ADMM algorithm decomposes a large-scale, holistic
optimization problem into sub-problems and solves each sub-
problem iteratively. In each iteration, the primal and dual
variables are updated sequentially. Under mild conditions,
both primal and dual variables converge to the optimal
solutions. More details about ADMM formulations are re-
ferred to [40]. To apply this algorithm for our soft-contact

4Note that, xd
e and xe,d in this paper represent different Cartesian states.

manipulation problem, we transcribe the original optimal
control problem (12) into the following form:

min
φ,φ̂

N∑
i=0

C(x[i],u[i]) + ID(x[i],u[i])

+ IJ ,U,F (x̂M [i], û[i], λ̂[i]) (14)

s.t. xM = x̂M , u = û, λ = λ̂

where we define C(x,u)5 as the local cost function corre-
sponding to Eq. (12a) and λ = (ẋTe ,Fe

T )T . We use φ̂ =
(x̂M [0, . . . , N ], û[0, . . . , N−1], λ̂[0, . . . , N ])6 to express the
concatenated states and controls that are required to be
projected. The admissible set D represents the generalized
dynamics constraint (12b), where D = {(x,u) | x[0] =
xinit,x[i + 1] = F(x[i],u[i]), i = 0, 1, . . . , N − 1}. The
closed and convex sets J , U and F stand for joint limit
(12d), control limit (12e) and contact constraint (12f), respec-
tively. In general, an indicator function regarding a closed
convex set B is defined as

IB(x,u) =

{
0, (x,u) ∈ B
+∞, otherwise

(15)

Then for each ADMM iteration k, the updating sequence
with scaled dual variables is

φk+1 =arg min
φ

C(x,u) + ID(x,u) +
ρj
2
‖xM − x̂kM + vkj ‖22

+
ρu
2
‖u− ûk + vku‖22 +

ρf
2
‖λ− λ̂k + vkf‖22

(16a)

φ̂k+1 =arg min
φ̂

IJ ,U,F (x̂M , û, λ̂) +
ρj
2
‖xk+1

M − x̂M + vkj ‖22

+
ρu
2
‖uk+1 − û + vku‖22 +

ρf
2
‖λk+1 − λ̂+ vkf‖22

(16b)

vk+1
j = vkj + xk+1

M − x̂k+1
M (16c)

vk+1
u = vku + uk+1 − ûk+1 (16d)

vk+1
f = vkf + λk+1 − λ̂k+1 (16e)

where φ and φ̂ are primal variables. vj , vu, vf are dual
variables related to joint limits, control limits and contact
constraints. ρj , ρu ρf are step-size parameters corresponding
to each constraint. This scaled form integrates linear and
quadratic terms in augmented Lagrangian which is compact
and easier to work with.

Note that for Eq. (16a), we use DDP to solve it and ID is
always zero since the state trajectory is always dynamically
feasible by performing the forward pass. For Eq. (16b), this
minimization problem reduces to a projection operator on
convex sets J , U , and F

φ̂k+1 =arg min
φ̂∈C

ρj
2
‖xk+1

M − x̂M + vkj ‖22

+
ρu
2
‖uk+1 − û + vku‖22 +

ρf
2
‖λk+1 − λ̂+ vkf‖22

C ={(x̂M , û, λ̂)|x̂M ∈ J , û ∈ U , λ̂ ∈ F}
5Due to space limit, we ignore the summation notation and time-step

subscripts in ADMM updates. For example, C(x,u) =
∑N

i=0 C(x[i],u[i]).
6The decision variables xM and λ are subsets of the full state x



Fig. 4: Experimental setup. The application tool with a spherical geometry
in contact with the soft material.

Fig. 5: Friction model validation and identification. µ = 0.4512, kd =
13.1315 Ns/m, R-squared = 0.9103.

We use a saturation function to efficiently project the in-
feasible values onto the boundaries defined by different
constraints. The whole process of our ADMM algorithm is
shown in Algorithm 1. We initialize φ̂ and dual variables v
as zero. The initial trajectory of φ is generated by running
the forward pass with an initial guess of controls. In each
ADMM iteration, the controls from last ADMM iteration will
warm start the current DDP solver, which makes the DDP
solver converges faster within around ten iterations in each
ADMM iteration. Then the trajectories are solved iteratively
until a stopping criterion with regard to primal residuals (see
[40], Sec. 3.3) is satisfied.

Algorithm 1 ADMM trajectory optimization

1: φ← φ0, φ̂← φ̂0

2: vj ← v0
j ,vu ← v0

u,vf ← v0
f

3: repeat
4: φ← DDP (φ, x̂− vj , û− vu, λ̂− vf )
5: φ̂← Projection (x + vj ,u + vu,λ+ vf )
6: vj ← vj + x− x̂
7: vu ← vu + u− û
8: vf ← vf + λ− λ̂
9: until stopping criterion is satisfied

10: return φ

VI. EXPERIMENTAL VALIDATION

A. Identification of material properties

To experimentally validate the proposed soft contact
model, parameters related to contact body material need to
be identified, e.g., frictional coefficient and Young Modulus.

The Young Modulus was estimated through performing
cyclic linear probing on the surface of the material with the
same end-effector point geometry of a sphere (was tested
on a material testing platform INSTRON©). The Young
Modulus was estimated through a non-linear least square
estimator by using Eq. (1). The friction coefficient was
estimated by performing motions along the material surface
while recording the force/torque data through an ATI mini45
sensor attached to the end-effector as shown in Figure 4.
Eq. (6) was used to estimate the frictional coefficients. Fric-
tional force magnitude in the moving direction Ffric, velocity
magnitude Ve, and normal contact force Fz were calculated
from the collected data (see Fig. 5) and a three dimensional
robust least square approximation was done (with a logistic
distance function in MATLAB©). Robust least square fitting
was used to mitigate the sensitivity to the model deviation
as the deformation increases. Identified Young Modulus and
friction coefficient were incorporated into the optimization
in Eq. (12). Desired states to track were the desired end-
effector position (xe, ye, ze) and the desired contact force
Fz . Optimal trajectories and inputs (Cartesian wrench Wu)
were generated through the optimization problem of Eq. (12).
Constraints were satisfied within 10−2 residual violations in
both primal and dual stopping criteria. Desired contact force
(Fd) was maintained within the valid range of the friction
model.

The material surface properties were identified to validate
the derived contact model and further use it in the trajec-
tory optimization to generate optimal open-loop trajectories.
Model fitting to the friction data is shown in Figure 5. Data
was fit with an resulting R-squared value of 0.9103 and
frictional coefficient (µ = 0.4512) and damping coefficient
(kd = 13.1315 Ns/m) were identified.

It was observed that with the increase of normal force
on the surface, the effects of deformation dominated the
frictional force data obtained through model fitting. This
phenomenon was due to the increased rolling friction and
material-specific artifacts, e.g., non-uniformity in frictional
coefficient and stress distribution. Moreover, the presence of
fluids or any micro-particular particles will increase the non-
uniformity.

B. Motion along a desired path with desired contact force
Open-loop trajectories generated from our trajectory op-

timization were input to the manipulator (i.e., Cartesian
wrench, Wu, as described in section IV-D). We generated
Cartesian trajectories along a line, a circle, and a number
eight shape, respectively. Figure 6 shows the experimental
results where the top row depicts motion tracking while
the middle and bottom rows show the predicted and actual
values of Fx, Fy, Fz in the “Position+Wrench Control“ and
“Position Control“ modes, respectively. The optimization
generates desired Cartesian trajectories (xde) and force profile
(Fd) We compared the results of running the control input
(Wu) generated from the optimizer along with a simple
position control where the feed-forward wrench component
in Eq. (13) is dropped. Since the control was in wrench mode,
motion and forces are coupled. Any mismatch in contact
forces (e.g., those due to friction and deformation) would



Fig. 6: Top row: Comparison of the Cartesian paths tracked by the end-effector with wrench control input generated by ADMM and with simple position
control. Middle Row: Comparison of the normal and frictional forces predicted by ADMM and the ground truth force data. Bottom Row: Ground truth
force data recorded in simple position control. Fd = [0 0 Fz,desired]

T is the desired tracking force.

directly affect the motion and vice versa. It was observed
that the control input solved via trajectory optimization was
able to track the motion (xde ∈ SE(3)) and force profile (Fd)
significantly better than simple position control. However,
the tracking performance is not superior but adequate due
to the unmodelled dynamics, stiction, and non-uniformity of
the soft material.

VII. CONCLUSION AND FUTURE WORK

For automation tasks involving biological or soft tissue
contact, it is paramount to design soft contact interaction
models where controllers can be designed to guarantee safe
tracking performance. Identifying valid contact models and
incorporating them in robot motion generation is essential to
safely and efficiently automate mundane contact-rich tasks.
Some examples include incisions, motion and force com-
pensation on soft bodies under external disturbances such as
breathing or heartbeat. This study presents a coherent frame-
work to perform simultaneous motion and force modulation
on compliant surfaces. Potential applications of this work
include contact manipulation in soft tissues or safety-critical
environments. Moreover, this framework can be generalized
to any applicable contact model with identified parameters
and the manipulator model.

In summary, we derived a soft contact dynamical model
and incorporated it into a trajectory optimizer capable of
handling state, control, and contact constraints. Trajectories
were solved using the ADMM trajectory optimizer, which
included two sub-optimization problems; namely, DDP and
projection blocks. Obtained trajectories were experimentally

validated on a soft surface (EcoFlex©) with the aid of a
robot manipulator with an attached spherical shaped tooltip.
Surface material properties were estimated and used in gener-
ating optimal trajectories. Ground truth forces were obtained
using a force-torque sensor (ATI mini45) and compared
against the predicted results. Results show accurate tracking
of the forces and desired positions as predicted by the derived
dynamic contact model.

In the future, we intend to split the optimization cost to
multiple blocks (Nblock > 2) and implement the trajectory
optimization in a real-time model predictive control (MPC)
fashion. Moreover, a low-level adaptive controller will be
used to handle material non-uniformity and uncertainty
caused by environmental disturbances.

APPENDIX

In this Appendix, we provide the details on several stress
distributions. First, the normal Stress Distribution σz:

σz
pm

= −3

2

(
1− r2

a2

) 1
2

(r ≤ a) (17)

Radical Stress Distribution σr:

σr
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=
2ν − 1

2
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[
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Hoop Stress Distribution σθ:

σθ
pm

=
1− 2ν
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where pm = F/(πa2) is the average stress applied in contact
part by manipulation and a =

√
Rd is the radius of contact

area (refer to figure 2). The transformation matrix T is

T =

 cθ sθ 0
−sθ cθ 0

0 0 1
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