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Abstract— Truss structures can be found in many buildings
and civil infrastructure such as bridges and towers. But as
these architectures age, their maintenance is required to keep
them structurally sound. A legged robotic solution capable
of climbing these structures for maintenance is sought, but
determining the size and shape of such a robot to maximise
structure coverage is a challenging task. This paper proposes
a model in which the size of a multi-legged robot is optimised
for coverage in a truss structure. A detailed representation of a
truss structure is presented, which forms the novel framework
for constraint modelling. With this framework, the overall
truss structure coverage is modelled, given a robot’s size and
its climbing performance constraints. This is set up as an
optimisation problem, such that its solution represents the
optimum size of the robot that satisfies all constraints. Three
case studies of practical climbing applications are conducted
to verify the model. By intuitive analysis of the model’s output
data, the results show that the model accurately applies these
constraints in a variety of truss structures.

I. INTRODUCTION

The size and shape of a robot is usually chosen based
the task and characteristics of its intended environment,
and actuator constraints to maximise its performance and
efficiency. For a known robot topology, the size of the robot
can be modelled based on the environment it is deployed
in, and the navigational constraints it must satisfy. However,
striking the right balance between the robot’s size and
meeting operational constraints such as structural coverage,
locomotive speeds and actuator load limits is a difficult,
multi-dimensional with no unique solution.

Empirical methods for determining the overall topology
and optimum design for a robot are common practice in
the absence of numerical optimisation. For naturalistic tasks
such as walking or climbing, we can mechanically replicate
the several aspects from the topology of living organisms.
It has been shown that a robot may be better equipped to
handle real-world environments and tasks, using this method
[1]. The bio-inspired robotic design paradigm [2] has been
applied to several small-scale climbing robots such as in [3]
and [4]. However, unlike the evolution of larger organisms,
robots do not scale well with increasing size due to technical
limitations of current-day actuators [5].
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There are several methods that exist for optimising robot
design and selection, which take into account the end ef-
fector’s kinematics [6], [7], dynamics [8], and purpose [9].
However, these works only consider a static robot base
and is unsuitable for a robot that may be in constant mo-
tion. Several robots were proposed specifically for climbing
truss structures [10]–[14], and planes [15]–[20]. However,
the optimisation of the design of these robots were never
documented. Only the ROMA robot reports the use of the
ADAMS simulation package, but all design parameters were
determined based on torque constraints only.

It is evident that no generalised framework exists for the
optimisation of these robots in truss-like structures when
precise coverage constraints are required. Hence we propose
a model for calculating overall truss structure coverage of
a multi-limbed robot, when deployed in such a scenario.
The proposed model focuses on detailed coverage constraints
within a truss structure, which supplements typical kinematic
and dynamic constraints. The model is implemented as a dis-
crete optimisation problem, such that the solution represents
the smallest robot possible that satisfies coverage, stability
and gait constraints.

This paper will first present the setup of the model in
Section II, then define the calculation of truss structure cov-
erage, and all constraint equations in Section III. Section III-
B shows how the model is used, and verifies the result of this
model with optimised solutions on various truss structures,
and Section V concludes this paper with a discussion of the
derived model, its applications and future improvements.

II. METHODS OF VIRTUAL REPRESENTATION

The method for the virtual representation of the model dic-
tates the ability to apply detailed coverage constraints in the
optimisation problem. Three main components aside from
the robot that make up the model require virtual representa-
tion: the truss structure, the environment and the interaction
space. This space defines the area at which the robot can
observe, touch or grasp. The choice of representing these
components in a continuous or discretised space depends
on the model’s complexity, the computational efficiency and
memory footprint when running the optimisation.

A discretised representation carries the advantage of model
simplicity over a continuous model, hence our proposed
model implements a discretised representation of the interac-
tion space and environment. The truss structure is represented
by parameterised vector functions. The aim is to model
calculate truss structure coverage as a function of the robot’s
size, hence discretised interaction points are parented to the



truss structure. This has the same effect as discretising the
entire truss structure as a series of interaction points. As each
robot pose and interaction point is a unique and discrete
point in the environment, the constraint modelling can be
expressed in set notation. This is a logic-based approach to
modelling, in which constraint equations can be simplified
to logic statements based on inequalities. This allows for
the application of highly detailed coverage constraints such
as coverage redundancy, limb-specific coverage and grasping
constraints. Finally, truss structure coverage is a simple cal-
culation of the number interaction points that are reachable
by the robot when constraints are applied. The model utilises
this calculation to form the discretised optimisation problem.

A. Truss Structure and Environment Representation

The physical modelling of the truss structure in its envi-
ronment is expressed in the discretised space in three sets:
• B, a set of trusses that make up the structure,
• Q, a set of discrete interaction points on each beam in

the structure (Fig. 1a), and
• T , a set of discrete points in the environment (Fig. 1b).

qb

(a) Interaction points qb

p

(b) Robot poses p

Fig. 1: The interaction space Q and environment space T of
a truss structure B.

This representation allows constraints can be applied to
individual beams, grasp points on the beams and position
around the truss structure within the environment.

1) Parameterised truss structure: The truss structure is
made up of individual but connected trusses. We define this
structure as set B,

B = {all trusses in the environment :

b ∈ B is a data structure} , (1)

where each element b is a data structure representing a
parameterised vector with a known diameter or profile that
makes up a truss.

2) Discretised interaction space: The interaction space
is the set of all points that lie on beams q ∈ B in which
the robot can interact with, such as observing, touching or
grasping. This set is defined as Q,

Q =
{
qb : q ∈ R3 represents a discrete point

}
on an object b ∈ B} , (2)

where each element represents an ordered pair: qb = (q, b).
Point q ∈ R3 represents a point in 3D space, constrained to
lie on a beam b ∈ B, that indicates that part of a beam can
be interacted with. Therefore by definition, a beam without

any q ∈ Q indicates that the beam is not accessible by a
robot. Fig. 1a shows an example of the interaction space Q
on a truss structure B, where each dot represents a valid
interaction points qb on a beam b. Thicker beams shown in
the figure are inaccessible due to the absence of interaction
points attached to them.

3) Discretised environment space: The environment space
defines all possible robot body poses in the environment
enveloping the truss structure. This is defined as set T ,

T = {p ∈ SE(3) : gt(p,B)} , (3)

where gt provides the discretisation scheme for pose p,
describing the position and orientation of the robot’s centre
of mass. Fig. 1b shows a possible layout of the environment
space T , where each dot represents a possible body pose of
the robot p, constrained to a grid set by gt. Body poses that
are too far from the truss structure are removed.

B. Robot
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Fig. 2: A four-limbed
robot with size param-
eters. Joint arrows indi-
cate axes of rotation.

This work assumes a multi-
legged climbing robot is kine-
matically capable of navigating
a truss structure and to carry out
maintenance work. Inchworm-
style robots [21] [22] are ca-
pable of climbing similar struc-
tures, but lack the capability of
carrying maintenance tools due
to the absence of a stable robot
body during locomotion. The
gait stability [23] observed by
four-limbed organisms in nature
[24], [25], forms the basis of a bio-inspired four-limbed
robotic solution for the navigation of truss structures. Hence
any further reference to multi-limbed robots is assumed to
be a robot of at least four limbs.

The proposed model will calculate truss structure coverage
based on constraints applied to sets B, Q, and T , for a given
multi-limbed robot (Fig. 2) with size parameters x ∈ Rn.
For example in the figure, a four-limbed robot can have four
size parameters defined as x = [xu, xl, xw, xh], representing
the length of the upper limbs, lower limbs, body width and
body height respectively (n = 4). A discretised optimisation
problem will then be set up to optimise x, based on the
application of truss structure coverage constraints.

C. Robot-Truss Structure Interaction

Fig. 3 shows how the the robot interacts with the interac-
tion points Q on a truss structure B in the environment space
T . The layout of environment space T generated around the
truss structure represents a discretised transform p ∈ SE(3),
set by a user-defined discretisation method in gt.

In this example, all pi,0 poses represent the position
of the robot’s body parallel to the truss plane. Through
gripper continuity analysis, poses p1.0 and p2.0 are connected
because gripper positions between them are fixed, marked
with a bi-directional arrow. However, poses p2.0 and p3.0 are
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Fig. 3: A robot at three possible poses in the environment
space (white markers p) with interaction points (red markers
qb) on trusses b.

not connected because the lower grippers require a different
grasping positions. Pose connectivity analysis is an important
step in calculating truss structure coverage constraints, which
will be explained in Section III-B.3.

III. MODEL FORMULATION

To determine the minimum size robot x that satisfies
truss structure coverage constraints, a discrete optimisation
problem is set up:

min
x

fobj(x)

s.t. lbi ≤ xi ≤ ubi i = 1, ..., |x|
Gi(R(x, B,Q, T )) ≤ 0 i = 1, ...,m (4)

where
x = Parameters to optimise
fobj = Objective function
lbi, ubi = Lower and upper bound constraints
R = The set of interaction points as a function of

x, subject to collision, grasp, stability and
connectivity constraints on sets B, Q and T

Gi = Truss structure coverage constraints on R
m = Number of constraints

A. Calculating Truss Structure Coverage

The set R(x) models truss structure coverage with robot
parameters x. Henceforth, we will reference R(x) as the
model for calculating truss structure coverage. In order to
apply constraints that are meaningful to the accuracy of
model, a configuration space of the robot covering all possi-
ble configurations around the truss structure is generated. The
proposed configuration space V is a set of all configurations
represented by the triplet

u = (p, UG, UR). (5)

where u is the configuration of a robot at pose p ∈ P ,
and UG and UR are the sets of all graspable and reachable
interaction points for that pose, respectively. An interaction
point is graspable when the robot’s gripper is able to apply
a stable attachment point to it, and an interaction point is
reachable when the gripper is able to observe or touch it.
Finally, we define the set of all u as the configuration space,

V =
{
u1, u2, ...u|P |

}
. (6)

Our definition of coverage is the robot’s ability to reach an
interaction point. Therefore, overall truss structure coverage
h is defined as

h =
|qb ∈

⋃
QR|

|Q|
, (7)

where QR is the set of all UR from the triplets in the
configuration space V . The elements in QR are dependent on
x, i.e. h(x). We can then express this as a coverage constraint
equation, where hmin is the target truss structure coverage
quotient

G(x) = hmin − h(x). (8)

B. Modelling Constraints

This section defines all functions and constraints that are
applied to B, Q and T to generate R(x). Constraint func-
tions g are non-linear and difficult to express as inequality
equations, and are represented like functions of a program.
Constraint functions f return values for use in inequality
constraints between the robot and truss structure, and can be
easily tuned to as per the user’s requirements.

1) Physical Constraints:
a) Body-truss structure collisions: Let gs be the map-

ping of the robot body’s pose p ∈ P , to a set of limb base
points, such that gs : (p,x) → S, where the ordered pair
(p, S) represents the shoulder and hip positions in the world
frame (S ∈ R3) for a particular body pose p ∈ P and robot
size x.

In addition, let gc(S,B) be a function that evaluates
whether the robot’s body is in collision with any truss in
B, given hip and shoulder points S at pose p. Then the set
of all poses p ∈ T that is not in collision with any trusses
b ∈ B is

P = {p : p ∈ T, gc (gs(p,x), B)} . (9)

b) Kinematic constraints: Let gjkg be a function for
determining the existence of an inverse kinematic solution for
the j-th limb with gripper attached. The set of all graspable
points for the j-th limb at pose pi is therefore

QGi,j =
{
qb ∈ Q : gjkg(pi,x, Q)

}
. (10)

These elements are combined to obtain the set of graspable
points for all limbs for pose pi

UGi =
{
QGi,1, Q

G
i,2, Q

G
i,3, Q

G
i,4

}
. (11)

Note that constraint function gjkg can also be used to set
constraints on grasping poses; the interaction between a
gripper and beams.

Truss structure coverage h (Eqn. 7) is dependent on
reachable interaction points, therefore the set of reachable
points for all limbs for pose pi is also be calculated. Let gjkr
be a function for determining the inverse kinematic solution
for the j-th limb without grasping constraints. Then

QRi,j =
{
qb ∈ Q : gjkr(pi,x, Q)

}
, (12)



so the set of reachable points for all limbs for pose pi is

URi =
{
QRi,1, Q

R
i,2, Q

R
i,3, Q

R
i,4

}
. (13)

Eqns. (11) and (13) make up the configuration triplet in
Eqn. (5) in index form

ui = (pi, U
G
i , U

R
i ), (14)

where ui is the configuration of the robot at the i-th pose pi
in the configuration space V defined in Eqn. (6). Note that
the generation elements u is dependent on x. Therefore we
can assume u = u(x) when defining constraint equations.

2) Stability Constraint: There are two constraints to con-
sider for static stability of a robot at a given pose: gait
stability and torque.

a) Gait stability: Let fgs be a function that calculates
the number of grasping points per pose, such that

fgs (x) = |
{
QG ∈ UG : QG 6= ∅

}
|, (15)

where for a configuration ui = (pi, U
G
i , U

R
i ), UGi ={

QGi,1, Q
G
i,2, Q

G
i,3, Q

G
i,4

}
. When expressed as a constraint

where a minimum of Cgs grasping points is required per pose,
this can be written as

G(x) = Cgs − fgs (x). (16)

Based on [23], we recommend Cgs = 3, which maintains
a minimum of three contact points for stability.

b) Torque constraint: Let f ts be a function that cal-
culates torque for a given configuration such that f ts =
ga(u), where ga is a user-defined function which calculates
torque requirements based on the robot’s configuration u. An
estimation of torque, based on calculation of the grasping
area using the Shoelace formula[26] is proposed in this
model to significantly improve calculation times. Hence ga
can represent a function that calculates the maximum grasp
area among all possible grasp combinations at configuration
u. This constraint can then be written as

G(x) = Cts − f ts(x) (17)

where a suitable value of Cts (m2) should be chosen based on
the capability of the robot’s actuators. Based on simulated
experiments on four-limbed robot grasps, a grasping area
greater than 0.3 m2 is utilised in this paper to ensure static
stability of a configuration. Both constraints fgs and f ts are
applied to all configurations in V . The resultant set is

V ′ =
{
u ∈ V : fgs (u) and f ts(u)

}
, (18)

where V ′ is the set of all robot configurations around the
truss structure that are statically stable when grasping.

3) Connectivity Constraints: Two configurations in V ′, ui
and ui+1 are considered adjacent when their poses satisfy
|pi − pi+1| = 1 unit. Let gd be a function that returns a set
of adjacent configurations, then for configuration ui,

Uai = {ui ∈ V ′ : gd(ui, V
′)} (19)

where Uai is the set of all adjacent configurations to ui.

a) Connectivity via valid gait: In order for locomotion
to occur, adjacent configurations should have common grasp-
ing points. Consider adjacent configurations ui and ui+1, and
let UG

′

i be a set containing the sets of common grasping
points for each limb between these configurations

uCi =
{
QGi,1 ∩QGi+1,1, ..., Q

G
i,nl
∩QGi+1,nl

}
, (20)

where nl is the number of limbs on the robot. Let gg be a
function that performs this operation for all elements in Uai ,
such that

UCi =
{
uC : gg(ui, U

a
i )
}
, (21)

where each element in UCi is the set of common grasping
points for each limb, at adjacent configurations to ui. Now
let fgc calculate the number of limbs with common grasping
points on a single element uCi , such that

fgc (uCi ) =
∣∣{Q ∈ uCi : Q 6= ∅

}∣∣ . (22)

We can constrain gait connectivity by imposing a Cgc -limb
grasp between common grasping points. This is defined as

G(x) = Cgc − fgc (x), (23)

where Cgc is the number of limbs required to stay attached
to the truss structure during locomotion. Similarly, it is
recommended that Cgc = 3 for gait stability.

b) Connectivity under torque constraints: In addition,
these common grasp points should be considered stable by
having contact points exceed Ctc m2 in grasp area. Let f tc
apply this constraint. Then

f tc : ga(uCi ) ≥ Ctc, (24)

where ga is the same function used in the static configu-
ration case. A grasp area of 0.09 m2 was chosen to ensure
torque constraints are met during locomotion. This value was
verified using stability analysis with multiple experiments.

c) Connected configuration space: A connectivity
graph is generated by considering all statically stable poses
in p ∈ V ′, and generating sets of adjacently connected poses
for each of them after considering constraints. For pose pi,

Ci =
{
u ∈ V ′ : fgc (UCi ), f tc(U

C
i ) and ui ∈ V ′

}
, (25)

where Ci is a set of configurations adjacent to ui that satisfies
connectivity constraints, and UCi = gg(ui, gd(ui, V

′)). Once
the connected pose sets are generated for all p ∈ V , each
element is expressed as an ordered pair in set W . Let fc be
a function that generates the set Ci for each configuration
ui in Eqn. (25). Then set W is defined as

W = {(u,C) : u ∈ V ′, fc : u→ C, C ⊂ V ′} . (26)

The set of statically-stable and connected poses W is
called the connected configuration space. From this set, we
can obtain graphs of connected configurations, represented
as sets of configurations G ⊆ V ′. Let Γ be the set of all sets
of connected configurations in the environment, then

Γ = {G1, G2, ..., Gk} . (27)



C. Deployment constraint

Let gd be a a function such that

Pd = {p ∈ P : gd(pr)} (28)

where pr is the proposed deployment area for the robot given
as a range in Cartesian co-ordinates, and Pd is the set of
poses p ∈ P that represents this area. Any connected graphs
of configurations in Γ that contain any starting poses in Pd
are therefore reachable from the starting poses. Hence we
can calculate the total reachable set of robot configurations
u ∈ V around the truss structure

R =
{
u ∈

⋃
R′
}
, (29)

where

R′ = {G ∈ Γ : Pd ⊂ G} . (30)

R is the set of all connected and statically stable configura-
tions, for robot size x. The total truss structure coverage is
the arbitrary union of all interaction points contained in R.
Table I summarises all functions and constraints needed to
model truss structure coverage.

Fcn. Const. Summary
gt Discretisation scheme for T
gc Body-truss collision constraint
gjkg Robot IK constraint for the j-th limb
gjkr Same as gjkr, no grasp requirement
ga Torque model based on grasp area
fgs Cgs Gait stability constraint
f ts Cts Torque constraints
fgc Cgc Connectivity under gait constraint
f tc Ctc Connectivity under torque constraint
gd pr Deployment constraint range pr

TABLE I: List of functions and constants used in the model.

IV. CASE STUDIES

Three case studies on different truss structures were used
to verify the model. The first study considers a simple ladder
structure (Fig. 4a) that is 1 m wide and whose rungs are
progressively spaced apart at 0.2, 0.4, 0.6, 0.8 and 1.0 m
from the bottom up. With a simple structure, this tests
the intuitiveness of the result of the model. The second
case study focusses on the top section of a truss structure
that tapers to a single point (Fig. 4b). Due to a narrow
grasp profile, this case study tests application of stability
constraints, and optimises the robot’s size accordingly. The
final case study covers the modelling and optimisation on
a transmission tower of approximately 26 m high (Fig.
4c). We used a mathematically-generated model based on
a 66 kV power transmission tower in Japan. This complex
structure contains varying gaps between trusses which will
test connectivity and stability constraints.

For all case studies in this section, we fix the body width
and height (xw = wh = 0.5 m) such that the optimisation

(a) Ladder (b) Top of a tower (c) Transmission tower

Fig. 4: Truss structures used in the following case studies.
problem is two-dimensional. The optimisation vector for the
upper and lower limbs respectively is

x =
[
xu xl

]
, (31)

with the objective function

fobj(x) = xu
2 + xl

2 (32)

to minimise the overall size of the robot, subject to bound
constraints

0.4 ≤ xu ≤ 0.8 0.4 ≤ xl ≤ 0.8 (33)

and

G1(x) = Cgs − fgs (x) G2(x) = Cts − f ts(x) (34)
G3(x) = Cgc − fgc (x) G4(x) = Ctc − f tc(x). (35)

where

Constraint Summary
Cgs = 3 Minimum grasping points at static pose
Cts = 0.3 m2 minimum grasping area
Cgc = 3 Minimum grasping points for gaits
Ctc = 0.09 m2 minimum grasping area for gaits

pr 0 ≤ z ≤ 1, deploy from ground to 1 m

And finally, the non-linear function definitions are

Function Summary
gt Body Position: Grid at δ0.1 m

Orientation: Planar to truss (δ π2 rad)
No inverted poses

gc Collisions calculated via geometry
gjkg IK for full 7-DoF limb with spherical wrist
gjkr Same as gjkg but without grasp constraint
ga Grasp area via Shoelace formula

We also consider that only the upper limbs can carry a
maintenance tool. This requires a slight redefinition of the
truss structure coverage Eqn. (7) is modified such that it only
counts the interaction points for limbs 1 and 2

Q′R1,2 =
{{
QR1 ∈ R

}
∪
{
QR2 ∈ R

}}
. (36)

This means

QR1,2 =
{
qb ∈

⋃
Q′R1,2

}
, (37)

and therefore

h1,2 =

∣∣QR1,2∣∣
|Q|

(38)



where h1,2 is the coverage as observed from limbs 1 and 2.
Any optimisation algorithm that handles discrete models

can be used to solve this problem. However, the exhaustive-
search method was used in this paper to visualise how an
optimisation algorithm will converge to a solution.

A. Ladder

We seek an optimally-sized robot that is able to cover
100% of a ladder-like structure (Fig. 4a). To enforce this
constraint, we define

G5(x) = 1− h1,2(x). (39)

Using the optimisation model, the optimally-sized robot
achieves full coverage of this ladder structure is

x =
[

0.8 0.6
]
. (40)

To confirm this result, we can refer to a contour map,
where objective function and truss structure coverage h1,2 are
overlaid on each other as a contour map, and plotted against
the optimisation variables xu and xl (Fig. 5a). The optimised
solution is closest to the bottom-left most point of the plot
(the origin), which is observed to be correct. The result shows
that the total arm span (height) of the robot required to bridge
the 1 m gap between the rungs is 0.8 + 0.5 + 0.6 = 1.9 m.

B. Top Section of a Tower

For case study of the top of a tower (Fig. 4b), the same
assumptions apply from the ladder case study. The optimally-
sized robot that achieves full coverage of this structure is

x =
[

0.46 0.28
]
. (41)

Again to confirm this result, we refer to the contour map
for this problem (Fig. 5b). This shows it is more efficient
to increase the size of the upper limbs for increasing truss
structure coverage, due to the tapering nature at the top,
decreasing grasp area and therefore grasp stability of the
robot. This information is useful when determining the cost-
benefits of sizing limbs during the design phase of a robot.

C. Whole Transmission Tower

In this case study of a whole power transmission tower
(Fig. 4c), the model is analysed in two parts: coverage
modelling, and optimisation results.

1) Coverage modelling: With the model R(x), all reach-
able interaction points on the structure are determined at
varying lengths of the upper and lower limbs (xu = xl
in the figure). In addition, the coverage redundancy can be
calculated, as observed by the colouring of the interaction
points on the tower. Darker regions indicate interaction points
that are reachable but highly constrained.

In this tower model, the beam positions are less dense as
height increases, hence there are larger gaps between beams
in the middle of the tower below the cage. This is why in
this result, we see that at shorter limb lengths, the robot is
incapable of bridging the gaps between beams in the middle
of the tower. In addition, we observe that coverage does
not increase significantly beyond 40 cm limb length because

grasping area decreases at the top of the tower. This indicates
that cost-effectiveness for robot size increase versus coverage
peaks at approximately this point.

2) Optimisation: In this example, we apply a 99.5%
coverage constraint with only upper limbs can carrying the
maintenance tool

G5(x) = 0.995− h1,2(x). (42)

With these constraints, the optimised robot size is

x =
[

0.55 0.33
]
, (43)

This results in a total robot arm span (height) of 1.6 m when
including the 0.5 m tall body. Fig. 5c shows the contour
map of truss structure coverage h1,2(x), which shows the
optimum solution to be correct.

V. CONCLUSION

We have proposed a model that can optimise the overall
coverage of a multi-limbed robot navigating a truss structure.
Utilising the representation methods, the model was broken
down into fundamental equations which can be expressed
in set notation. The simple, yet detailed representation
of the problem allows the application of specialised truss
structure coverage constraints in addition to other standard
constraints, such as static and gait stability, grasp redundancy
and targetted area coverage. The model is applied as an
optimisation problem, such that when solved, represents the
most optimised robot that satisfies all constraints for a truss
structure. This is an alternate approach to the optimisation of
a the design of a robot, where the proposed model specialises
in detailed coverage of truss structure.

The case studies show how the model can be applied in
different scenarios of varying complexity and size. In each
study, the optimised solution for each robot is verified with
contour maps. By visualising the truss structure coverage
model, the design process can be optimised as observed in all
case studies. This information is valuable for evaluating the
cost-effectiveness of design changes regarding limb sizing.

Future work for this model includes minimising the effects
of discretised optimisation by improving the efficiency of
the model. This can be achieved by reducing the memory
footprint in higher-dimensional problems, and improving
the area function ga, as this function is computationally
expensive for truss structures with many interaction points.
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