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Abstract— LiDAR odometry is a fundamental task for vari-
ous areas such as robotics, autonomous driving. This problem is
difficult since it requires the systems to be highly robust running
in noisy real-world data. Existing methods are mostly local
iterative methods. Feature-based global registration methods
are not preferred since extracting accurate matching pairs in
the nonuniform and sparse LiDAR data remains challenging.
In this paper, we present Deep Matching LiDAR Odometry
(DMLO), a novel learning-based framework which makes the
feature matching method applicable to LiDAR odometry task.
Unlike many recent learning-based methods, DMLO explicitly
enforces geometry constraints in the framework. Specifically,
DMLO decomposes the 6-DoF pose estimation into two parts,
a learning-based matching network which provides accurate
correspondences between two scans and rigid transformation
estimation with a close-formed solution by Singular Value
Decomposition (SVD). Comprehensive experimental results on
real-world datasets KITTI and Argoverse demonstrate that
our DMLO dramatically outperforms existing learning-based
methods and comparable with the state-of-the-art geometry-
based approaches.

I. INTRODUCTION

Estimating ego-motion (a.k.a odometry) in dynamic and
complicated real-world environments is a vital task for
autonomous vehicles and robots. This task along with per-
ception system are prerequisites for subsequent path planning
tasks. These robots are often equipped with multiple sensors
such as cameras and LiDARs to perceive the surrounding
environment. Different from the camera, LiDAR not only can
provide high-precision 3D measurements but also is insen-
sitive to lighting conditions which makes it complementary
for camera-based systems. However, LiDAR point clouds are
sparse (usually consists of 32 or 64 lines) such that accurate
ego-motion estimation is difficult in its nature.

Estimating frame to frame translation and rotation is fun-
damental in a LiDAR odometry system [1], [2]. Traditional
methods can be roughly categorized into two types, iterative
closest-based local registration [3], [4], [5], [2] and feature-
based global registration [6], [7]. Feature-based methods first
find a set of correspondences between two scans and then
directly solve the best relative translation and rotation be-
tween them. However, due to the nonuniformity and sparsity
of the LiDAR point clouds, these methods often fail to find
enough high-precision matching pairs. Local methods are
more popular in odometry task. ICP variants [3], [4] solve
this problem by minimizing distances between closest points
in consecutive scans. NDT [5] transforms the scan-to-scan
problem to a point-to-distribution likelihood maximization
task which makes the registration more robust. To prevent
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Fig. 1. The key idea of our proposed DMLO method is to convert the
matching in sparse 3D space into (almost) dense 2D cylinder image. We
show the top 100 inliners predicted by DMLO in cylinder image(bottom)
and their corresponding 3D position in point cloud(top). Filtering by our
confidence, there are almost no outliers in the matching.

mismatches, LOAM [2] only aligns points in edge-line or
plane-surface. Nevertheless, the problem becomes unfriendly
for local methods when the pose variation is large and no
initial alignment is given. Furthermore, it is computationally
expensive, because it performs the nearest neighbor queries
iteratively.

Recently, some deep learning based methods [8], [9], [10],
[11], [12], [13] have excelled traditional methods in some 3D
estimation tasks. Notably, LO-Net [14] is the first successful
attempt toward learning-based LiDAR odometry. Neverthe-
less, LO-Net highly relies on the fitting power of CNN.
It simply inputs two successive scans, and directly output
the relative motion between them. The network is trained
in an end-to-end manner, and no geometric constraints are
imposed. Therefore, it is prone to over-fitting to the scene
and not interpretable to the failure cases.

Traditional feature-based LiDAR odometry method suffers
from inferior matching accuracy, while LO-Net cannot make
full use of the geometric constraints. Is there a method could
get the best of the world? Our answer is yes. The key idea
of our proposed method is to utilize the property that one
LiDAR scan is from a single viewpoint. Specifically, we
could encode all the information to a projected 2D image
without any information loss (as shown in Fig. 1). Based
on this encoding, our method first extracts grid-wise feature
vectors using CNN and compare the similarities in a local
region to get correspondences between different scans. We
additionally predict the confidence for every correspondence
to ease the selection of accurate pairs, since only three pairs
of matching is needed to solve the relative motion in 3D
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space. After that, the problem is converted to minimize the
distances between all matched pairs in 3D space which can
be simply solved by Singular Value Decomposition (SVD).
We conduct detailed ablation studies to justify the efficacy
of each component in our proposed approach. Finally, we
evaluate our method on the standard KITTI benchmark [15].
For the first time, we demonstrate global sparse matching is
feasible for LiDAR odometry task. We also test our proposed
method on the recent Argoverse [16] dataset. The encour-
aging results further demonstrate the universality of our
proposed method under different hardware configurations.

To summarize, our contributions are three folds:
• We propose a deep learning approach to extract high

confidence matching pairs from successive LiDAR
scans.

• Based on this powerful matching and confidence es-
timation method, we propose a simple yet effective
LiDAR odometry system named Deep Matching LiDAR
Odometry (DMLO).

• We test our proposed method on standard KITTI and a
recently proposed Argoverse dataset. Extensive results
demonstrate that our method is on par or even better
than traditional LiDAR odometry methods.

II. RELATED WORK

In this section, we will briefly review some closely related
work in LiDAR odometry area, then followed by some recent
works that utilize deep learning techniques for 3D estimation
tasks.

A. Local Iterative Methods

Local iterative methods have a long-standing history in
Simultaneous Localization and Mapping task (SLAM). The
basic idea is to adjust the transformation iteratively based
on local criteria fitting. The most classical method is Iter-
ative Closest Point (ICP) [3], [17]. It begins with a rough
initial alignment and iteratively estimates the optimal trans-
formation by minimizing the distance between the closest
point pairs. Despite its simplicity, it suffers from expensive
computational cost and sensitivity to noise data. Various
subsequent approaches [18], [19], [20], [21], [22], [23] are
devised to solve these problems. Fitzgibbonet al.[24] intro-
duced a robust kernel in ICP’s optimization to increase the
robustness. Bouazizet al.[25] used sparsity inducing norms
to deal with outliers and incomplete data. Generalized-ICP
(GICP) [4] unified point-to-point ICP and point-to-plane
ICP into a single probabilistic framework and shown better
performance. Instead of using explicit point to point corre-
spondences, others also tried to design more robust hand-
crafted criteria. Normal Distributions Transform(NDT) [5]
first fits a multivariate normal distribution to every voxel
in one scan. Then the registration problem is turned into
finding a transformation to maximize the probability of the
other scan. LiDAR Odometry And Mapping (LOAM) [2],
[26] extracts line and plane features instead of point-to-point
matching to reduce mismatches, and is currently the state-
of-the-art LiDAR SLAM method.

Albeit these local iterative methods are widely used,
a proper initialization close enough to global optima is
essential. Nevertheless, in the case of abrupt motion, this
assumption is usually violated, which may lead to inferior
results. Some other methods [27], [28], [29], [30] introduce
branch-and-bound (BnB) framework to guarantee global op-
timality. However, the computation complexity of full search
is usually unaffordable.

B. Global Sparse Registration

Global Sparse Representation is mainly based on local ge-
ometric descriptors[31], [32], Most of these works are based
on hand-crafted features. Some representative works include
Persistent Feature Histograms (PFH) [7], which describes
the curvature around a point by estimating surface normals
between neighbor points. Fast Point Feature Histograms
(FPFH) [6] is the faster version of it and can be used
in real-time applications. For these hand-crafted features,
variants of RANSAC is typically used to reject outliers and
then estimates the transformation matrix. Based on FPFH,
Fast Global Registration(FGR) [33] solves an optimization
problem with robust kernel which aims to suppress the
outliers. However, the sparsity and nonuniformity of LiDAR
point cloud make these hand-crafted representations prone to
noise and variation of scenes.

In contrast to these existing LiDAR keypoint methods, our
method directly calculates the matching between two scans
in a local area. We don’t need separate keypoint detector and
descriptor into two stages. Moreover, our method could nat-
urally output accurate confidence estimation, which enables
the subsequent outlier rejection task.

C. Deep-learning Methods

With the recent success of deep neural networks, CNN-
based methods also demonstrate their potential in 3D com-
puter vision applications. For example, [9], [8], [10] propose
a new unsupervised visual odometry(VO) framework which
trains the depth and ego-motion estimation simultaneously.
For the point cloud registration, feature-based methods [34],
[35], [36], [37] try to detect more accurate correspondences.
The other methods [38], [39] follow the direction of iterative
local methods which align two scans directly and outper-
form ICP variants. Compared with registration, odometry
problems are more challenging which requires much higher
accuracy under real noisy environments to prevent drifting. In
particular, Velaset al. [40] predicted pose using classification
by exhausting all possibilities, while LO-net [14] directly for-
mulates the odometry estimation as a numerical regression.
Both these works are not geometric interpretable, thus the
generalization on different configurations and scenes cannot
be guaranteed.

III. METHODS

In this section, we first give a brief overview of our
proposed Deep Matching Odometry (DMLO) method, and
then elaborate on each component in subsequent subsections.



Fig. 2. Overview of our DMLO structure. Given two point clouds, we first encode them into cylinder images as inputs for network. And then DMLO
predicts the correspondences in a coarse-to-fine manner. Then we convert the matching in cylinder image back to original 3D space, and then solve the
relative motion between two scans.

A. Overview

We depict our pipeline in Fig. 2. The full odometry system
consists of frame by frame relative pose estimation, and
various post-processing steps.

Different from previous work [14], [41], [42] which di-
rectly outputs the relative motion between two consecutive
frames by CNN, we propose a geometric sound method for
relative motion estimation. In particular, we first encode the
two consecutive scans (St−1, St) using cylinder encoding
method (Sec. III-B), then extract corresponding matching
using CNN (Sec. III-C). Next, the extracted matching points
are screened by Non-Maximum Suppression(NMS) and
RANSAC method to reduce redundancy and outliers(Sec. III-
D). Lastly, given the matching inliers, the relative pose
between frames can be easily solved via standard SVD
technique(Sec. III-D).

B. Cylinder Encoding

Point cloud from LiDAR is typically represented by a set
of sparse and unordered 3D points. Its unstructured nature
makes processing LiDAR data more challenging than 2D
images. Nevertheless, different from general 3D point cloud,
the LiDAR data in one frame is actually one snapshot from
one single view (a.k.a 2.5D data). This property leads us to
design a more compact and representation for LiDAR point
cloud than popular 3D convolution [43] or PointNet based
methods [44], [45]. We follow [46], [14] to project it to
a cylinder plane which renders the points to an ordered 2D
grids with regular spacing. This structured form can be easily
dealt with traditional CNN. Specifically, given the horizontal
and vertical angular resolution (∆θ,∆φ), a 3D point p =
(x, y, z) in Cartesian coordinates can be projected to grid
gp = (h,w) in the cylinder image, where

w = arctan2(y, x)/∆θ,

h = arctan2(z,
√
x2 + y2)/∆φ.

(1)

Due to the noise of LiDAR, there may be more than one
point in one grid. If this happens, we will keep the closest
point. For each grid g, we build two dimension features for
it: the point range r =

√
x2 + y2 + z2 and laser reflectivity

value returned. By this efficient encoding method, we convert
the sparse point cloud matching problem in 3D space into a
(almost) dense matching problem in 2D image.

C. Learning to Match Point Cloud by CNN

a) Feature Embedding Network: As shown in Fig. 2,
our feature embedding network is a Siamese fully convolu-
tional network with input size H ×W × 2 and output size
H
n ×

W
m ×C, where n,m are the network strides in vertical

and horizontal directions, respectively and C is the length of
output features. To accommodate large motion prediction, a
large maximum displacement D is needed. Thus we design
a coarse-to-fine cascade network structure as in optical flow
estimation. For the first coarse estimation network, we use 9
layers of plain 3× 3 convolution, and set n = 4, m = 8 and
D = 10. It corresponds to a region of 40×80 in the original
cylinder image, which is enough for large motion presented
in odometry estimation. In the second refinement network,
we use 2 layers of plain 3 × 3 convolution and 3 layers of
3 × 3 deformable convolution [47] to better fit the adaptive
receptive field needs for matching. Also we set n = m = 1
and D = 5 in the refinement network to preserve the finest
information.

As usual, we insert Batch Normalization (BN) [48] and
Leaky ReLU [49] layers between each convolution layer.
For each position in the resulted feature map, it represents
the feature of n×m patch in the original cylinder encoded
image. To calculate the cosine similarity, we first normalize
the feature xi,j as x̂i,j = xi,j/‖xi,j‖2. After that, a cross-
correlation layer [50] of range D×D is applied. We modify
the correlation layer can accept an additional offset (u, v) as
input so that it can be used the origin for the calculation of
the similarity matrix. Specifically, for xr

i,j is feature of i-th
row and j-th column in reference frame, its similarity matrix
Mu,v

i,j ∈ RD×D is calculated through

Mu,v
i,j (h,w) = (xr

i,j)
T · xt

i+u+h,j+v+w (2)

where h ∈ [−D−1
2 , D−12 ], w ∈ [−D−1

2 , D−12 ] and xt
i,j is

feature at grid (i, j) in the target frame.
Finally, we obtain a similarity matrix of size H

n ×
W
m ×D×

D. Based on the similarity matrix, we calculate the matching
offset for each position as elaborated in the following section.
The initial offsets output in the first coarse stage is used
as the origin of correlation for the second refinement stage
to enlarge the maximum predictable displacement while
keeping the computational cost affordable.



b) Matching Probability: In contrast to traditional key-
point descriptors which focus on global matching across
large pose variation. Odometry task only needs matching
within a relatively small local region. Consequently, we apply
a softmax transformation on the similarity matrix Mu,v

ij :

Qu,v
i,j (h,w) = softmax

(
Mu,v

i,j (h,w)
)
. (3)

By introducing the competition among neighborhood areas,
our matching method could fully utilize the hard examples
near the ground-truth, which is beneficial for improving the
accuracy of matching. Moreover, this makes our method
can not only handle featureless area, but also could assign
low confidence to the area of distinct but repetitive and
ambiguous patterns, which is crucial to accurate confidence
estimation.

c) Ground Truth Generation: For training, we only
have frame level 6-DoF tranformation matrix T. We need
to transform it into pixel level correspondence for training.
Firstly, for a grid (h,w) with range value D(h,w), we define
the inverse operation of Eqn. 1 as

z = D(h,w) · sin(h∆φ)

x = D(h,w) · cos(h∆φ) · cos(w∆θ)

y = D(h,w) · cos(h∆φ) · sin(w∆θ)

(4)

For brevity, we use Φ(·) to represent Eqn. 1 and Φ−1(·)
for Eqn. 4, and assume all 3D points coordinates as ho-
mogeneous. Given a point pr in reference frame, we can
regenerate p′r by

cr = Φ(pr) (5)

p′r = Φ−1(cr) (6)
pt = Tp′r (7)
ct = Φ(pt), (8)

where pr, cr are 3D point and its projected grid index in
reference scan, and pt, ct are the correspondence in the target
frame. Then correspondence (cr, ct) is used as training pairs
in the cylinder image. For every cr, our network predicts
ĉt. Then we use (p′r, p̂t) to solve the transformation matrix
between two scans.

Cylinder encoding described in Eqn. 1 actually uses the
center coordinates of a grid and range value in this grid to
represent the corresponding points in 3D space. This will
introduce inevitable quantization error since the point can
not always fall at the center of the grid. To reduce this
quantization error, we make an assumption that the range
within one grid remains constant. We could create a virtual
point p′r at the center of the grid (Eqn. 5 and 6). Then we
use the provided transformation matrix to transform it into
target scan (Eqn. 7) and project to cylinder image (Eqn. 8).
However, in some grid the range may greatly vary, thus
this assumption does not hold. The training process may be
affected by these noisy ground-truth. To remove these po-
tential inaccurate ground-truth, we mask out the grids which
have large range difference between the actual point in target
frame and the projected virtual point e = Dt(ct) − ‖pt‖2.

Fig. 3. We show the remaining points(red) which has less range difference
in the same cylinder grid. The enlarged area shows that we eliminate the
wall parallel to the beams while retaining the other side.

we only keep pairs (cr, ct) with e < 0.1(m) and remove
the others. As shown in Fig. 3, we actually mask the points
with small incident angles such as points on ground plane
far away from LiDAR, since a small perturbation may result
in large range error in these grids. By this way, we could
guarantee that the ground-truth used for training is accurate
with bounded quantization error.

d) Sub-pixel Loss and Confidence Estimation: As dis-
cussed in the previous paragraph, the projected grid ct
of the created virtual point may not be a integer. In this
section, we describe our sub-pixel prediction technique to
tackle this issue. For training, a bilinear sub-pixel loss [51]
is adopted to transform a correspondence ground truth to
distribution supervision. Let (x, y) be grid index in target
frame, (x̄i,j , ȳi,j) be ground-truth index for (i, j) grid in
reference frame and ∆x = |x̄i,j − x|, ∆y = |ȳi,j − y|, then
the ground-truth probability of grid (x, y), Pi,j(x, y) is:

Pi,j(x, y) =

{
(1−∆x)(1−∆y) ∆x < 1 or ∆y < 1
0, ∆x > 1 and ∆y > 1

(9)
Then the final sub-pixel loss is the cross entropy between the
predicted probability Qi,j and this ground-truth distribution
Pi,j :

L = −
∑
i,j

∑
x,y

Pi,j(x, y) log(Qi,j(x, y)) (10)

As shown in Eqn. 9, for any (x̄i,j , ȳi,j), only one 2 × 2
window should has non-zero probability. During inference,
we sum over each 2 × 2 window within the displacement
range, and treat the window W ∗

i,j with maximum Q∗i,j =∑
(x,y)∈Wi,j

Qi,j(x, y) as the predicted window. We first
normalize it by Q̂i,j(x, y) = Qi,j(x, y)/Q∗i,j . Then the final
predicted offsets x̂, ŷ are defined as:

x̂ =
∑

(x,y)∈Wi,j

x · Q̂i,j(x, y),

ŷ =
∑

(x,y)∈Wi,j

y · Q̂i,j(x, y).
(11)



Fig. 4. Visualization of our correspondences and confidence. Top to bottom:
cylinder image (reference frame), cylinder image (target frame), flow map
and confidence map.

We further treat Q∗i,j as the matching confidence for the grid
(i, j) in reference frame.

D. From Initial Matching to Relative Motion Estimation

a) Non-Maximal Suppression (NMS): We only need
high precision and spatial uniformly distributed correspon-
dences to solve a 6-DoF pose in 3D space. The original
matchings from CNN are redundant and spatially clustered.
Fortunately, as shown in Fig. 4, we have confidence esti-
mation for each matching pair. These estimated confidence
guides us to select good pairs for relative motion estimation.
Therefore, we apply non-maximal suppression(NMS) over
a fixed radius r around each point. Namely, we sort the
matching pairs by their confidence, and then iteratively find
the matching with the highest confidence and surppress the
other matchings within radius r. At last, we keep the top N
pairs (p′r, p̂t) with the highest matching scores.

b) Rigid Alignment Problem in 3D Space: After getting
the matching pairs, the problem becomes how to solve
the rigid transformation between two scans. Let P =
{p1,p2, ...,pN} ⊂ R3 and Q = {q1, q2, ..., qN} ⊂ R3

denote two matched point sets. We denote the 6-DoF trans-
formation matrix as T = {R, t | R ∈ SO(3), t ∈ R3}. The
objective function can be formulated as:

T∗ = argmin
T

1

N

N∑
i=1

‖qi −Tpi‖22. (12)

Fortunately, the solution to this problem T∗ can be given in
closed form by Singular Value Decomposition (SVD) [52]
as

R∗ = VUT , t∗ = −R∗p + q, (13)

where

p =
1

N

N∑
i=1

pi, q =
1

N

N∑
i=1

qi,

H =

N∑
i=1

(pi − p)(qi − q),

(14)

and the SVD of H is denoted as H = USVT . As a common
practice, RANSAC is used to reject outliers or the matchings
on non-stationary objects.

c) Other Components: As a complete odometry system,
we use a constant velocity model to predict ego-motion
when there are not enough inliers after RANSAC. Also
RangeNet++ [53] is used to remove moving objects to
reduce the adverse effect of moving objects in ego-motion
estimation. Finally, we maintain a local submap accumulated

by previous scans and refine the pose by a scan-to-map NDT
optionally.

IV. EXPERIMENTS

In this section, we report the results of our DMLO
method. We will briefly introduce the datasets we use first,
then followed by odometry results and registration results
under large motion. Finally, we conduct ablation studies to
demonstrate the impact of each component in our system.

A. Datasets
a) KITTI: The KITTI odometry benchmark [54], [15]

provides 4 camera images, Velodyne HDL-64E LiDAR
scans, and 6-DoF ground truth pose from a high accuracy
integrated GPS/IMU system. The dataset was recorded at
10fps when driving in highways, country roads and urban
areas. It is the most widely used LiDAR odometry bench-
mark in the literature.

b) Argoverse: Argoverse 3D tracking dataset [16] is a
recently proposed dataset tailored for autonomous driving.
It contains 360-degree images from 7 cameras, forward-
facing stereo cameras, 3D point clouds from LiDAR and 6-
DoF ego-localization for each timestamp. The whole dataset
consists of 100 sequences varying in length from 15 to
60 seconds collected in two US cities with more moving
objects than KITTI. Different from KITTI, the point cloud
is captured with two roof-mounted VLP-32 LiDAR sensors
with an overlapping 40◦ vertical field of view. We use
this dataset to demonstrate the robustness of our method to
different hardware configurations.

B. Implementation Details
In KITTI dataset, we use the resolution from Velodyne

HDL-64 specs and set ∆φ = 0.4◦,∆θ = 0.2◦ in Eqn. 1.
So that the size of cylinder frames is H = 68,W = 1801
with 26.9◦, 360◦ FOV in vertical, horizontal. For network
inputs, we crop it to 64 × 1792 from the center because of
the sparsity in the edge. In Argoverse dataset, since the two
overlapping VLP-32 LiDAR make the distribution of point
cloud denser in middle areas and sparser on both sides, we
set a smaller vertical resolution as ∆φ = 0.3◦ within 20◦

FOV while keeping the horizontal resolution as ∆θ = 0.2◦.
During training, we first sample a set of three successive

scans, and for each three scans, we use it to form three train-
ing pairs [St−1, St], [St, St+1] and [St−1, St+1] as training
samples. The reason for forming the last one by skipping
one scan is to augment the training with large displacement.
All models are trained using SGD with momentum of 0.9 for
60 epochs. The learning rate is set to 0.0005 at beginning and
multiplied by 0.1 every 20 epochs with 10−5 weight decay.
The batch size is 32 and 8 NVIDIA 1080Ti GPU is used
to train the models with synchronized batch normalization
(SyncBN) [57]. The whole framework is implemented with
the MXNet library [58]. For inference, we set r = 1 in NMS
to keep the correspondences spatial uniformly distributed.
And the inlier threshold in RANSAC is 0.1m. If the inliners
correspondences are less than 10, we will use the result from
motion model.



TABLE I
ODOMETRY RESULTS ON KITTI ODOMETRY DATASET [54]. HERE trel IS TRANSLATION ERRORS(%) ON ALL POSSIBLE SUBSEQUENCES OF

100M-800M. rrel IS ROTATIONAL ERROR(◦ /100M) ON THE LENGTH OF 100M-800M.

ICP-po2po ICP-po2pl GICP [4] CLS [55] SUMA [56] LOAM [2] Ours Ours+Mapping
Seq trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel

00 6.88 2.99 3.80 1.73 1.29 0.64 2.11 0.95 0.68 0.23 0.78 0.53 0.83 0.44 0.73 0.44
01 11.21 2.58 13.53 2.58 4.39 0.91 4.22 1.05 1.70 0.54 1.43 0.55 3.14 1.15 1.91 0.54
02 8.21 3.39 9.00 2.74 2.53 0.77 2.29 0.86 1.20 0.48 0.92 0.55 1.08 0.53 1.01 0.58
03 11.07 5.05 2.72 1.63 1.68 1.08 1.63 1.09 0.74 0.50 0.86 0.65 0.80 0.49 1.06 0.53
04 6.64 4.02 2.96 2.58 3.76 1.07 1.59 0.71 0.44 0.27 0.71 0.50 0.71 0.53 0.61 0.66
05 3.97 1.93 2.29 1.08 1.02 0.54 1.98 0.92 0.43 0.20 0.57 0.38 0.90 0.46 0.65 0.33
06 1.95 1.59 1.77 1.00 0.92 0.46 0.92 0.46 0.54 0.30 0.65 0.39 0.91 0.46 0.65 0.34
07 5.17 3.35 1.55 1.42 0.64 0.45 1.04 0.73 0.74 0.54 0.63 0.50 0.58 0.51 0.53 0.51
08 10.04 4.93 4.42 2.14 1.58 0.75 2.14 1.05 1.20 0.38 1.12 0.44 1.02 0.48 0.93 0.48
09 6.93 2.89 3.95 1.71 1.97 0.77 1.95 0.92 0.62 0.22 0.77 0.48 1.02 0.45 0.58 0.30
10 8.91 4.74 6.13 2.60 1.31 0.62 3.46 1.28 0.72 0.32 0.79 0.57 1.08 0.59 0.75 0.52

mean 7.37 3.40 4.72 1.93 1.92 0.73 2.12 0.91 0.83 0.36 0.84 0.50 1.09 0.55 0.85 0.47

(a) sequence 07 (b) sequence 08

(c) sequence 09 (d) sequence 10
Fig. 5. Qualitative results on the testing sequences of KITTI odometry dataset [54].

C. Odometry Results

On KITTI dataset, we compare our methods with two
kinds of odometry estimation methods. Geometry-based
methods: point-to-point ICP (ICP-po2po), point-to-plane ICP
(ICP-po2pl), GICP [4], CLS [55] and LOAM [2]; Learning-
based methods: DeepLO [59], LO-Net [14] and Velas et
al. [40]. All the methods are evaluated by official evaluation
metrics. The three learning-based methods have different
training/testing split, DeepLO uses 00-08/09-10, Velas uses
00-07/08-10, LO-Net uses 00-06/07-10 as training/testing,
respectively. For fair comparison, we follow the setting of
LO-Net which requires the least training data.

Tab. II shows testing results of all these learning-based
networks, ours consistently outperforms the others by a
large margin even with less training data. To fairly evaluate
the performance of our DMLO in all sequences with other
geometric based methods, we train our DMLO in leave-on-
out manner. For example, to test sequence 00, we train our
network on 01-10. We report both results of our method with

TABLE II
COMPARISON OF LEARNING-BASED METHODS IN KITTI [54]. WE ONLY

SHOW THE RESULTS IN TESTING SPLIT.

[40] DeepLO[59] LO-Net [14] Ours
Seq. trel rrel trel rrel trel rrel trel rrel

07 - - - - 1.70 0.89 0.73 0.48
08 2.89 - - - 2.12 0.77 1.08 0.42
09 4.94 - 13.35 4.45 1.37 0.58 1.10 0.61
10 3.27 - 5.83 3.53 1.75 0.79 1.12 0.64

and without backend mapping refinement. We compare the
results with these methods in Tab. I. Compared with pure
odometry method, our DMLO significantly outperforms the
baselines ICP and GICP, while compared with other full
SLAM systems, DMLO demonstrates competitive or better
results. Note that this is the first feature-based global method
could compete with LOAM. A qualitative results has been
visualized in Fig. 5.

On the Argoverse dataset, we only compare with ICP-
po2po, GICP and NDT, because LOAM is infeasible to apply



TABLE III
ODOMETRY EXPERIMENTS ON ARGOVERSE DATASET [16]. OUR DMLO
OUTPERFORMS OTHER METHODS EVEN IN DIFFERENT HARDWARE(TWO

VLP-32 LIDAR).

RPE ATE
Methods Mean Max Mean Max

ICP-Po2Po 0.12 0.35 10.22 27.59
G-ICP 0.05 0.21 3.74 15.94
NDT-P2D 0.11 0.37 4.33 17.03

Ours 0.01 0.10 0.57 1.91

on two VLP-32 LiDAR. We evaluate the performance of
all the methods on the official training/testing split. Since
most sequences in Argoverse are shorter than 200 frames,
the metrics from KITTI are not suitable. As [60] suggests,
we use Absolute Trajectory Error(ATE) and Relative Pose
Error(RPE) to evaluate the accuracy. Tab. III shows that our
proposed method outperforms the others remarkably both in
terms of ATE and RPE.

TABLE IV
REGISTRATION EXPERIMENTS IN KITTI [54].

Angular Error(◦) Translation Error(m)
Methods Mean Max Mean Max

ICP-Po2Po 0.139 1.176 0.089 2.017
ICP-Po2Pl 0.084 1.693 0.065 2.050
G-ICP 0.067 0.375 0.065 2.045
AA-ICP 0.145 1.406 0.088 2.020
NDT-P2D 0.101 4.369 0.071 2.000
CPD 0.461 5.076 0.804 7.301

3DFeat-Net 0.199 2.428 0.116 4.972
DeepVCP 0.164 1.212 0.071 0.482

Ours 0.021 0.070 0.060 0.830

D. Registration under Large Motion

Although our network is not designed to large scale
registration, we also report the results comparing with recent
proposed learning-based methods such 3DFeat-Net [35] and
DeepVCP [34]. For registration, we simply change the max-
displacement D in coarse level from 10× 10 to 40× 40 in
inference time without fine-tuning. Following DeepVCP, we
sample the scans at 30 frame intervals and use all frames
within 5m distance to it as registration target. The angular
error and translation error is used to compare the perfor-
mance of all methods. Given ground-truth transformation

TABLE V
END POINT ERROR(EPE) AND PERCENTAGE OF OUTLIERS AVERAGED

OVER ALL GROUND TRUTH PIXELS(FL-ALL) IN KITTI 07-10
SEQUENCES. THE TABLE SHOWS THE DIFFERENT RESULTS OF FEATURE

NORMALIZED(FN), SUBPIXEL(S) LOSS AND DEFORMABLE(D) CONV.

Methods Model EPE(pixel) Fl-all(%)

Basic 5conv 0.57 6.7
Basic+FN 5conv 0.55 6.1
Basic+FN+S 5conv 0.52 5.6

Basic+FN+S 8conv 0.49 5.2
Basic+FN+S 2conv+3D 0.45 4.2

TABLE VI
THE EFFECT OF MOTION MODEL (MM) AND MOVING OBJECTS

REMOVAL (OR) ON KITTI. THE MEAN OF TRANSLATION AND

ROTATION ERROR ARE COMPUTED AS TAB. I. MEAN† IS MEAN OF THE

RESULTS IN THE TRAINING SET AND MEAN∗ IS THAT IN TESTING SET.

Basic Basic+MM Basic+MM+OR
Seq. trel rrel trel rrel trel rrel

mean† 1.66 0.59 1.24 0.58 1.16 0.57
mean∗ 0.97 0.54 0.96 0.57 1.00 0.53

(R, t) and prediction (R, t), the translation error is defined

as
∥∥t− t

∥∥
2

and angular error as θ = 2 arcsin(
‖R−R‖

F

2
√
2

).
The results in Tab. IV indicate that, though we only use
neighbor frames for training, our network can still generalize
to distant registration task without any further tuning.

E. Ablation Study

In this section, we conduct a set of ablation studies to
understand how each component affects our performance.
We first validate the efficacy of different network modules
in the refinement network described in Sec. III-C. Then
we experiment with and without motion model and moving
objects removal. We utilize KITTI dataset in this section.

Tab. V shows that the Feature Normalized(FN), Sub-
pixel(S) loss and Deformable(D) convolution significantly
improve the accuracy of network. Specifically, the experi-
ments between deeper network and deformable convolution
clearly show that adaptive receptive field is essential for
matching. Adopting deformable convolution is more eco-
nomical than simply adding more plain convolution layers.

Tab. VI describes how the Motion Model(MM) and Mov-
ing Objects Removal(OR) affect our methods. As we can see,
the influence of MM and OR on training set is greater than
that on testing set. It is because sequence 01 in training set
is recorded in highway with continuous featureless area and
high speed. Tab. I also verifies that 01 is the most challenging
sequence in all 11 sequences.

V. CONCLUSIONS AND FUTURE WORK

This paper presents DMLO, a sparse matching LiDAR
odometry framework. By deliberately designing the input
representation and matching network, our method provides
high accuracy correspondences which renders the feature-
based global method comparable with local iterative methods
for the first time. Comprehensive experiments on LiDAR
odometry and registration tasks both demonstrate the effec-
tiveness of our framework.

Besides the encouraging performance of learning-based
method in LiDAR data, our framework is easy to generalize
to other kinds of data such as RGBD and RGB+LiDAR.
For future work, we will try to integrate more modalities.
Especially, RGB data provides more dense and precious
texture details than the point cloud data. We will investigate
how to effectively fuse them into one matching framework.
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