
ImitationFlow: Learning Deep Stable Stochastic Dynamic Systems by
Normalizing Flows

Julen Urain1, Michele Ginesi2, Davide Tateo1, and Jan Peters1,3

Abstract— We introduce ImitationFlow, a novel Deep gen-
erative model that allows learning complex globally stable,
stochastic, nonlinear dynamics. Our approach extends the
Normalizing Flows framework to learn stable Stochastic Differ-
ential Equations. We prove the Lyapunov stability for a class
of Stochastic Differential Equations and we propose a learning
algorithm to learn them from a set of demonstrated trajectories.
Our model extends the set of stable dynamical systems that can
be represented by state-of-the-art approaches, eliminates the
Gaussian assumption on the demonstrations, and outperforms
the previous algorithms in terms of representation accuracy.
We show the effectiveness of our method with both standard
datasets and a real robot experiment.

I. INTRODUCTION

To have fully autonomous robots in real-world scenarios,
robots need to be able to perform a wide variety of complex
tasks and skills. However, programming a robot to perform
complex motion is often a time-consuming task, which
requires both expertise and domain knowledge. Imitation
Learning tackles this problem and provides robotics non-
expert users the capability to teach robots complex trajecto-
ries providing a few demonstrations [1], [2].

Given a set of demonstrations, the objective of Imitation
learning is to find a generative model that produces trajec-
tories similar to the demonstrated ones. A correct selection
of the model will lead to a successful and safe imitation.
These generative models are called Movement Primitives.
Movement primitives can be divided into three different
categories: time-dependant, state-dependant, and time-state
dependant movement primitives.

In this work, we focus on state dependant motion prim-
itives as they are robust to both spatial and temporal per-
turbation. This class of motion primitives is complementary
to the time-dependent motion primitives approaches, such
as the Dynamic Movement Primitives (DMP) [3] and the
Probabilistic Movement Primitives (ProMP) [4] approaches,
that are particularly well suited when the movement presents
a clear temporal (or phase) dependency, while robustness to
perturbation is not a major concern.

One of the main issues of state-dependent movement
primitives is to learn stable dynamics: While several models

1Intelligent Autonomous Systems, TU Darmstadt
2Department of Computer Science, University of Verona
3MPI for Intelligent Systems, Tuebingen
{urain,tateo,peters}@ias.tu-darmstadt.de
michele.ginesi@univr.it
This project has received funding from the European Union’s Hori-

zon 2020 research and innovation programmes under grant agreement
No. #820807 (SHAREWORK), #713010 (GOAL-Robots), and #640554
(SKILLS4ROBOTS)

Fig. 1. Above, robot is taught to perform a drums playing task. Below,
ImitationFlows receives the recorded trajectories and learns to morph the
latent dynamics in the left to the dynamics in the right. The generated
dynamics in the right are given back to the robot to perform the task.

exist [5], [6], [7]; most of them are not good ensuring stable
dynamics out of the region of the demonstrated trajectories.
This issue limits the applications of these methods to real-
world scenarios, as it can be difficult to ensure the correct
execution of the learned motion. This issue has been faced
by the Stable Estimator of Dynamical Systems (SEDS)
algorithm [8]. In this model, the global asymptotically sta-
bility is ensured by a quadratic Lyapunov function. Due
to the proposed Lyapunov function, the learned dynamics
are restricted to continuously decreasing distance towards
the attractor. In order to overcome the limitation of SEDS,
different approaches were proposed [9], [10], [11], [12], [13],
[14], [15], [16]. However, except for [17], all these models
consider deterministic models. Also, all these works consider
only point-to-point dynamics.

Contributions In this paper, we present ImitationFlow, a
novel approach for learning stable stochastic nonlinear dy-
namical systems. Our methodology merges Deep generative
models like Normalizing Flows [18], [19], [20] with stable
dynamical systems modeling.

Our approach not only is capable of representing a wider
class of dynamical systems w.r.t. previous works in the
field, but it can also represent arbitrary complex densities,
removing the Gaussian noise assumption of the demonstrated
trajectories. The proposed model can describe both strike-

ar
X

iv
:2

01
0.

13
12

9v
1

 [
cs

.L
G

]
 2

5
O

ct
 2

02
0

based and periodic movements in a single framework, with-
out changing the core learning algorithm.

We also formally prove that ImitationFlow can learn
globally asymptotically stable stochastic dynamics. This
property ensures global convergence to the goal for
point-to-point motions, ensuring that the learned move-
ment can be applied from any starting point of the
workspace. We have released a Pytorch Implementation at
https://github.com/TheCamusean/iflow

II. BACKGROUND & NOTATION

A. Problem Statement
Let T = {τ1, τ2, . . . , τn−1, τn} be a set of n ex-

pert demonstrated trajectories, where each trajectory τi =
{y1,y2, . . . ,yTi} of length li is a sequence of observations
yi ∈ Rd. For clarity of presentation, we assume that each
element of the trajectory is generated with a fixed sampling
time ∆T , but our derivations can be extended to the variable
sampling time scenario.

Let p(y0) be the distribution of the trajectory starting
point. We assume that each trajectory element is generated
by the following Stochastic Differential Equation (SDE):

dz(t) = f(z(t))dt+ g(z(t))dB(t), (1)

where z ∈ Rd is the state, f : Rd → Rd is a continuous
function, g : Rd → Rd×d is a continuous matrix function,
and B : R→ Rd is a d−dimensional Brownian motion (also
called Wiener process).
We remark that (1) is written in autonomous form. The
general case, in which f and g are functions of both the state
and time can be easily recovered by defining z̃ = [zᵀ, t]ᵀ,
f̃(z̃) = [f(z(t))ᵀ, 1]ᵀ.

Our problem is to maximize the likelihood of the unknown
model parameters ψ = {θ,φ} w.r.t. the set of observed tra-
jectories T . We frame our learning problem as the following
optimization problem

ψ∗ = arg max
ψ
Lψ (T)

s.t. lim
t→∞

E [yt] ∈ Ω, ∀y0 ∈ Rd (2)

where Ω ⊂ Rd and Lψ is defined as

Lψ (T) =

n∏
i=1

p(τi;ψ) =

n∏
i=1

p(y0)

li∏
j=0

p(yj+1|yj).

B. Stability for Stochastic Dynamical systems
Lyapunov stability has various definitions in the case of

stochastic dynamical systems. One option is to study the
stability in probability, in which the stability is studied
replacing V̇ by its expected value [21].

By Itô’s formula, the time derivative of the Lyapunov
function, V (y, t), is expressed by the following differential
equation

dV (y, t) = LV (y, t)dt+ Vy(y, t)g(y, t)dB(t)

LV (y, t) = Vt + Vyf(y, t) +
1

2
Tr(gᵀ(y, t))Vyyg(y, t),

(3)

Z0 Z1 Zn

Y0 Y1 YnY0 Y1 Yn

φ

θ

Fig. 2. Imitation Flow architecture as a graphical model

where LV (y, t), is known as the diffusion equation. The
expected value of V̇ is

E
[
V̇ (y, t)

]
= LV (y, t). (4)

Assume there exist a V (·, ·) : Rd×R −→ R, (y, t) 7→ V (y, t),
and strictly increasing functions µ1, µ2, µ3 such that

µ1(|y|) ≤ V (y, t) ≤ µ2(|y|), (5a)

LV (y, t) ≤ −µ3(|y|)∀y ∈ Rd. (5b)

Then, the trivial solution for our SDE is stochastically
asymptotically stable [21].

C. Normalizing Flows

Normalizing Flows provide a method for expressive den-
sity approximation. [18]. Requiring only a base distribution,
usually uniform or normal distribution, and a set of bijective
transformations, Normalizing Flows allows explicit density
estimation and, in most cases, to sample from these complex
distributions [20], [19].

Given a latent variable z ∈ Rd, sampled from a certain
distribution z ∼ pz(z) and a diffeomorphic transformation
h : Rd → Rd, such that y = h(z), we can compute the
distribution of y, py(y), in terms of z, by the change of
variable rule.

py(y) = pz(z)

∣∣∣∣det
∂z

∂y

∣∣∣∣ = pz(h
−1(y))

∣∣∣∣det
∂h−1(y)

∂y

∣∣∣∣ .
(6)

III. PROPOSED METHOD
ImitationFlow model extends the concept of Structured

Inference Networks for Nonlinear State Space Models [22]
to Normalizing Flows. Considering Normalizing Flows as
emission function allows exact inference at the cost of
imposing a deterministic emission.

The proposed model’s architecture is presented in Fig. 2,
and the dynamics are modelled using (7). Our model is
composed of two main components. In the latent space Z ,
the transition model follows some stable stochastic dynamics
parameterized by φ. Then, we use, as emission function, a
bijective, continuous and differentiable transformation hθ :
Rd −→ Rd transforming the data from the latent space Z to
the observation space Y .

dz(t) = fφ(z)dt+ gφ(z)dB(t)

y = hθ(z), (7)

https://github.com/TheCamusean/iflow

where θ and φ are the learnable parameters of the model.
Given that the Jacobian of hθ, Jθ = dy

dz , is easy to compute,
we can reframe (7) to compute the stochastic dynamic model
for y(t)

dy(t) = Jθ(y)fφ(h−1
θ (y))dt+ Jθ(y)gφ(h−1

θ (y))dB(t)
(8)

A. Learning Algorithm

In this section, we describe how we solve the optimization
problem described in (2). In order to estimate correctly
the likelihood of the trajectories, we should estimate the
probability density of initial states p(y0). However, if a few
trajectories are available, this estimation can be problematic.
We leverage on the fact that the system represents stable dy-
namics: this means that we will have a stationary distribution
in the limit

lim
t−→∞ p(yt) = p(y∞).

We exploit this property by assuming that the distribution of
the last point of the trajectory is the stationary one. Differ-
ently from most of others probabilistic estimation algorithms,
where the structural density is considered with forward
conditioning, p(yj+1|yj), in our approach we consider a
backward conditioning with p(yj |yj+1). It is straightforward
to prove that this view is equivalent under Bayes’s rule.

Given the model proposed in (7), we can rewrite the
probability distributions p(y) in terms of p(z). By applying
the change of variable rule we obtain

p(yn) = p(zn)

∣∣∣∣det
∂zn
∂yn

∣∣∣∣ = p(f−1(yn))
∣∣det J−1(yn)

∣∣ .
(9)

Due to the fact that yi+1 and zi+1 are the same event, it
follows that p(yi|yi+1) = p(yi|zi+1). Applying again the
change of variable rule we obtain

p(yi|yi+1) = p(zi|zi+1)

∣∣∣∣det
∂zi
∂yi

∣∣∣∣
= p(f−1(yi)|f−1(yi+1))

∣∣det J−1(yi)
∣∣ . (10)

To optimize (10) we first select a simple stochastic dynam-
ical system for the latent dynamics. We choose a parame-
terization such that the asymptotic behavior of the system
e.g., stable equilibrium point or limit cycle, is enforced.
Then we select a suitable class of normalizing flows as
emission function h. In this work, we will use the Euler-
Maruyama [23] integration scheme to integrate the SDE that
describes the dynamics of the latent space.

The resulting algorithm is summarized in Alg. 1. On each
iteration, a random trajectory τy and a sampling time ∆T
are selected. By the inverse of the bijective transformation
h−1(·) the latent trajectory τz is computed. The determinant
of the inverse jacobian |J |−1 is also computed as we require
it for computing the probability in (9) and (10). The latent
trajectory τz is split to be able to compute the conditional
probability p(zi|zi+∆T) and the probability in the end p(zn).

Algorithm 1 ImitationFlow Learning
Input: T trajectories
Parameters: φ dynamics, θ NormalizingFlow
while not converged do
τy ← {T }
∆T ← {Get a sampling time}
τz, |Jτz |−1 ← h−1

θ (τy)
z(0:T−∆T), z(∆T :T), zn ← SplitTime(τz,∆T)
p(·|zi+∆T ;φ), pn(·;φ)← GetDensFunc(z(∆T :T), zn)
L = pn(zn;φ)|Jn|−1

∏
p(zi|zi+∆T ;φ)|Ji|−1

∆θ,∆φ ∝ −∇θL,−∇φL
end while

B. Latent Stochastic Linear Dynamics

A simple stochastic stable dynamic system is the stochastic
Linear dynamics

dz(t) = Aφz(t)dt+KφdB(t) (11)

where Aφ and Kφ are the learnable parameters of the
latent dynamics. We impose stability by constraining the
eigenvalues real part to be smaller than zero, R(λA) < 0.

Besides, we require to compute the stationary distribution
of z. To simplify the problem, we consider the stationary
distribution of the discretized system. Let F = A∆T + I
and Σ = KKT∆T , then, we know that

lim
t−→∞ p(zt) = N (0,Σ∞), Σ∞ =

∞∑
i=0

F iΣF i
ᵀ

,

where Σ∞ can be computed in closed form in the vectorized
form as

vec(Σ∞) = vec(Σ)(In2 − F ⊗ F). (12)

To learn the model it is also required to compute the back-
ward conditional probability p(zi|zi−1). Linear stochastic
dynamics are invertible. Therefore, we can compute the con-
ditional backward probability, which is normally distributed

p(zi|zi+1) = N (zi|F−1zi+1, F
−1ΣF−ᵀ).

C. Stability analysis for latent stable dynamics

In the following, we prove the asymptotic stability in
probability of the learned system, under the assumption of a
stable latent dynamic.

Lemma 1. For any diffeomorphic transformation y(t) =
h(z(t)), if the dynamics of z(t) are stochastically asymptoti-
cally stable, then the dynamics of y(t) are also stochastically
asymptotically stable.

Proof. We follow a derivation similar to the one proposed in
[12] for Lyapunov stability analysis in Ordinary Differential
Equation (ODE). Let U(·) be a Lyapunov function for the
latent dynamics. We define the following Lyapunov candidate
for the observed dynamics:

V (y) = U(h−1(y)).

From this definition it follows that

U(z) = V (h(z)). (13)

From the equality in (13) and by the fact that U is a valid
Lyapunov candidate we get that the condition in (5a) is also
satisfied.

To satisfy the condition in (5b), we compute the diffusion
(3) of the Lyapunov function LV . Considering (3) and (8)

LV (y, t) =Vt + VyJ(y)f(h−1(y))+

1

2
Tr((J(y)g(h−1(y)))ᵀVyy(J(y)g(h−1(y)))).

(14)

Moreover, we can rewrite Vt, Vy and Vyy in terms of Uz
and Uzz .

Vt(y) =
∂

∂t
V (y) = 0, (15)

as we don’t have explicit time dependency on V (y).

Vy(y) =
∂

∂y
V (y) =

∂

∂z
U(z)

∂z

∂y
= Uz(z)J−1(y), (16)

where Uz(·) : Rd −→ R1×d. Finally, we can rewrite Vyy

Vyy(y) =
∂2

∂y2
V (y) =

∂

∂yᵀ

(∂

∂y
V (y)

)
=

=
∂

∂yᵀ

(
Uz(z)J−1(y)

)
=
∂zᵀ

∂yᵀ

∂

∂zᵀ

(
Uz(z)J−1(y)

)
= J−ᵀ(y)Uzz(z)J−1(y). (17)

Introducing (15), (16) and (17) in the diffusion equation (14)

LV (y) =Uzf(z) +
1

2
Tr(gᵀ(z)Uzzg(z)) = LU(z). (18)

By hypothesis LU(z) satisfies the condition in (5b), there-
fore the condition is also satisfied by LV (y).

D. Latent Stochastic Limit Cycles

In two dimensional space, attractive limit cycles can be
represented by Linear Dynamics in polar coordinates {ρ, ψ},
and then apply the change of Variable rule to move to
cartesian coordinates. Given ρ ∈ R, the radius and ψ ∈
{−π, π}, the angle as the latent state, the dynamics can be
represented by stochastic linear dynamics

dρ(t) = aφ(ρ(t)− ρ∗φ)dt+ σ1φdB(t) (19)

dψ(t) = bφdt+ σ2φdB(t), (20)

where {aφ, bφ, ρ∗φ} are learnable linear dynamics parameters
and {σ1φ, σ2φ} are learnable standard deviation parameters.
The state is transformed from polar coordinates to cartesian
coordinates and back with a diffeomorphic transformation,
so it allows us to apply the change of variable rule

x =ρ cos(ψ) ρ =
√
x2 + y2

y =ρ sin(ψ) ψ = arctan
(y
x

)
.

Similarly to section III-B, in order to compute the loss, we
need the stationary distribution p(x∞, y∞). Applying the
change of Variable rule, we obtain

p(x∞, y∞) = p(ρ∞, ψ∞)

∣∣∣∣∂(ρ∞, ψ∞)

∂(x∞, y∞)

∣∣∣∣ ,
where the probability is split between the determinant of the
Jacobian for the polar coordinates and the probability of the
polar coordinates in ∞. The determinant of the Jacobian is

det J = det

 x√
x2+y2

−y
x2+y2

y√
x2+y2

x
x2+y2

 = (x2 + y2)−
1
2 . (21)

The density of the stationary distribution is the product of
two separate distribution families. While, ρ evolves with a
linear dynamic towards ρ∗, leading to a normal distribution,
the stationary distribution for ψ depends on the initial den-
sity, p(ψ0). Unfortunately, in full generality, the density at
the limit is not uniquely given, as it depends on the initial
density distribution. For instance, if we assume that the initial
phase distribution is uniform, the stationary density will be

p(ρ∞, ψ∞) = p(ρ∞)p(ψ∞) = N (ρ∗,Σ∞)U(−π, π).

where Σ∞ is computed the same way we did in (12).
We compute the conditional probability as in the previous
section.

For higher dimensions, we propose to maintain the limit
cycle in a two-dimensional plane and add further linear
attractor dynamics towards zero for the extra coordinates.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate the learning quality of our
model in different datasets. We compare ImitationFlow
with SEDS and Control Lyapunov Function-based Dynamic
Movements (CLF-DM) in the LASA dataset [8]. Then,
we show that our model is capable of representing limit
cycle dynamics, for both generation and discrimination of
trajectories. Finally, we show that our algorithm scales to
real-world problems by learning drums playing motion in a
real robot.

A. Point-to-Point trajectories

LASA dataset is a set of two-dimensional point-to-point
trajectories with different shapes. This dataset is widely used
for testing stable dynamics models. We learn the dynamics
and we compare our results with baseline methods such as
SEDS and CLF-DM in 4 metrics: SEDS error [8], Swept
Area Error [10], Frechet distance and DTW error [24].

As we deal with a small set of demonstrations, the
mean velocity of the demonstrated trajectories is set as the
initial velocity of the latent linear dynamics. With random
initialization parameters, while the model can still match the
trajectory closely, it struggles to learn the proper magnitudes
of velocities. For these experiments, we model the emission
function as a concatenation of 10 coupling layers [19] and
10 orthogonal transformations [25].

To compute the metrics, we generate the expected trajec-
tory from the same starting point of demonstrations and we

(a) Error SEDS (b) Frechet Distance (c) Swept Area (d) DTW distance

Fig. 3. Comparison of the performances of our method w.r.t. different state of the art algorithms. Boxplots are obtained using the LASA dataset.

Fig. 4. Examples of learned dynamics in LASA dataset. In dark blue, the
expected trajectory, in light blue, noisy trajectories, in red, given trajectories

compute the similarity w.r.t the demonstrations. We compare
the obtained similarity measurements with the ones obtained
for SEDS and CLF-DM.

Fig. 3 shows that ImitationFlow outperforms the other
algorithms in all the metrics, providing more accurate results.
Moreover, we can see that our model is more robust than
SEDS and CLF-DM: it is clear that ImitationFlow is the
less variant and produces fewer outliers.

The generated trajectories are shown in Fig. 4. Imitation-
Flow can learn stochastic dynamic systems that follow the
trajectories provided by the user while maintaining stability.
The vector field in Fig. 4 has been computed with the
expected value and we can observe the variance in our model
in the light blue trajectories.

B. Limit Cycle behaviours

We can model a complex limit cycle in the observation
space by switching the latent linear dynamic model with a
simple limit cycle behavior. To prove this, we have recorded
two-dimensional handwritten data, representing different let-
ters. The recorded demonstrations maintain similar shape,
orientation, and velocity in the drawings.

Similarly to the previous section, proper initialization of
the latent dynamics increases the performance of our model.
We apply Principal Component Analysis (PCA) over the
trajectories and we extract the main frequency of the cycle
through Fourier transform. This frequency is set as the initial
angular velocity. For the nonlinear emission, we considered
a concatenation of ten Coupling layers with ten orthogonal
transformations. The dynamics generated by ImitationFlows
are shown in Fig. 5. The model can perfectly represent the
complex demonstrated dynamics.

C. Classification for IROS letters

Normalizing Flows compute the exact distribution of the
data. This property distinguishes them from other density
approximators [26] that lack the normalization term. Due to
this fact, we can compare the obtained probabilities and use
them for classification.

We show this by applying the previously learned letter
models for the limit cycles as classification modules. A
simple classifier is built by computing the probability of
the given trajectory and selecting the class with the highest
probability

k∗ = arg max
k∈K

p(τ |k). (22)

We have recorded ten new handwritten trajectories for each
class, and we use them for testing. As shown in Fig. 6,
the classifier gets a high rate of correct classification for
all the shapes, with a small prediction error for R and S.
The classifier is not considering any scaling or rotating term,
which could improve our results. Failure mostly occurs when
there is a scale or velocity discrepancy between training and
testing trajectories.

D. Learning drums playing on a robot

We study the applicability of ImitationFlow in a real
robotics application, with higher dimensionality(Cartesian
Position with fixed orientation). We have recorded trajec-
tories while doing kinesthetic teaching with a DLR-KUKA
lightweight robot in drums playing task, presented in Fig. 1.

To deal with a higher dimensional problem, we switch
the Coupling layer [19] with a Masked Autoregressive Flow
(MAF) [20]. The orthogonal transformation remains on each
output of the MAF layer. We initialize the model in a similar
way to the previous section. We apply a Fourier transform
in the first dimension of PCA space and the main frequency
is set as the initial angular velocity.

We show in Fig. 7, a generated trajectory compared with
the demonstrated data in cartesian space. We consider a
starting configuration that is far from the limit cycle and
generate a full trajectory offline. We show that the model
can generate a stable trajectory towards the attractor.

V. RELATED WORK
Learning (globally) stable dynamical systems is a crucial

topic in the Learning from Demonstration (LfD) community,
as these kinds of systems provide motion generation con-
trollers that are robust to perturbations and can generalize the

Fig. 5. Examples of learned limit cycles. The color in the vector fields represent the magnitude of the velocity, the brighter the faster. In green, trajectories
generated by Imitation Flows.

Fig. 6. Confussion Matrix for I,R,O,S letters. The values in each cell,
represent the probability of a test trajectory(vertical) to be classified
as class(horizontal)

Fig. 7. In Blue, the generated trajectory by ImitationFlows. In red,
samples from given demonstrations.

motion in regions of the state space where no demonstration
is available. Previous works on this topic can be divided into
two different categories.

The first set of approaches is based on Lyapunov stability
analysis. The common idea behind these methods is to find
a candidate function from a family of Lyapunov functions.
One of the first examples of these approaches is the SEDS
algorithm [8], that can learn globally stable dynamics
towards a goal position. The candidate function is selected
from the family of quadratic Lyapunov functions, while
the dynamical system is learned using a finite mixture of
Gaussian functions. The optimal solution is obtained by
maximizing the log-likelihood of the demonstration under the
stability constraint using Successive Quadratic Programming
(SQP). The main limitation of SEDS is that the dynam-
ics are restricted to contractive ones due to the limita-
tion imposed by the quadratic Lyapunov function family.
To overcome this issue, and improve the class of repre-
sentable movements, the CLF-DM approach [10] has been
proposed. To do so, the authors propose a richer class
of Lyapunov functions, the Weighted Sum of Asymmetric
Quadratic Function) (WSAQF). The method uses a Control
Lyapunov Function (CLF) to find stable dynamics. Dynamics

are modeled using an unstable dynamical system that is
stabilized using an additional control signal. While CLF-DM
is more expressive than the SEDS algorithm, the learning
process can be problematic [12]. An alternative solution to
the lack of representation power of SEDS is the τ−SEDS
algorithm [12]. Differently from the CLF-DM approach, this
algorithm adds a diffeomorphic transformation on top of the
stable dynamics learned by SEDS. However, an application-
dependent diffeomorphic transformation must be provided
by the designer. Similar in spirit to our work is [13],
which also used a diffeomorphic transformation to inherit the
stability properties. While in their case, a kernel-based local
translation is used, in our case, we use invertible networks as
bijective transformation. In [17], the learned stable dynamics
were also stochastic. Anyway, the distribution family of
the model was imposed and not learned from the data.
The Lyapunov stability principle has been studied also in
combination with neural networks. In [27], the authors learn
stable dynamics and the Lyapunov candidate from data using
a neural network. While they can find accurate results,
stability is not guaranteed globally.

More recently in [16] also deep models have been pro-
posed for learning stable dynamic systems. In their paper,

a deep neural network is proposed that learns the Lyapunov
candidate and the system dynamics jointly by using an Input-
Convex Neural Network (ICNN).

Recently, another set of approaches has been developed,
building on the contraction analysis to find a globally stable
solution. In [14], the authors propose a method that uses the
same dynamic model as SEDS, but they exploit contraction
analysis, instead of Lyapunov functions, to enforce global
asymptotical stability. In [15], a contractive vector field is
learned by Reproducing Kernel Hilbert Space (RKHS). This
approach can learn a set of equilibrium points and constraint
the local curvature using convex optimization.

There have been a few attempts of extending the Normal-
izing flows to time series [28], [29]. While these approaches
benefit from the flexibility of normalizing flows and present
remarkable results, they do not have any theoretical guaran-
tees on the stability of the learned dynamical system.

To the best of our knowledge, our method is the only
approach that has global stability guarantees for any distribu-
tion SDE, while being able to learn more complex attractors,
such as limit cycles.

VI. DISCUSSION AND FUTURE WORK

In this paper, we presented a Deep Generative Model that
extends the Normalizing Flows for learning stable SDEs. We
have demonstrated the Lyapunov stability for a class of SDEs
and propose a learning algorithm to learn them from a set
of demonstrated trajectories.

We show that our model outperforms state-of-the-art al-
gorithms for stable dynamics learning. Moreover, we have
shown that our model is not limited to point-to-point dynam-
ics, and we show how it can be extended to complex limit
cycle behaviors by plugging a different latent dynamic. The
density estimation property of our model has been applied
in a classification task, and we show that our model can be
extended to higher dimensions to solve a real robot task.

In future works, we will include conditioning to our
model, to adapt the dynamics to different environments.
Furthermore, we will improve the generalization capabilities
of our model in areas without demonstration, to obtain
smoother trajectories towards the stable attractor.

REFERENCES

[1] S. Schaal, “Learning from demonstration,” in Advances in Neural
Information Processing Systems, pp. 1040–1046, 1997.

[2] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally weighted
learning,” in Lazy learning, pp. 11–73, Springer, 1997.

[3] S. Schaal, “Dynamic movement primitives-a framework for motor
control in humans and humanoid robotics,” in Adaptive motion of
animals and machines, pp. 261–280, Springer, 2006.

[4] A. Paraschos, C. Daniel, J. R. Peters, and G. Neumann, “Probabilistic
movement primitives,” in Advances in Neural Information Processing
Systems, pp. 2616–2624, 2013.

[5] S. Schaal, C. G. Atkeson, and S. Vijayakumar, “Scalable techniques
from nonparametric statistics for real time robot learning,” Applied
Intelligence, vol. 17, no. 1, pp. 49–60, 2002.

[7] Y. Huang, L. Rozo, J. Silvério, and D. G. Caldwell, “Kernelized move-
ment primitives,” The International Journal of Robotics Research,
vol. 38, no. 7, pp. 833–852, 2019.

[6] M. Hersch, F. Guenter, S. Calinon, and A. Billard, “Dynamical system
modulation for robot learning via kinesthetic demonstrations,” IEEE
Transactions on Robotics, vol. 24, no. 6, pp. 1463–1467, 2008.

[8] S. M. Khansari-Zadeh and A. Billard, “Learning stable nonlinear
dynamical systems with gaussian mixture models,” IEEE Transactions
on Robotics, vol. 27, no. 5, pp. 943–957, 2011.

[9] A. Lemme, K. Neumann, F. Reinhart, and J. J. Steil, “Neurally
imprinted stable vector fields,” in European Symposium on Artificial
Neural Networks, 2013.

[10] S. M. Khansari-Zadeh and A. Billard, “Learning control lyapunov
function to ensure stability of dynamical system-based robot reaching
motions,” Robotics and Autonomous Systems, vol. 62, no. 6, pp. 752–
765, 2014.

[11] H. Ravichandar and A. Dani, “Learning contracting nonlinear dynam-
ics from human demonstration for robot motion planning,” in ASME,
Dynamic Systems and Control Conference, 2015.

[12] K. Neumann and J. J. Steil, “Learning robot motions with stable
dynamical systems under diffeomorphic transformations,” Robotics
and Autonomous Systems, vol. 70, pp. 1–15, 2015.

[13] N. Perrin and P. Schlehuber-Caissier, “Fast diffeomorphic matching
to learn globally asymptotically stable nonlinear dynamical systems,”
Systems & Control Letters, vol. 96, pp. 51–59, 2016.

[14] H. C. Ravichandar, I. Salehi, and A. P. Dani, “Learning partially
contracting dynamical systems from demonstrations.,” in Conference
on Robot Learning, pp. 369–378, 2017.

[15] V. Sindhwani, S. Tu, and M. Khansari, “Learning contracting vector
fields for stable imitation learning,” arXiv preprint arXiv:1804.04878,
2018.

[16] J. Z. Kolter and G. Manek, “Learning stable deep dynamics models,”
in Advances in Neural Information Processing Systems 32, pp. 11126–
11134, 2019.

[17] J. Umlauft and S. Hirche, “Learning stable stochastic nonlinear dy-
namical systems,” in International Conference on Machine Learning,
pp. 3502–3510, 2017.

[18] D. Rezende and S. Mohamed, “Variational inference with normalizing
flows,” in International Conference on Machine Learning, vol. 37,
pp. 1530–1538, 2015.

[19] L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation using
real nvp,” in International Conference in Learning Representations,
2017.

[20] G. Papamakarios, T. Pavlakou, and I. Murray, “Masked autoregressive
flow for density estimation,” in Advances in Neural Information
Processing Systems, pp. 2338–2347, 2017.

[21] X. Mao, Stochastic differential equations and applications. Elsevier,
2007.

[22] R. G. Krishnan, U. Shalit, and D. Sontag, “Structured inference
networks for nonlinear state space models,” in AAAI conference on
artificial intelligence, 2017.

[23] E. Platen and N. Bruti-Liberati, Numerical solution of stochastic
differential equations with jumps in finance, vol. 64. Springer Science
& Business Media, 2010.

[24] C. F. Jekel, G. Venter, M. P. Venter, N. Stander, and R. T. Haftka,
“Similarity measures for identifying material parameters from hys-
teresis loops using inverse analysis,” International Journal of Material
Forming, may 2019.

[25] D. P. Kingma and P. Dhariwal, “Glow: Generative flow with invertible
1x1 convolutions,” in Advances in Neural Information Processing
Systems, pp. 10215–10224, 2018.

[26] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in
Conference on Learning Representations, 2014.

[27] K. Neumann, A. Lemme, and J. J. Steil, “Neural learning of stable
dynamical systems based on data-driven lyapunov candidates,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 1216–1222, IEEE, 2013.

[28] M. Kumar, M. Babaeizadeh, D. Erhan, C. Finn, S. Levine, L. Dinh,
and D. Kingma, “Videoflow: A conditional flow-based model for
stochastic video generation,” in International Conference on Learning
Representations, 2020.

[29] H. S. Razaghi and L. Paninski, “Filtering normalizing flows,” in
Bayesian Deep Learning Workshop at NeurIPS, 2019.

	I INTRODUCTION
	II Background & Notation
	II-A Problem Statement
	II-B Stability for Stochastic Dynamical systems
	II-C Normalizing Flows

	III PROPOSED METHOD
	III-A Learning Algorithm
	III-B Latent Stochastic Linear Dynamics
	III-C Stability analysis for latent stable dynamics
	III-D Latent Stochastic Limit Cycles

	IV Experimental Evaluation
	IV-A Point-to-Point trajectories
	IV-B Limit Cycle behaviours
	IV-C Classification for IROS letters
	IV-D Learning drums playing on a robot

	V RELATED WORK
	VI Discussion and Future Work
	References

