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Abstract— In this paper, we propose a real-time deep learning
approach for determining the 6D relative pose of Autonomous
Underwater Vehicles (AUV) from a single image. A team of
autonomous robots localizing themselves in a communication-
constrained underwater environment is essential for many
applications such as underwater exploration, mapping, multi-
robot convoying, and other multi-robot tasks. Due to the
profound difficulty of collecting ground truth images with
accurate 6D poses underwater, this work utilizes rendered
images from the Unreal Game Engine simulation for training.
An image-to-image translation network is employed to bridge
the gap between the rendered and the real images producing
synthetic images for training. The proposed method predicts
the 6D pose of an AUV from a single image as 2D image
keypoints representing 8 corners of the 3D model of the AUV,
and then the 6D pose in the camera coordinates is determined
using RANSAC-based PnP. Experimental results in real-world
underwater environments (swimming pool and ocean) with
different cameras demonstrate the robustness and accuracy
of the proposed technique in terms of translation error and
orientation error over the state-of-the-art methods. The code is
publicly available.1

I. INTRODUCTION
The ability to localize is crucial to many robotic applica-

tions. There are several environments where keeping track
of the vehicle’s position is a challenging task; particularly in
GPS-denied environments with limited features. A common
approach to address the localization problem is to use intra-
robot measurements for improved positional accuracy – an
approach termed Cooperative Localization (CL) [1]. Central
to CL is the ability to estimate the relative pose between the
two robots; this estimate can then be utilized to improve the
absolute localization based on the global pose estimates for
one of the two robots. A video overview is also available
online1.

In this paper, we propose and evaluate a deep pose
estimation framework for underwater relative localization,
called DeepURL. The primary application motivating this
work is underwater exploration and mapping by a team of
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Fig. 1: Two Aqua2 vehicles collecting images over a reef
require relative localization to efficiently cover the area.

autonomous underwater vehicles (AUVs) with a focus on
shipwreck and underwater cave mapping; environments that
are challenging to most existing localization methodologies
(e.g., visual and visual/inertial-based systems [2], [3]). Other
applications include convoying [4], environmental assess-
ments [5], informative navigation [6], and inspections.

The proposed methodology draws from the rich object
detection research and is adapted to the unique conditions
of the underwater domain. Traditionally, 6D pose estimation
(3D position and 3D orientation) is performed by match-
ing feature points between 3D models and images [7]–
[10]. While these methods are robust when objects are
well textured, they perform poorly when objects are fea-
tureless or textureless. In the underwater domain, partic-
ulates in the water generate undesired texture smoothing.
Recent approaches [11]–[16] to estimate 6D poses using
deep neural network perform well on standard benchmark
pose estimation datasets such as LINEMOD [17], Occluded-
LINEMOD [18], and YCB-Video [13], but they require ei-
ther intensive manual annotation or a motion capture system.
To the authors’ knowledge, a readily applicable method for
collecting underwater training data with the corresponding
accurate 6D poses is not available. In this work, we focus
on estimating the 6D pose of an Aqua2 vehicle [19] (shown
in Fig. 1). The observer is either another Aqua2 robot or an
underwater handheld camera. The proposed method utilizes
the Unreal Engine 4 (UE4) [20] with a 3D model of the
Aqua2 robot swimming, projected over underwater images
to generate training images with known poses for the pose
estimation network. Dissimilarity in images arising from
intrinsic factors such as distortion differences from different
cameras, external factors such as color-loss, poor visibility
quality, or the surroundings, hampers the performance of
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classical deep learning-based 6D pose estimation methods
in the underwater domain. CycleGAN [21] was employed
to transform UE4 rendered images to image sets used for
training with varying in appearance, similar to real-world
underwater images.

Using a modified version of YOLOv3 [22] to detect an
object bounding box, the proposed network produces robust
6D pose estimates by combining multiple local predictions of
2D keypoints that are projections of 3D corners of the object.
Only grid cells inside the detected bounding box contribute to
the selection of 2D keypoints along with a confidence score.
Using the predictions with confidence, the most dependable
2D keypoint candidates for each 3D keypoint are selected to
yield a set of 2D-to-3D correspondences. These selected 2D
keypoints are used in the RANSAC-based PnP [23] algorithm
to obtain a robust 6D pose estimate.

The proposed framework has been tested in different
environments – pool, ocean – and different platforms, in-
cluding an Aqua2 robot and GoPro cameras, demonstrating
its robustness. The main contributions are as follows:

• A 6D pose prediction network that predicts object
bounding boxes and eight keypoints in image coordi-
nates. These 2D keypoints are then used in 2D-to-3D
correspondence to estimate 6D pose.

• We demonstrate the effective use of rendered image
augmentation2 in 6D pose prediction, eliminating the
need for ground truth labeling in real images. Uti-
lizing image augmentation from the rendered to the
underwater environment, the pose prediction network
becomes invariant to color-loss, texture-smoothing, and
other domain-specific challenges.

• We publish a dataset of the Aqua2 robot captured in
the ocean and swimming pool to further research in the
underwater domain3.

The next section reviews related works. Section III in-
troduces the proposed method, including the synthetic data
generated for training, and the pose estimation method.
Section IV presents first the ground truth data acquisition
used exclusively for testing, then quantitative results from
different datasets together with a comparison with other
methods are discussed. Finally, we conclude the paper with
future work in section V.

II. RELATED WORK
In this paper, we focus on 6D pose estimation using

RGB images without access to a depth map. RGB-D based
methods [24]–[26] are not applicable underwater given the
attenuation of infrared light at a very short distance. The
classical approach for 6D object pose estimation involves
extracting local features from the input image, matching
them with features from a 3D model to establish 2D-to-
3D correspondences from which a 6D pose can be obtained
through the PnP algorithm [7], [8], [10], [27]. Previous

2Traditionally Generative Adversarial Networks (GAN) [21] use the term
image translation for this operation, however, the term translation can be
confusing for a robotics application.

3https://afrl.cse.sc.edu/afrl/resources/datasets/

work studied local feature descriptors invariant to changes in
scale, rotation, illumination, and viewpoints [28], [29]. Even
though these feature-based techniques can handle occlusions
and scene clutter, they require sufficient texture to compute
local features. To deal with poorly-textured objects, some
efforts focused on learned feature descriptors using machine
learning techniques [30], [31].

In recent years, pose estimation research has been dom-
inated by frameworks utilizing deep neural network. These
methods can be broadly classified into two categories: ei-
ther regressing directly to 6D pose estimates [11], [13], or
predicting 2D projections of 3D keypoints on an image and
then obtaining pose via PnP algorithm [14], [15]. Xiang et
al. [13] estimate the object center in the image with the
distance of the center used for estimating the translation and
the predicted quaternions for object rotations. Peng et al. [32]
used a pixel-wise voting network to regress pixel-wise unit
vectors pointing to the keypoints and used these vectors to
vote for keypoint locations using RANSAC. Recent works
[33]–[35] researched on post-processing to refine the initial
pose estimates from the first step. Li et al. [36] disentangled
the pose to predict rotation and translation separately from
two different branches to increase accuracy.

Recent approaches [37], [38] for pose estimation focus on
local patches belonging to the object rather than producing
a single global prediction. The work of Hu et al. [16]
is closest to our approach in terms of using local image
patches which also learns a semantic segmentation mask
to select multiple keypoint locations from local patches
belonging to an object and providing those inputs to the
PnP algorithm. Regarding pose estimation using synthetic
datasets, Rozantsev et al. [39] used a two-stream network
trained on a synthetic and real dataset, and introduced loss
functions that prevent corresponding weights of two streams
from being too different from each other. Rad et al. [40]
proposed a method that learns a feature mapping from real to
synthetic datasets, and during inference transfers the features
of real images to synthetic and infers pose using synthetic
features. Some work has been done using a deep learning
framework for Aqua2 vehicle detection that enabled visual
servoing [4]. Koreitem et al. [41] used rendered images for
pose estimation based visual tracking of Aqua2, and our
approach outperforms their approach in terms of 6D pose
estimation accuracy.

Our work employs CycleGAN [21], a type of Generative
Adversarial Network (GAN), to generate a synthetic dataset
for training. GANs, introduced by Goodfellow et al. [42], are
used to generate images through adversarial training where
a generator attempts to produce realistic images to fool a
discriminator which tries to distinguish if the image is real
or generated. CycleGAN [21] is used for unpaired image-
to-image translation even in absence of corresponding real-
generated image pair. The main idea of CycleGAN is that
if an image is translated from one domain to another and
translated back, the resulting image should resemble the
original image.

https://afrl.cse.sc.edu/afrl/resources/datasets/


Fig. 2: In training (outlined in red), the rendered images are translated to the synthetic images resembling Aqua2 swimming
in a pool or a ocean environment. The synthetic images are then fed to a common encoder, which is connected to two decoder
streams: Detection Decoder (object detection) and Pose Regression Decoder (6D pose regression). Only in inference (outlined
in purple), are the predicted 2D keypoint projections of 8 corners of the 3D Aqua2 model processed and utilized to obtain
a 6D pose using the RANSAC-based PnP algorithm.

III. THE PROPOSED SYSTEM

Figure 2 shows an overview of the proposed system. In
the training process, UE4 renders a 3D model of Aqua2
with known 6D poses projected on top of underwater ocean
images. The feature space between real underwater and
rendered images is aligned by transferring the rendered
images to target domains (swimming pool and ocean) using
CycleGAN [21], an image-to-image translation network.

The next stage consists of a Convolutional Neural Network
(CNN) that predicts the 2D projections of the 8 corners of
the object’s (Aqua2) 3D model, similar to [14], [15] and
an object detection bounding box. Even though [14], [15]
divide an image into grid cells, they use global estimates
of 2D keypoints for the object with the highest confidence
value. In our approach, each grid cell inside the bounding
box predicts the 2D projections of keypoints along with their
confidences focusing on local regions belonging to the object.
These predictions of all cells are then combined based on
their corresponding confidence scores using RANSAC-based
PnP during 6D pose estimation.

A. Domain Adaptation

We employ CycleGAN [21] for unpaired image-to-image
translation by learning functions to map the UE4 domain R
to the target domain T . We use generators G and F to transfer
domains: G : R −→ T and F : T −→ R. Discriminator, DR,
is designed to distinguish between rendered images in R,
and augmented fake images F (T ). Discriminator, DT , aims
to separate target images in T and augemented fake images
G(R). To improve image-to-image translation in CycleGAN,
cycle consistency is maintained by ensuring the reconstructed
images F (G(R)) ≈ R in addition to the adversarial loss. To
calculate adversarial loss, G tries to generate G(R), which
is so similar to T that can fool the discriminator DT . The

loss for G and DT is:

LG(G,DT , R, T ) = Et∼pdata(t)[logDT (t)]+

Er∼pdata(r)[log(1−DT (G(r))]
(1)

where t ∼ pdata(t) and r ∼ pdata(r) denotes the data distribu-
tion in T and R respectively, and E is the loss function,
which is L1-norm in our approach. Similarly we derive
LR(F,DR, T,R) following Eq. 1. The cycle consistency loss
Lcyc is defined as:

Lcyc(G,F ) = Er∼pdata(r)[||F (G(R))− r||1]+

Et∼pdata(t)[||G(F (t))− t||1]
(2)

In our proposed method, there are two target domains:
swimming pool, Tsp and an open-water ocean environment,
Tm. Therefore, we train two instances of CycleGAN(two
generators), G1 : R −→ Tsp and G2 : R −→ Tm. Fig. 3 shows
the CycleGAN training overview along with synthetic data
generation.

B. 6D Pose Estimation

The proposed network consists of an encoder, Darknet-
53 [22], and two decoders: Detection Decoder and Pose
Regression Decoder. The detection decoder detects objects
with bounding boxes, and the pose regression decoder re-
gresses to 2D corner keypoints of the 3D object model. The
decoders predict the output as a 3D tensor with a spatial
resolution of S × S and a dimension of Ddet and Dreg,
respectively. The spatial resolution controls the size of an
image patch that can effectively vote for object detection
and for the 2D keypoint locations. The feature vectors are
predicted at three different spatial resolutions. The decoder
stream detects features with multiple scales via upsampling
and concatenation with a depth of final layer, Ddet. The
pose regression stream also has a similar architecture, but
the final depth layer is maintained to be Dreg. Predicting in



Fig. 3: (a) CycleGAN learning process is shown. CycleGAN
learns two mapping functions; G : R −→ T and F :
T −→ R with two discriminators, DR and DT . (b) Only
using generator G, we perform image-to-image translation
of rendered images R to target images T .

multiple spatial resolutions with upsampling helps to obtain
semantic information at multiple scales using fine-grained
features from early on in the network.

Object Detection Stream: The object detection stream
is similar to the detection stream of YOLOv3 [22] which
predicts object bounding box. For each grid cell at offset
(cx, cy) from the top left corner of the image, the network
predicts 4 coordinates for each bounding box px, py, pw, ph.
Following [22], we use 9 anchor boxes obtained by k-means
clustering on COCO dataset [43] of size (10 × 13), (16 ×
30), (33 × 23), (30 × 61), (62 × 45), (59 × 119), (116 ×
90), (156 × 198), (373 × 326) divided among three scales.
The width and height are predicted as the fraction of the
anchor box priors aw, ah and the actual bounding box values
are obtained as

bx = σ(px) + cx

by = σ(py) + cy

bw = awe
pw

bh = ahe
ph (3)

where σ represents the sigmoid function. The sum of square
of error between the ground truth t∗ and coordinate predic-
tion t̂∗ is used as the loss function. The ground truth values
t∗ can be obtained by inverting equation Eq. (3). The object
detection stream also predicts the objectness score of each
bounding box by calculating its intersection over union with
anchor boxes and class prediction scores using independent
logistic classifiers as in [22]. The total object detection loss
Ldet is the sum of coordinate prediction loss, objectness score
loss, and class prediction loss. The total object detection loss
was introduced by Redmon et al. [44] to which we refer for
a complete description.

Pose Regression Stream: The pose regression stream pre-
dicts the location of the 2D projections of the predefined 3D
keypoints associated with the 3D object model of Aqua2. We

(a) (b)

Fig. 4: (a) The object detection stream predicts the bounding
box and assigns each cell inside the box to the Aqua2 object.
(b) The regression stream predicts the location of 8 bounding
box corners as 2D keypoints from each grid cell.

use 8 corner points of model bounding boxes as keypoints.
The pose regression stream predicts a 3D tensor with size
S × S ×Dreg. We predict the (x, y) spatial locations for the
8 keypoint projections along with their confidence values,
Dreg = 3× 8.

We do not predict the 2D coordinates of the 2D keypoints
directly. Rather, we predict the offset of each keypoint from
the corresponding grid cell as in Fig. 4(b) in the following
way: Let c be the position of grid cell from top left image
corner. For the ith keypoint, we predict the offset fi(c) from
grid cell, so that the actual location in image coordinates
becomes c + fi(c), which should be close to the ground
truth 2D locations gi. The residual is calculated as

∆i(c) = c+ fi(c)− gi (4)

and we define offset loss function, Loff, for spatial residual:

Loff =
∑
cεB

8∑
i=1

||∆i(c)||1 (5)

where B consists of grid cells that fall inside the object
bounding box and ||.||1 represents L1-norm loss function,
which is less susceptible to outliers than L2 loss. Only
using grid cells falling inside the object bounding box for
2D keypoint predictions focuses on image regions that truly
belong to the object.

Apart from the 2D keypoint locations, the pose regression
stream also calculates the confidence value vi(c) for each
predicted point, which is obtained through the sigmoid func-
tion on the network output. The confidence value should be
representative of the distance between the predicted keypoint
and ground truth values. A sharp exponential function of the
2D euclidean distance between prediction and ground truth
is used as confidence. The confidence loss is calculated as

Lconf =
∑
cεB

8∑
i=1

||vi(c)− exp(−α ||∆i(c)||2)||1 (6)

where ||.||2 denotes euclidean distance or L2 loss and pa-
rameter α defines the sharpness of the exponential function.
The pose regression loss of Eq. (8) takes up the form

Lreg = λoffLoff + λconfLconf (7)



For numerical stability, we down-weight the confidence
loss for cells that do not contain objects by setting λconf to
0.1, as suggested in [44]. For the cells that include the object,
λconf is set to 5.0 and λoff to 1. Therefore, the total loss of
the network is:

L = Ldet + Lreg (8)

(a) (b)

(c) (d)

Fig. 5: Inference strategy for combining pose candidates.
(a) Grid cells inside the detection box belonging to Aqua2
object overlaid on the image. (b) Each grid predicts 2D
locations for corresponding 3D keypoints shown as red dots.
(c) For each keypoints, 12 best candidates are selected based
on the confidence scores. (d) Using 12 × 8 = 96 2D-to-
3D correspondence pairs and running RANSAC-based PnP
algorithm yield accurate pose estimate as shown by the
overlaid bounding box.

C. Pose Refinement

During inference, the object detection stream of our
network predicts the coordinate locations of the bounding
boxes with their confidences and the class probabilities for
each grid cell. Then, the class-specific confidence score is
estimated for the object by multiplying the class probability
and confidence score. To select the best bounding box, we
use non-max suppression [45] with an IOU threshold of 0.4
and a class-specific confidence score threshold of 0.3.

Simultaneously, the pose regression stream produces the
projected 2D locations of the object’s 3D bounding box,
along with their confidence scores for each grid cell, as
shown in Fig. 5-b. The 2D keypoint predictions for grid cells
that fall outside of the bounding box (Fig. 5-a) from the
object detection stream are filtered out. In an ideal case, the
remaining 2D keypoints should cluster around the object cen-
ter. 2D keypoints that do not belong to a cluster are removed
using a pixel distance threshold of 0.3 times image width.

The keypoints with confidence scores less than 0.5 are also
filtered out. To balance the trade-off between computation
time and accuracy, we empirically found that using the 12
most confident 2D predictions for each 3D keypoint (Fig. 5-
c) produces an acceptable pose estimate after RANSAC-
based PnP [23]. Hence, we employ RANSAC-based PnP [23]
on 12× 8 = 96 2D-to-3D correspondence pairs between the
image keypoints and the object’s 3D model to obtain a robust
pose estimate, as shown in Fig. 5-d.

D. Implementation Details

To create the synthetic dataset, we train the CycleGAN
following the training procedure of [21]. We let the training
continue until it generated acceptable reconstruction. Once
CycleGAN can reasonably reconstruct for the target domain,
we use the model weights of that epoch to translate all
rendered images to synthetic images. Then, the synthetic
images are scaled to 416 × 416 resolution maintaining the
aspect ratio by padding zeros for training. During inference,
no augmentation is required, and the real images are directly
fed to the network.

The CNN is trained for 125 epochs on the synthetic
dataset, and the first 3 epochs are part of a warmup phase,
where the learning rate gradually increases from 0 to 1e-
4. We utilized the SGD optimizer with a momentum of 0.9
and a piecewise decay to decrease the learning rate to 3e-
5 and 1e-5 at 60 and 100 epochs, respectively. To avoid
overfitting, minibatches of size 8 were produced by applying
data augmentation techniques, including randomly changing
hue, saturation, and exposure of the image up to a factor of
1.5. In addition, images were randomly scaled, and affine
transformed by up to 25% of the original image size.

IV. EXPERIMENTS

This section describes first the datasets used, and then
results of the inference with the real Aqua2 robot swimming
in both a pool and the open ocean at Barbados.

A. Datasets Description

Training - Rendered/Synthetic Dataset: contains images
obtained by rendering an Aqua2 robot swimming with flipper
motion using UE4 and overlaying the resulted 3D model
over random underwater images. Rather than just overlaying
the 3D model of Aqua2, we simulate the flipper motion
to generate images with the flippers in various realistic
positions. This flipper motion makes the neural network
independent of the flipper position. The synthetic dataset is
obtained by the image-to-image translation network based
on CycleGAN described in III-A to create photo-realistic
images. The rendered dataset contains 37K images with
random depth between 0.75 m and 3.0 m and orientations
ranging from −50 to 50 degrees for roll, −70 to 70 degrees
for pitch, and −90 to 90 degrees for yaw.

Testing - Pool Dataset: To generate our pool dataset,
we deployed two robots: one robot observing the other
with a vision-based 2D fiducial marker (AR tag4) mounted

4http://wiki.ros.org/ar_track_alvar

http://wiki.ros.org/ar_track_alvar


Translation
Error

Orientation
Error

REP-10px
Accuracy

ADD-0.1d
Accuracy FPS

Tekin et al. [15] 0.278m 18.87◦ 9.33% 23.39% 54
PVNet [32] 0.486m 24.55◦ 23.22% 43.09% 37
DeepURL 0.068m 6.77◦ 25.22% 57.16% 40

TABLE I: Translation and Orientation errors (the lower the
better) along with REP-10px, ADD-0.1d accuracy (the higher
the better) and runtime comparison for the pool dataset

on the top used to estimate ground truth during two pool
trials in indoor and outdoor pools, as shown in Fig. 6(a-d).
Approximately, 11K images were collected with estimated
localization, provided from the pose detection of the AR tag
and the relative transformation of the mounted tag to the real
robot. The dataset contains images with a distance between
two Aquas ranging between 0.5m to 3.5m.

Testing - Barbados 2017 Dataset: The Barbados 2017
Dataset consists of 188 real images collected during under-
water field trials off the west coast of Barbados used in [41],
see Fig. 6(i-l). The images are captured from an Aqua2
robot’s onboard camera. 6D pose of the robot in each of these
images is obtained using a custom-built annotator, which
allows the user to mark keypoints on the robot assigned
from the CAD model. The annotator then iteratively fits a
wireframe to the robot using its known dimensions.

Testing - Barbados GoPro Dataset: We collected images
underwater in Barbados of an Aqua2 robot swimming over
coral reefs using a GoPro camera, which differ significantly
from the images collected using another Aqua2 in terms of
hue, image size, and aspect ratio (see Fig. 6(e-h)). Given that
ground truth is unavailable for these images, this dataset was
only used to evaluate the proposed method qualitatively.

B. Evaluation Metrics

To evaluate the pose estimation capability of the proposed
system, we calculated the mean translation error as the
Euclidean distance between the predicted and the ground
truth translation. Let (Rot, trans) and (R̂ot, ˆtrans) be the
ground truth and predicted rotation matrices and translation,
respectively. For individual angle errors in terms of yaw, roll,
and pitch, we decomposed the rotation matrices Rot and R̂ot
into Euler angles and calculated their absolute difference.
The total orientation error is represented as Eq. (9), where
tr represents the trace of the matrix and the orientation error
is in the range of [0, π].

φ(Rot, R̂ot) = arccos
tr(RotT R̂ot)− 1

2
(9)

To evaluate the pose accuracy, we use standard metrics -
namely- 2D reprojection error [46] and the average 3D dis-
tance of the model vertices, referred to as ADD metric [13],
[14]. In the case of reprojection error, we consider the
pose estimate as correct if the average distance between 2D
projections of 3D model points obtained using predicted and
ground-truth poses is below a 10 pixels threshold, referred
to as REP-10px. Generally, a 5-pixel threshold is employed,
but we consider a threshold of 10 pixels to account for

uncertainties in ground truth due to the AR tag-based pose
estimation. The ADD metric takes pose estimate as correct if
the mean distance between the coordinates of the 3D model
vertices transformed by estimated and ground truth pose fall
below 10% of the model diameter, referred to as ADD-0.1d.
We also report the inference time of the algorithm in terms
of frames per second (FPS) on an RTX 2080 GPU.

C. Experimental Results

Evaluation on the Pool Dataset: We compare our method
with the state-of-the-art method of Tekin et al. [15] and
PVNet [32] trained on a synthetic dataset and tested on
real pool dataset. Translation and rotation errors along with
REP-10px and ADD-0.1d accuracy for the pool dataset are
presented in Table I, as well as the runtime comparisons on
Nvidia RTX 2080. DeepURL outperforms both the method
of Tekin et al. [15] and PVNet [32] in terms of rotation
and translation errors along with REP-10px and ADD-0.1d
accuracy. Moreover, the runtime performance is realtime,
outperforming PVNet [32] and only slightly slower than that
of Tekin et al. [15]. The improved performance comes from
two factors: 1) the use of a better detection pipeline and
2) bounding box based keypoint sampling introduced in this
paper. Whereas Tekin et al. [11] only used the keypoints with
the highest confidence, our bounding box based keypoint
sampling allows the selection of more appropriate keypoints
using RANSAC-based PnP. PVNet [32], compared to Deep-
URL, performed slightly inferior on REP-10px and ADD-
0.1d metrics and produced significantly higher translation
and orientation errors.

Figure 7 shows the translation and orientation error statis-
tics of an Aqua2 robot in the pool dataset. It is evident that
the proposed method performs well across all distances from
camera (0.5m-3.5m). Interestingly, at very close distance, the
method experiences higher orientation error due to the 2D
keypoints of Aqua2 not being precisely selected by the pose
regression decoder.

Evaluation on the Barbados 2017 Dataset: We report the
performance of our system on Real Barbados 2017 dataset in
terms of translation and rotation errors as shown in Table II.
DeepURL performs significantly better on translation error
and orientation error compared to the method of Koreitem
et al. [41].

Impact of Domain Adaptation: To understand the ef-
ficacy of using CycleGAN based domain adaptation, we
trained DeepURL only on rendered images. Even though the
network performed well on the validation set consisting of
rendered images only, without training on synthetic dataset
it was not able to generalize to real-world pool images.

Translation
Error

Orientation
Error

Roll
Error

Pitch
Error

Yaw
Error

Koreitem et al. [41] 0.72m 17.59◦ 11.87◦ 4.59◦ 12.11◦
DeepURL 0.31m 11.98◦ 9.64◦ 3.30◦ 5.43◦

TABLE II: Translation and Rotation errors for the Barbados
2017 dataset [41]



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 6: Sample detections from the different datasets. Green square is the 2D detection box, while the red wireframe is the
projection of the 3D bounding box of the robot. Top row: Pool dataset, observed Aqua2 vehicle carries a AR tag to generate
ground truth estimates; observing robot is another Aqua2. Middle row: GoPro footage during deployments in Barbados
in January 2020, observed robot has no additional components, the observing camera is a GoPro 7 camera. Bottom row:
Barbados 2017 dataset [41], observed robot is equipped with a Ultra-Short Baseline (USBL) modem, the observing robot is
an Aqua2 vehicle.

(a) (b)

Fig. 7: Boxplot summarizing the error statistic of (a) trans-
lation and (b) orientation in Pool Dataset with respect to
variable distance from camera.

The intuition is that the real-world underwater images differ
significantly from rendered images in terms of texture, color
and appearance. Thus, creating image sets with different ap-
pearance and texture helps extensively in the training process
by reducing over-fitting and increasing generalization.

Failing Scenarios: Predictions of pose estimate might
be wrong either when the detection stream fails to predict
the object detection box, therefore, there is not enough
points for the RANSAC-based PnP algorithm (at least six
2D-to-3D correspondences are required), or PnP did not

converge. These detection failure scenarios are inherent in
YOLOv3 architecture. The system may also fail for position
or orientation not introduced in the training scenarios, such as
translation beyond 3.5m or orientation beyond the rendered
range described in Section IV-A.

V. CONCLUSION

In this work, we presented a system for 6D pose estimation
of an autonomous underwater vehicle for relative localization
underwater. The system learns to predict the 6D pose without
the need for any real ground truth, which enables pose
estimation in an environment where ground truth is difficult
to acquire. We also present a detection bounding box based
keypoint sampling strategy that is more robust to related
work [15], [32] which leads to a better estimate of the pose
of the observed robot, up to an order of magnitude is some
cases; see Table I.

Currently, the proposed network is being ported to an
Intel Neural Compute Stick 2 (Intel NCS2)5 and an NVidia
Jetson TX2 Module6 in order to deploy on an Aqua2 or a
BlueROV2 vehicle. The above two platforms were selected
based on their performance [47] and compatibility with the

5https://software.intel.com/en-us/
neural-compute-stick

6https://developer.nvidia.com/embedded/jetson-tx2

https://software.intel.com/en-us/neural-compute-stick
https://software.intel.com/en-us/neural-compute-stick
https://developer.nvidia.com/embedded/jetson-tx2


proposed vehicles. Furthermore, the DeepURL framework
will be integrated with the proprioceptive sensors of each
robot (IMU and depth) and either the USBL positioning of
the observer or the Visual-Inertial estimator [48] to recover
the pose of both robots in a global frame of reference.
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