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Abstract— Pose estimation of known objects is fundamental
to tasks such as robotic grasping and manipulation. The need
for reliable grasping imposes stringent accuracy requirements
on pose estimation in cluttered, occluded scenes in dynamic
environments. Modern methods employ large sets of training
data to learn features in order to find correspondence between
3D models and observed data. However these methods require
extensive annotation of ground truth poses. An alternative is
to use algorithms that search for the best explanation of the
observed scene in a space of possible rendered scenes. A recently
developed algorithm, PERCH (PErception Via SeaRCH) does so
by using depth data to converge to a globally optimum solution
using a search over a specially constructed tree. While PERCH
offers strong guarantees on accuracy, the current formulation
suffers from low scalability owing to its high runtime. In
addition, the sole reliance on depth data for pose estimation
restricts the algorithm to scenes where no two objects have
the same shape. In this work, we propose PERCH 2.0, a novel
perception via search strategy that takes advantage of GPU
acceleration and RGB data. We show that our approach can
achieve a speedup of 100x over PERCH, as well as better
accuracy than the state-of-the-art data-driven approaches on
6-DoF pose estimation without the need for annotating ground
truth poses in the training data. Our code and video are
available at https://sbpl-cruz.github.io/perception/.

I. INTRODUCTION

For robots to operate successfully in everyday indoor
environments they need to be able to interact with objects in
a safe and reliable manner. Such interaction requires correct
identification of object categories as well as their location
and orientation in the 3D world. Variations in objects (color
and shape) as well as the environment (lighting conditions,
clutter, occlusions) make this a challenging task.

In many instances, 3D models of objects of interest are
available and early work in 3D object detection focused on
detecting features from these models and matching those to
the observed scene. Feature-based methods [1]–[3] typically
require rich textures to be present on objects and even when
features are present, fail to find good estimates when objects
are occluded. Moreover, estimating the pose of each object
in isolation may not lead to a globally feasible and optimal
solution that fully explains the observed scene [4]. Following
the success of convolutional neural networks (CNNs) on
computer vision tasks, they have also been extended to
estimate object poses in 3D space [5]–[20]. However, these
methods require large sets of training data to be able to esti-
mate poses accurately. The required dataset of poses scales
poorly with the number of objects since networks need to be
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Fig. 1: Top: PERCH 2.0 pipeline for 6-Dof Pose estimation
Bottom: PERCH 2.0 pipeline for 3-Dof pose estimation

trained with images from as many viewpoints as possible and
with varying degrees of inter-object occlusions to avoid over-
fitting. Moreover, the task of annotating poses is non-trivial
and requires specialized tools [21] unlike annotation for tasks
such as 2D object detection and instance segmentation which
can be easily crowd-sourced.

Methods that rely on synthesizing scenes and matching
these with observed scenes [22]–[26] overcome shortcom-
ing of feature and learning based methods but tend to be
slow. Specifically, PERCH [24]–[26] is a recent work that
introduces a global matching objective function and does
such a search in an efficient manner. While learning-based
methods have been beneficiaries of advancements in GPU
hardware and availability of compatible software computing
platforms like CUDA [27], methods such as PERCH have
so far remained restricted to CPU. In this work we propose
PERCH 2.0, a perception via search technique that remedies
this shortcoming and offers an order of magnitude reduction
in runtime. Our contributions are mainly the following :

• A fully parallel GPU-based search formulation to
achieve significant speedup over PERCH for 3-Dof pose
estimation

• Incorporation of RGB sensor data into the objective
function used by PERCH 2.0, allowing the algorithm to
handle scenarios where depth data alone is not sufficient
to estimate the 3-Dof poses

• A PERCH 2.0 based discriminative-generative frame-
work for 6-Dof pose estimation that eliminates the need
for ground truth pose annotation in the training data
and outperforms state-of-the-art purely discriminative
approaches
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II. RELATED WORK

A. Discriminative Approaches

Discriminative approaches traditionally used hand-crafted
local 3D features to establish 2D to 3D correspondences
between the observed image and the 3D model and re-
cover the object pose [1]–[3]. Other traditional approaches
computed similarity scores over regions of observed images
with an object template (obtained by rendering 3D models)
to obtain the best match and corresponding pose [28]–
[30]. However recent advancements in deep learning has
led to 2D object detectors being extended for the task
of 6-Dof pose estimation [5]–[20]. Of these, some regress
directly to pose estimates [13], tying the pose estimation to
camera intrinsics and thus introducing errors if the camera
is changed. Others localize object keypoints in image space
[6], [7], [10], [12], [14], [15], [19] which often results in
ambiguities for objects with symmetries or requires explicit
handling of symmetries. Others score discretized poses [17],
[20] which is independent of camera parameters and object
symmetries. However methods in each of these categories
require extensive annotation of ground truth 6-Dof poses in
the training data. Recent works [31], [32] have proposed to
counter this through synthetic data but these methods still
need to be trained for pose estimation in addition to training
for tasks like instance segmentation and object detection.

B. Analysis-by-Synthesis or Generative Approaches

Analysis-by-synthesis or generative approaches [22]–[26]
rely on rendering and verification. They aim to find the best
possible explanation for the observed scene by rendering
multiple scenes using available 3D models and then finding
the best match. Past work on Perception via Search (PERCH)
[24]–[26], has demonstrated the capabilities of combining
rendering with efficient search for multi-object 3-Dof pose
estimation under occlusion and clutter. However PERCH
ignores RGB information present in the observed scene as
well as in available 3D models. As a result of this, the
method fails under some commonly occurring scenarios in
homes and retail stores, for example when objects of different
brands have the same shape (such as soda cans, cereals etc.).
In this work we address this shortcoming and also show that
with the help of GPU acceleration, the search runtime can be
reduced further than the lazy approach proposed in [25] by
an order of magnitude. In addition, we propose a method
for RGBD pose estimation in 6-Dof using PERCH 2.0,
that combines the strengths of discriminative and generative
approaches. On the generative side, it relaxes a few key
assumptions made by PERCH, thereby increasing scalability
and applicability. On the discriminative side, it allows for 6-
Dof prediction directly from the instance segmentation mask
and RGBD input, thus eliminating the need of constructing
a large dataset consisting of annotated ground truth poses
and the need to train additional networks specifically for the
prediction of 6-Dof poses of objects.

Fig. 2: Portion of the Monotone Scene Generation tree
constructed by PERCH [24]. New objects are added as
we traverse down the tree. Notice how child states never
introduce an object that occludes objects already in the parent
state (the red cross shows a counter example). Any state on
the Kth level of the tree is a goal state, and the task is to find
the one that has the lowest cost path from the root (marked
by green bounding box here)

III. PRELIMINARIES

A. Background

Our problem setup and optimization formulation for esti-
mating the 3-DoF pose (x, y, yaw) are similar to those in
PERCH [24], which we will re-state here for convenience.
We assume a set of K object instances in the input point
cloud, given the 3D models of N unique objects. We allow
the possibility of cases where multiple copies of a particular
object instance are present in the scene. We further assume
that the 6-DoF camera pose is given. It may be noted here
that our discriminative-generative framework for 6-Dof pose
estimation relaxes both assumptions and is described later in
Section V. The notations used by us are listed in Table I.

B. Problem Formulation

Given the input point cloud I , PERCH [24] estimates
poses of O1:K objects in the scene, by seeking to find a
rendered point cloud RK having K objects, such that every
point in I has an associated point in RK and vice-versa.
In other words, PERCH seeks to minimize the following
objective :

J(O1:K) =
∑
p∈I

OUTLIER(p|RK)︸ ︷︷ ︸
Jo(O1:K)

+
∑

p∈RK

OUTLIER(p|I)︸ ︷︷ ︸
Jr(O1:K)

(1)



TABLE I: Notations used in PERCH [24] & this work

I The input point cloud
K The number of objects in the scene
N The number of unique objects in the scene (≤ K)
Oj An object state specifying a unique ID and 3-DoF pose
RK Point cloud for a rendered scene with K objects O1:K

∆Rj Point cloud with points belonging exclusively to Oj

∆R̃j ∆Rj after ICP refinement
V (Oj) The set of points in an admissible (conservative) volume

occupied by object Oj , (volume of the inscribed cylinder)
Vj The union of admissible volumes occupied by objects O1:j

Hrj Rotation proposals obtained from sampling for Oj

Htj Translation proposals obtained from the mask for Oj

H(Oj) 6-Dof pose proposals for object Oj

Jo The observed cost of the scene with respect to given Rj

Jr The rendered cost of the scene with respect to given Rj

in which OUTLIER(p|C) for a point cloud C and point p is
defined as follows:

OUTLIER(p|C) =

{
1 if minp′∈C ||p′ − p|| > δ

0 otherwise
(2)

where δ is the sensor noise resolution. In order to counter
the intractability of this joint global optimization problem
owing to a large search comprising of all possible joint poses
of all objects, PERCH decomposes the cost function over
individual objects added to the rendered scene. The decom-
position is subject to the constraint that the newly added
object does not occlude those already present. This allows
the optimization to be formulated as a tree search problem
where a successor state is added to the tree whenever a new
object is added to the rendered scene (Figure 2).

It is clear that the expansion of each state in the PERCH
search tree has a significant computational cost that scales
unfavourably with the number of successors to be gener-
ated for the state. Figure 3 illustrates the steps followed
during expansion of a state S1 in the tree. As shown, the
successors are generated by first rendering the object Oj

to be added to the state in different poses using OpenGL.
For each pose, the algorithm then composes the rendered
image with an image containing objects already present
in the parent state. This step is essential to check if the
current object occludes any object already present or to
remove pixels corresponding to occlusions caused by other
objects in the scene. This is followed by conversion of the
rendered depth image to a point cloud and downsampling it,
thus obtaining ∆Rj . In order to account for discretization
artifacts, local-ICP [33] is used to refine the pose. Since
the adjusted state may change its occlusion properties, it is
rendered again, composed with the parent image and finally
converted to the downsampled adjusted point cloud ∆R̃j .
k-d tree [34] based nearest neighbour searches are then
performed to calculate the observed and rendered cost for
each of the successor states. For computing rendered cost
Jr, the k-d tree representation of the observed depth input
is used and the distance between every point in ∆R̃j and
its nearest neighbour in the k-d tree is computed iteratively
to classify it as an outlier or inlier according to Equation
2. For observed cost Jo, a similar process is followed,
though the k-d tree representation of every ∆R̃j needs to

Fig. 3: Expansion of a state S1 in the PERCH flow on CPU

be constructed. While PERCH uses OpenMPI to exploit the
parallelism by executing these sequential steps in parallel
threads for each successor state being added to the tree,
the restricted number of CPU cores available in regular PCs
places a practical limit on the speedup obtained through this
approach. Moreover, the approach fails to take advantage of
a much wider parallelism in each independent step.

IV. PERCH 2.0

A. GPU Formulation

Parallel Rendering. At a high level, the process of
rendering a given number of objects N in state S1, consisting
of P poses of each object can be thought of as having
N ×P parallel threads. However if we consider each object
and its corresponding 3D mesh model to be made up of
T triangles, a parallelism over N × P × T threads can
be observed. Consider a simple scenario consisting of 4
objects having 10 poses each and 10,000 triangles in each
mesh model. The corresponding rendering task exhibits a
parallelism of 400, 000 threads. The scale of this parallelism
is ideal for exploitation on a GPU and consequently we use
that approach in PERCH 2.0. Once the rendered RGB and
depth images have been obtained for all objects and poses,
they are converted to point clouds on a GPU with every pixel
being transformed to its corresponding 3D point using the
depth and camera intrinsic parameters in parallel. During this
process, we directly produce a downsampled point cloud by
downsampling in the image space, reducing a 2 step process
to a single one.



Parallel M2M GICP. ICP [33] is an iterative technique
to align a given source point cloud to a given target point
cloud. PERCH [24] uses a point-to-point non-linear ICP ap-
proach from the PCL library. However, this is insufficient to
deal with the scalability requirements presented by common
pose estimation scenarios. Moreover, a point-to-point ICP
approach can lead to low accuracy under high occlusion by
converging to the wrong pose. Recent works on GICP [35],
[36] have proposed to counter this problem by developing a
generalized version of ICP or GICP. GICP combines features
of point-to-point and point-to-plane ICP by modelling the
surface from which each point is sampled as a Gaussian
distribution. We propose a scalable GPU based many to
many (M2M) GICP approach that can align several thousand
source point clouds to several target point clouds. We use a
combination of parallel kNN (described below), batch matrix
multiplication from cuBLAS and the linear equation solvers
from cuDNN to achieve desired scalibility and speed.

Parallel Cost Computation. The need to create k-d
trees for each successor cloud ∆R̃j and then iteratively
computing nearest neighbours for every point in every ∆R̃j

leads to slow speeds despite the efficiency of the k-d tree
data structure. This parallelism over N objects, P poses of
each object, consisting of L points in every ∆R̃j can be
considered as requiring N×P×L×I parallel threads, where
I is the number of points in the input point cloud. We propose
to use two approaches to compute the required nearest
neighbours which are later compared during evaluation. The
first approach (kNN I) [37] fully exploits the underlying
parallelism by computing all pairwise distances in parallel.
However, it requires the allocation of a large 2D array on
the GPU to allow for all threads to simultaneously write
to memory locations. This could drive up the peak GPU
memory usage and limit the overall number of poses that can
be evaluated in parallel. Thus we propose another approach
(kNN II) that exploits a reduced parallelism of N × P × L
threads. In each thread, we loop over the points in I ,
computing distances to points in ∆R̃j and pushing them into
a priority queue. When all threads have finished processing
we have the nearest neighbours and corresponding distances
between them. Unlike kNN I, the reduced parallelism in this
approach limits the memory requirement.

After kNN I or kNN II, another GPU kernel is then used
to classify every point as inlier or outlier in parallel, thus
obtaining the rendered cost Jr. Finally we use an additional
kernel to compute the observed cost Jo, which checks every
point in the input scene I and if it lies within the volume
occupied by an given object pose V (Oj), simultaneously
marking it as inlier or outlier depending on whether it was
found as a nearest neighbour for a point in the corresponding
∆R̃j in the previous step.

Parallel Search. Despite speedup from enhancements in
the above steps, the runtime remains limited owing to the
sequential nature of the Monotone Scene Generation tree.
More specifically, the search has to figure out the right non-
occluding order in which to place the objects until a solution
that satisfies the cost bound has been found. We recount from

Fig. 4: Objects and some sample images from the dataset
used for evaluating 3-Dof PERCH 2.0

[24] that this process is primarily a way to model inter-object
occlusions. However the work on C-Perch [26] proposed
an alternate way to acknowledge inter-object occlusions by
marking certain points in the input scene as clutter and use
them as extraneous “occluders” while rendering the object
of interest in the scene. It was shown that this is incredibly
useful when models of all objects in the scene are not
available and thus the Monotone Scene Generation tree can’t
be used to account for all inter-object occlusions. We build
on this strategy in PERCH 2.0, by treating the search for each
object as an independent search for that object in a cluttered
scene where the model for other objects is unknown. This
change effectively reduces a sequential search to a parallel
one that can be performed efficiently with our GPU based
pipeline. From [26], we also note the changes to the terms
Jo and Jr in Equation 1 :

Jo (O1:K) =
∑

p∈I∩VK
OUTLIER (p |(RK \ CK))

Jr (O1:K) =
∑

p∈RK\CK
OUTLIER(p|I)

(3)

Here CK represents the extraneous ”occluders” that occlude
the scene created by rendering the object poses O1:K and
Rk \ CK is the corresponding scene point cloud with CK

removed. Following a strategy similar to [26] for creating
Rk\CK by using the input depth image, we render and com-
pute costs for all successors and find the one corresponding
to the minimum cost for each object in parallel on the GPU.

B. RGBD Cost Formulation

The formulation of explanation cost in PERCH is based
on the implicit assumption that depth data alone can be used
to capture how well a rendered point cloud matches the
observed point cloud. More formally, the classification of
a point p in a point cloud C as an outlier in Equation 2
is entirely based on the Euclidean distance between them in
3D space. However this definition fails in scenarios similar to
those depicted in Figure 4. In such scenarios, where objects
of similar shape are present, PERCH is unable to estimate
the (x, y, yaw) correctly because rendering any object at a



given (x, y, yaw) results in the same change in cost, owing
to an outlier definition based purely on Euclidean distance.

Intuitively, the explanation cost in such cases must utilise
the difference in point-wise RGB information present in ICP
adjusted rendered clouds ∆R̃j and in the observed point
cloud. It must also accommodate changes in perceived color
due to lighting. Keeping these requirements in mind, we
introduce the CIEDE2000 color difference formula [38] in
the CIELAB color space to perform the comparison between
a point in the observed cloud I and the rendered point cloud
∆Rj or vice-versa. In this space, each color is represented
by 3 values - L∗, a∗ and b∗ and uniform changes in these
components are designed to replicate uniform changes in
color as perceived by the human eye. Formally, for a point
p, the OUTLIER(p|C) definition in Equation 2 can be re-
written as :

OUTLIER RGBD(p|C) =


1 if minp′∈C ||p′ − p|| > δ

1 if ||p′′c − pc||c > τc

s.t. minp′′∈C ||p′′ − p|| ≤ δ
0 otherwise

(4)

where :
• pc and p′′c denote the color in CIELAB of points p and
p′′ respectively

• ||p′′c − pc||c denotes the CIEDE2000 [38] color-
difference between the two points

• τc denotes the maximum allowed color difference for
two colors to be considered same

With this definition of OUTLIER RGBD(p|C), we penalize
points for being distant in color space even though they might
satisfy the Euclidean constraint in 3D space.

V. PERCH 2.0 FOR 6-DOF POSE ESTIMATION

A. Formulation

Due to the success of CNNs in 2D instance segmentation
and the search speedup achieved by GPU in PERCH 2.0, we
have the opportunity to extend perception via search to 6-Dof
by using the CNN output to generate 6-Dof pose proposals
which are then evaluted by PERCH 2.0.

B. Pose Proposal Generation

Rotation Proposals. Following the work in SSD-6D [20],
we represent all possible rotations as a set of viewpoints v
and in-plane rotation angles θ. We sample M equidistant
viewpoints from unit sphere and N in-plane rotation angles
from [0, 2π] and combine each with the other to generate
M ×N possible rotation proposals for object Oj :

Hrj = 〈vi, θk〉 where 1 ≤ i ≤M and 1 ≤ k ≤ N (5)

Translation Proposals. We generate a set of translation
proposals for object Oj as follows:

Htj = 〈xc, yc, zi〉 where zmin ≤ zi ≤ zmax (6)

In the above equation, 〈xc, yc〉 is obtained by back projecting
the center of object’s 2D bounding box into 3D space

using the camera’s projection matrix. In our framework, we
propose to detect the “full” 2D bounding box [39] as opposed
to the typical “visible” bounding box. A “full” bounding box
assists in pose estimation of occluded objects by giving us a
more accurate location of the bounding box center. zi ranges
from zmin , the closest point to the camera corresponding to
the given object in the observed depth image to, zmax , the
farthest point from the camera corresponding to the given
object in the observed depth image. These are obtained by
combining the segmentation mask for the object with the
input depth image.

6-Dof Pose Proposals. Hrj and Htj are combined with
each other to create 6D pose hypotheses for every object
H(Oj) = Hrj ·Htj .

C. 6-Dof Pose Estimation Pipeline

A pictorial representation of the entire pipeline can be
seen in Fig 5. The input RGB image is passed through a
MaskRCNN [40] instance segmentation network, obtaining
object labels, segmentation masks and “full” bounding boxes.
Then we generate 6-Dof pose proposals for the detected
objects through parallel rendering of each pose proposal on
GPU using the method describe in V-B and IV-A. While
marking points as extraneous clutter, we use the class labels
of the pixel to make sure that the occluders belong to
a different object than the one being rendered. We then
generate point clouds which are refined using the proposed
parallel M2M GICP approach.

Finally, we render and generate point clouds for the
adjusted poses and compute the cost of each pose proposal
in parallel. For calculating of Jo in Equation 3, instead
of explicitly computing V (Oj), the pixel-wise segmentation
labels are used directly to determine the set of observed
points belonging to a given object.

VI. EVALUATION

A. PERCH 2.0 for 3-Dof Pose Estimation

Dataset. Early experimentation revealed that PERCH can
exploit minute differences in shape and estimate poses accu-
rately. Thus, for evaluating PERCH 2.0 against PERCH, we
focus on images of common objects that have same shape
but different appearance. Such objects are commonly found
in grocery stores but to our knowledge, no dataset exists in
the literature that consists of RGBD images of such objects.
Moreover for PERCH, we require variation only in 3-Dof
pose (x, y, yaw) for every object while common annotated
pose estimation databases consist of pose variation in 6-
Dof. Subsequently, we constructed a synthetic photo-realistic
dataset of 75 scenes with corresponding RGBD images using
the recently released NVidia NDDS [41] plugin for Unreal
Engine 4 (objects shown in Figure 4). Within the plugin,
we randomly vary 3D pose (x, y, yaw) of every object on
a tabletop while keeping (z, roll and pitch) constant. The
plugin allows generation of images with realistic lighting
conditions and inter-object occlusion.

Baselines. We compare results of PERCH 2.0 with
PERCH and DOPE [19] + ICP. DOPE is a leading RGB



Fig. 5: 6-Dof Pose Estimation Pipeline (N : Number of objects, P : Number of poses per object, T : Number of triangles
in an object model, L : Number of points in given pose point cloud)

based 6-Dof pose estimation method directly compatible with
NDDS generated data which we combine with ICP refine-
ment on the depth input for our experiments. For training
DOPE, we construct a training dataset of total 12K images
containing each of the 6 objects using NDDS [41]. The
network was trained for 60 epochs (pretrained on ImageNet)
on each object individually, taking approximately 12 hours
for each on 2 NVidia P100 GPUs. The Brute Force ICP (BF-
ICP) baseline proposed in [24] is also used for comparison.
Further, in order to understand the effectiveness of occlusion
handling and impact of having full parallelization, we use
following additional variants of PERCH 2.0 : 1) PERCH 2.0-
A which doesn’t use the input depth data to mark occluded
points in the rendered scenes, 2) PERCH 2.0-B which doesn’t
use full parallelization like PERCH 2.0 but instead uses the
Monotone Scene Generation tree formulation. All variants
use kNN-I and the same point-to-point ICP used by PERCH.
For inference and other evaluation experiments, a machine
with 8 CPU cores and an NVidia GTX 1070 8GB GPU is
used. For PERCH and PERCH 2.0, we use a translation
discretization of 0.08 m and a yaw discretization of 22.5
degrees. The sensor resolution δ is set to 0.0075 m. The
CIEDE2000 color difference threshold τc is set to 12.5.

Metrics. We use the ADD-S [13], [28] metric for eval-
uation which computes the average distance between the
closest points in the object’s 3D model, transformed with
ground truth pose and the same model transformed with the
predicted pose. We vary the ADD-S distance threshold up to
0.1 m and obtain the area under the accuracy-threshold curve
(AUC) for all methods as shown in Table II. We also compute
ADD-S<1cm, which denotes the percentage of poses with
less than 1cm ADD-S error.

Accuracy. PERCH 2.0-C achieves the best performance
among all variants with 100% of poses below ADD-S 1cm
error. It can also be noted that PERCH 2.0 variants and

DOPE + ICP outperform PERCH and BF-ICP. This shows
that PERCH 2.0 and DOPE are able to utilise the RGB
information present in the object model and observed scene
and closer inspection reveals that these methods don’t get
confused between similar looking objects even in occlusion
(like sprite can and pepsi can).

Robustness. The robustness of the RGBD cost function
used by PERCH 2.0-C is highlighted by its ability to
differentiate between objects of different sizes (bottle vs can),
objects with minute color differences (pepsi can vs sprite
can) and objects with a non-uniform color distribution (sprite
can, 7up can). PERCH 2.0-C also handles occlusions more
effectively as compared to DOPE + ICP and PERCH 2.0-A,
which is exhibited in its better performance as compared to
both.

Runtime. From Table II it is clear that we are able
to achieve an order of magnitude improvement in runtime
with PERCH 2.0-C over PERCH (∼100X). A comparison
between PERCH 2.0-C and PERCH 2.0-B also reveals that
PERCH 2.0-C is able to achieve the same accuracy with
full parallelization that PERCH 2.0-B is able to obtain using
the Monotone Scene Generation tree [24]. However PERCH
2.0-C is 10 times faster than the latter. Moreover, PERCH
2.0-C has a runtime close to the DOPE + ICP pipeline
which suggests that it can achieve speeds comparable to
popular learning based approaches followed by depth-based
refinement without requiring any training for estimating 3-
Dof poses and object categories.

B. PERCH 2.0 for 6-DoF Pose Estimation

Baselines. In order to evaluate the performance of PERCH
2.0 for 6-Dof pose estimation, we compare our results with
DenseFusion [42] and PoseCNN + ICP [13] on objects from
the YCB-Video Dataset [13]. The results are computed for
the 2,949 keyframes used for testing in prior works.



TABLE II: Area under accuracy-threshold (ADD-S) curves for 3-Dof pose estimation

Objects BF-ICP [24] PERCH [24] DOPE [19] + ICP
PERCH 2.0-A
(W/O Occluder

Marking)

PERCH 2.0-B
(W/O Full

Parallelization)
PERCH 2.0-C

AUC <1cm AUC <1cm AUC <1cm AUC <1cm AUC <1cm AUC <1cm

coke bottle 46.61 0.00 55.43 58.00 90.00 94.00 96.59 100.0 96.6 100.00 96.59 100.00
sprite bottle 46.16 0.00 55.37 58.00 87.99 84.44 97.06 100.0 96.65 100.00 97.09 100.00
sprite can 17.62 0.00 43.04 30.00 90.71 80.00 57.41 60.00 95.42 100.00 95.61 100.00
pepsi can 38.10 0.00 48.63 48.57 94.82 96.00 95.66 100.0 95.63 100.00 95.69 100.00
coke can 46.61 0.00 40.58 40.00 89.18 89.18 93.39 97.30 95.61 100.00 95.95 100.00
7up can 28.27 0.00 32.46 25.00 75.21 68.00 79.33 68.00 95.03 100.00 95.26 100.00

All Objects 37.51 0.00 47.16 43.26 88.16 85.27 80.49 87.55 95.26 100.00 95.72 100.00

Mean Runtime (s) 220.7 137.2 1.0 1.64 11.9 1.31

TABLE III: Area under accuracy-threshold curves for 6-Dof pose estimation on objects from the YCB Video Dataset [13]

Objects

PoseCNN
+ ICP [13]

DenseFusion
(Per-Pixel) [42]

DenseFusion
(Iterative) [42]

PERCH 2.0-A
(PoseCNN Mask)

PERCH 2.0-B
(MaskRCNN Mask)

AUC <2cm AUC <2cm AUC <2cm AUC <2cm AUC <2cm

002 master chef can 95.80 100.00 95.20 100.00 96.40 100.00 96.06 100.00 96.25 100.00
003 cracker box 92.70 91.60 92.50 99.30 95.50 99.50 93.54 97.81 94.69 99.65
004 sugar box 98.20 100.00 95.10 100.00 97.50 100.00 95.86 99.66 96.11 99.58
005 tomato soup can 94.50 96.90 93.70 96.90 94.60 96.90 97.26 99.77 97.30 100.00
006 mustard bottle 98.60 100.00 95.90 100.00 97.20 100.00 97.51 100.00 97.42 100.00
007 tuna fish can 97.10 100.00 94.90 100.00 96.60 100.00 95.50 99.91 95.97 100.00
008 pudding box 97.90 100.00 94.70 100.00 96.50 100.00 93.04 94.03 93.55 99.53
009 gelatin box 98.80 100.00 95.80 100.00 98.10 100.00 96.77 100.00 96.56 100.00
010 potted meat can 92.70 93.60 90.10 93.10 91.30 93.10 95.13 97.82 95.45 99.72
011 banana 97.10 99.70 91.50 93.90 96.60 100.00 96.53 99.74 96.88 99.74
019 pitcher base 97.80 100.00 94.60 100.00 97.10 100.00 92.37 100.00 92.11 100.00
021 bleach cleanser 96.90 99.40 94.30 99.80 95.80 100.00 93.39 96.99 95.25 100.00
024 bowl 81.00 54.90 86.60 69.50 88.20 98.80 93.42 97.04 97.22 100.00
025 mug 95.00 99.80 95.50 100.00 97.10 100.00 96.96 100.00 96.96 100.00
035 power drill 98.20 99.60 92.40 97.10 96.00 98.70 96.10 99.91 95.72 99.72
036 wood block 87.60 80.20 85.50 93.40 89.70 94.60 90.31 90.08 91.58 93.61
037 scissors 91.70 95.60 96.40 100.00 95.20 100.00 95.11 100.00 96.49 100.00
040 large marker 97.20 99.70 94.70 99.20 97.50 100.00 97.56 99.85 97.78 100.00
051 large clamp 75.20 74.90 71.60 78.50 72.90 79.20 72.25 77.06 92.41 97.99
052 extra large clamp 64.40 48.80 69.00 69.50 69.80 76.30 86.12 82.58 88.54 90.24
061 foam brick 97.20 100.00 92.40 100.00 92.50 100.00 95.89 100.00 95.72 100.00

All Objects 93.00 93.20 91.20 95.30 93.10 96.80 94.56 98.00 95.48 99.29

We use two variants of PERCH 2.0 for evaluation :
1) PERCH 2.0-A uses the PoseCNN segmentation masks
published published online 1 and also used by DenseFusion.
The required bounding box is computed from the mask
boundaries. We note that this is the “visible” bounding box.
2) PERCH 2.0-B uses a MaskRCNN [40], [43] model trained
by us on the YCB-Video Dataset. Since the YCB-Video
dataset doesn’t contain “full” bounding boxes annotations,
we use the ground truth 6-Dof pose and project it onto the
image to obtain the “full” bounding box annotations used to
train the model. The training is performed on 4 NVidia V100
GPUs. We note that “full” bounding box annotations could
also be obtained through crowdsourced human annotation as
done for the CrowdHuman [39] dataset. Both variants use
kNN II and the proposed M2M GICP framework.

Accuracy. The results of our evaluation are shown in Table
III for ADD-S<2cm and ADD-S AUC (<0.1m). We can ob-
serve that even with the use of PoseCNN mask and “visible”
bounding boxes, PERCH 2.0-A outperforms DenseFusion

1https://rse-lab.cs.washington.edu/projects/posecnn/

TABLE IV: Evaluation of runtime on YCB Video Dataset

Method Average Runtime (s)

PoseCNN + ICP 10.00
DenseFusion (Iterative) 0.06
PERCH 2.0-A (kNN I + CPU GICP) 75.43
PERCH 2.0-B (kNN II + M2M GICP) 7.60

and PoseCNN + ICP baselines. We observe that PERCH 2.0-
B which uses “full” bounding boxes further improves on the
accuracy and performs well across objects of varying shape,
size, texture, symmetry & visibility, estimating 99.29% of
the poses below 2cm ADD-S error and hence within the
tolerance limit of most robot grippers.

Runtime. We use two variants of PERCH 2.0 for runtime
evaluation : 1) PERCH 2.0-A which uses kNN I and the
publicly available CPU parallelized version of GICP [36]. 2)
PERCH 2.0-B which uses kNN II and our proposed parallel
M2M GICP approach. The experiments are performed on a
machine with 32 CPU cores and a NVidia P100 16GB GPU.
From Table IV, we can observe that PERCH 2.0-B takes only
7.6s on average to estimate poses for all objects in the scene.



It achieves a ∼10X runtime improvement over PERCH 2.0-
A, highlighting the importance of parallel M2M GICP and
kNN II when the number of poses to be evaluated is high.
For both variants, an average of 2400 poses are evaluated
per scene for all objects combined. We note that the runtime
of PERCH 2.0-B is even lower than PoseCNN + ICP even
though we don’t use a CNN for estimating the final 6-Dof
pose.

VII. CONCLUSION

In this work we introduced PERCH 2.0, a novel generative
GPU-based perception via search technique that achieves
an order of magnitude improvement in runtime over its
predecessor PERCH. PERCH 2.0 seamlessly incorporates
RGB input along with depth in its cost function to enhance
its accuracy. We also presented a combined discriminative-
generative framework for 6-Dof pose estimation that outper-
forms state-of-the-art purely discriminative approaches but
doesn’t require training with ground truth pose annotation.
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