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Abstract— In this paper, an improved motion planning
scheme is proposed for surgical robot control with multi-
ple active constraints, including joint constraints, joint ve-
locity constraints and remote center of motion constraints.
It introduces an improved recurrent neural network (RNN)
to optimize the online motion planning respect to multiple
constraints. The demonstrated surgical operation trajectory is
derived using teaching by demonstration. An improved motion
planning scheme using the novel recurrent neural network is
then designed to achieve the accurate task tracking under
the multiple constraints. The general quadratic performance
index is adopted to represent the constraints. Finally, the
effectiveness of the proposed algorithm is demonstrated using
KUKA LWR4+ robot in a lab setup environment.

I. INTRODUCTION

Over the past few years, conventional serial robots with
redundant manipulators have been successfully applied and
additionally developed in precise automation processes for
a variety of applications [1], [2]. For the medical scenario
applications, especially in minimally invasive surgery (MIS),
it has drawn progressed research interest due to the im-
provement of the accuracy and their lower cost concerning
specialized surgical robots. For example, a novel robotic
implementation in the control and precision of the surgical
tool was introduced to diminish the trauma of the patients [3].

As we knew, there is a small incision in the abdominal
wall to support the insertion of a surgical tool in surgical
procedures. The small incision presents a constraint on the
inserted robot end-effector, which is named as the Remote
Center of Motion (RCM) constraint [4]. Although a mechan-
ical implementation is usually ensured safer with the com-
plex structures and calibration procedures, a programmable
RCM limiting the action by the control algorithm is more
reasonable and more flexible and is, therefore, a preferable
solvsion [5]. Therefore, how to maintain the RCM constraint
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during surgical operations using a serial robot becomes a
challenging problem.

During the surgical operation, it is inevitable to consider
the physical interaction between the trocar and the abdominal
wall [5]. Accurate position tracking is the main task due to
uncertain disturbances involved in the physical interaction,
which is of vital importance to assure the safety of the
surgical operation. Thus, surgical robots are required to
learn and adapt the interaction according to the complex
environment to comply with the high requirements associated
with accuracy [5], [6]. Furthermore, when it comes to the
safety issue associated with robot manipulation, the RCM
constraint should be maintained. There are several related
works to address this problem in recent years. For example,
in [7], a kinematic formalization was discussed to solve the
RCM constraint in the joint space.

It is generally to address this problem using adaptive
control theory; however, the current performances are still
unsatisfactory combined with the active RCM constraints.
Moreover, to determine the RCM constraints applying the
efforts and prevalence of adaptive control algorithms is still
basically insufficient in the initial stage [5]. In the past few
years, adaptive control methods have attracted considerable
attention to connect the neural networks [8]. For example,
the Nussbaum function is utilized to compensate for the
nonlinear terms of kinematics in [9]. In order to comply
with the uncertainties due to the kinematic constraints, an
adaptive neural impedance control approach is introduced in
[10] for a n-link robotic manipulator.

In our previous works [11], [12], the neural network
based optimization control was presented for convex opti-
mization problem which achieves good performance with
multi-constraints. In this paper, to enhance the stability of
the end effector and to deal with the active RCM constraint
and other constraints at the same time, a neural-learning
enhanced control scheme based on the novel recurrent neural
network (RNN) approximation is presented, where the learn-
ing methods is explored to encode the motion [13], and then
neural network optimize the tasks. The main contributions
of this article are concluded as follows:

1) The surgical operation trajectory is derived from learn-
ing by demonstration in the Cartesian space.

2) An improved RNN-based adaptive controller is intro-
duced to manage the uncertainties due to the RCM
constraints.

3) Experimental demonstration using KUKA LWR4+ is
performed to evaluate the feasibility of the improved
RNN controller.
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II. LEARNING MOTOR SKILLS FROM HUMAN
DEMONSTRATIONS

In this section, the surgeon hold the robot to remove
the tumor by demonstrations, and then all the dataset are
collected.

A. Dynamic Movement Primitive with GMM
The DMP is represented as a set of equations [14], and

it can model different linear or nonlinear motions which are
expressed as,

Ẍt = Kp (Xg −Xt)−KvẊt + F (st)
ṡt = αsst
F (st) = hT

t (st)ω (g −X0)
(1)

subjected to

ht (st) =

∑N
i=1 ψi (st) st∑N
i=1 ψi (st)t

, ψi (st) = exp

(
− 1

2σi
(st − ci)2

)
(2)

where
[
Xt, Ẋt, Ẍt

]
is the Cartesian space trajectory; X0 and

g present the initial position and goal position, respectively;
Kp and Kd are the stiffness matrix, damping term of DMP.
ω is the shape parameter; αs is the scale parameter of
Canonical system, where st asymptotically decays from 1
to 0;σi and ci andwidth and center of the i -th Gaussian
kernels.

In general, the complex movements are linear combina-
tions of simple movement primitive with weighted which is
defined as,

Ẍ =

K∑
k=1

hk

(
Kp
k (Xg −X)−Kv

kẊ + F
)

(3)

where hk denotes the weighted of different components. The
Cartesian space data point from demonstrations are defined
as: ζk = {sk, Xk} (k = 1, . . . ,M), where M is the number
of demonstrations. Each datapoint include the time temporal
value sk and position value Xk.

The new dataset of nonlinear item F in DMP framework
of multi-demonstrations is defined as: {sk, Fk}. To encode
the movement of dataset {sk, Fk}, the Gaussian Mixture
Model (GMM) is proposed to train the trajectories from
demonstration. Then the dataset is modeled by K component
Gaussian model as,[

s
F

]
∼

K∑
k=1

hkN (λk,Σk) (4)

λk =

[
λsk
λFk

]
,Σk =

[
Σssk ΣsFk
ΣFsk ΣFFk

]
(5)

where K denotes the Gaussian model; λk and Σk are mean
and covariance matrix of k component GMM.

Then the Gaussian Mixture Regression (GMR) is proposed
to reconstruct the general form for the dataset [15], [16]. The
estimation of condition expectation λ̂s and covariance matrix
Σ̂ss are concluded as,

λ̂s =

K∑
k=1

hkλ̂
s
k, Σ̂ss =

K∑
k=1

hkΣ̂ssk (6)

hk (s) =
ηkN

(
λ̂sk (s) , Σ̂ssk (s)

)
K∑
k=1

ηk (s)N
(
s|λ̂sk (s) , Σ̂ssk (s)

) (7)

Therefore, the motion
{
s, λ̂F

}
can be generated by esti-

mating
{
λ̂F , Σ̂FF

}
at time step s.

B. Kinematics Model

The model of a redundant manipulator is formulated as
below:

Jq̇ = ṙd (8)

where J ∈ Rm×n is the Jacobian matrix. Then we have

q− ≤ q ≤ q+ (9)
q̇− ≤ q̇ ≤ q̇+ (10)

where q−, q+, q̇− and q̇+ represent corresponding bounds
of the joint angle and the joint velocity vector, respectively.

Then, we convert the position limit to the velocity limit,
which is consistent with optimization objective function as
below:

λ
(
q− − q

)
≤ q̇ ≤ λ

(
q+ − q

)
(11)

where λ > 0 is the constant coefficient. Therefore, by
combining (10) and (11), the joint limits can be reformulated
as below:

π− ≤ q̇ ≤ π+, q̇ ∈ Ω (12)

π−i = max
{
q̇−i , λ

(
q−i − qi

)}
π+
i = min

{
q̇+
i , λ

(
q+
i − qi

)}
It should be noted that the joint trajectory q is difficult

to be obtained by the inverse kinematics provided in (8),
due to the high computational complexity and the infinite
number of solutions. To address this issue, we reformulate
the problem as a novel optimization problem associated
with the redundant degree of freedom. Therefore, the first
optimization problem associated with task tracking can be
defined as follows:

min
1

2
q̇TWq̇ (13)

s.t. J (q)q̇ = ṙd (14)

π− ≤ q̇ ≤ π+ (15)

where ṙd is the desired velocity of a surgical task; W = I .

C. Remote Center of Motion

During a surgical tracking task, the surgical tooltip of the
robot needs to pass through the RCM. Fig.e 1 represents the
assumption that the tool should always be inserted into the
patient’s body at the point rrcm, without affecting the main
surgical task.

According to the coordinate rn−1 ∈ Rm, the end-effector
position rn ∈ Rm can be addressed as below:

rn−1 = fn−1(q), rn = fn(q) (16)
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Fig. 1: Remote center of motion: a robot tool passes through
a small incision rrcm on the obstacle surface. During the
robot manipulation, the tool-tip position needs to follow
the desired reference trajectory, while the tool shaft should
respect the kinematic constraint of the RCM.

To comply with the RCM constraint, rrcm should be
always on the straight line between rn−1 and rn, where rn
is the position of the tooltip and rn−1 is the joint position
of holding the tool. In an actual surgical operation, we seel
to keep the error of RCM equal to zero. The vectors of line
1 and line 2 are defined as follows: −−−−→rn−1rn = rn − rn−1,
−−−−−−→rn−1rrcm = rrcm − rn−1, respectively.

According to the geometric relationship, the relation is
derived as below:

−−−−−−→rn−1rrcm ×−−−−→rn−1rn = 0 (17)

From the relationship between the RCM error ercm and
the vector projection, the error of RCM can be further
represented as follows:

ercm =
−−−−→r1rrcm ×−−−−→rn−1rn

L
(18)

where L = ‖rn − rn−1‖ is the length of the last link.
The time derivative of the RCM error model in (18) is

reformulated as below:

Jrcmq̇ = ėrcm (19)

where Jrcm ∈ Rm×n is the Jacobian matrix corresponding
to the RCM error model.

With regard to the RCM constraint task, we seek to
maintain the distance of the RCM error ercm at the minimum
value. Therefore, the second optimization problem with the
RCM constraints are defined as,

min
1

2
q̇TWq̇ (20)

s.t. Jrcm (q) q̇ = 0 (21)

D. Problem Reformulation in Terms of Quadratic Program-
ming

In this subsection, the kinematic control of serial ma-
nipulators considering forwarding kinematics and focusing
on the RCM (21) and joint velocity level constraints (14)
is considered. The end task and RCM constraints should
be considered simultaneously. We expected to find the op-
timization solution for the velocity constraint. Then, the

coordinate tooltip tracking error asymptotically converges to
zero and the RCM deviation error remains constrained within
a predefined area.

Considering the RCM and end task constraints and end
tasks constraints simultaneously, the new multi-tasks op-
timization problem based on (13)–(15) and (20)–(21) is
defined as

min
1

2
q̇TWq̇ (22)

s.t. Jq̇ = vd

Jrcmq̇ = 0

π− ≤ q̇ ≤ π+

where vd = ṙnd.
The joint angle drift can occur due to the loss of explicit

information on rn and ercm. Therefore, we design the
feedback controller to restrict the movement of the robot
in terms of the end effector and RCM velocity constraint in
(26) as follows:

Jq̇ = −k1 (fn (q)− rnd) + ṙnd (23)
Jrcmq̇ = −k2 (rrcm) (24)

where vd = −k1 (fn (q)− rnd) + ṙnd, vrcm = −k2 (rrcm).
The optimization problem in (22) is rewritten as,

min
1

2
q̇TWq̇ (25)

s.t. Jq̇ = vd

Jrcmq̇ = vrcm

π− ≤ q̇ ≤ π+

It should be noted that the multi-tasks have different pri-
orities, which are scaled by corresponding weights. Finally,
the multi-tasks optimization scheme defined in (22) can be
reformulated as below:

min
η0

2
q̇T q̇ +

η1

2
‖Jq̇ − vd‖2 +

η2

2
‖Jrcmq̇ − vrcm‖2

(26)
s.t. Jq̇ = vd

Jrcmq̇ = vrcm

π− ≤ q̇ ≤ π+

where η0 > 0, η1 > 0 and η2 > 0 are the constants used to
balance the different priorities of multi-tasks.

III. NEURAL NETWORK DESIGN AND STABILITY
ANALYSIS

In this section, the novel RNN is applied to solve the
multi-tasks optimization problem according to the RCM
constraints defined in (26). We first transfer the quadratic
programming problem formulated in (26) to the equivalent
relationship problem, and then design the novel RNN to solve
it. The control framework of the developed RNN scheme is
described in Fig. 2.
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Fig. 2: The block diagram of novel recurrent neural network
model.

A. novel recurrent neural network for the Quadratic Pro-
gramming Problem problem

To obtain the equivalent relationship problem from (26),
the Lagrange function is constructed as follows:

L (q̇, λ1, λ2) =
η1

2
‖Jq̇ − vd‖2 +

η2

2
‖Jrcmq̇ − vrcm‖2

η0

2
q̇T q̇ + λT1 (vd − Jq̇) + λT2 (vrcm−Jrcmq̇) (27)

where λ1 ∈ Rm and λ2 ∈ Rm. The gradient of L is defined

as ∇L =
[
∂L
∂q̇ ,

∂L
∂λ1

, ∂L∂λ2

]T
. Therefore, the gradient ∇L can

be derived as follow,

∇L =



∂L
∂q̇ = η1J

T (Jq̇ − vd) + η2J
T
rcm (Jrcmq̇ − vrcm)

+η0q̇ +
(
−JT

)
λ1 +

(
−JTrcm

)
λ2

∂L
∂λ1

= Jq̇ − vd

∂L
∂λ2

= Jrcmq̇ − vrcm
(28)

According to the KKT condition defined in [17], if ∇L is
continuous, the solution of (28) should satisfy the following,

∇L = 0 (29)

The state decision variable u (t) = [q̇, λ1, λ2]
T ∈ Rn+2m.

The problem in (29) is equivalent to the following,

H (t)u (t) = F (t) (30)

where

H (t) =

 h1 −JT −JTrcm
J 0 0

Jrcm 0 0

 ∈ R(n+2m)×(n+2m)

u (t) = [q̇, λ1, λ2]
T
, F (t) = [F1, vd, vrcm]

T

h1 = η0In + η1J
TJ + η2J

T
rcmJrcm

F1 = η1J
T vd + η2J

T
rcmvrcm

The error model of the novel RNN is defined as,

e (t) = H (t)u (t)− F (t) (31)

To ensure the model error convergence to zero, the corre-
sponding function can be defined as below:

ė (t) = −αPΩ (e (t)) (32)

PΩ (ei(t)) =
(1 + exp(−ξ)) (1− exp(−ξei(t)))
(1− exp(−ξ)) (1 + exp(−ξei(t)))

where α > 0 is the constants which can adjust the conver-
gence rate; PΩ (ei(t)) denotes the activation function, and
ξ ≥ 2 which makes 0 ≤ |ei(t)| ≤ 1; Obviously, the error in
(32) is convergence to zero with exponential convergence.

To obtain the model of novel RNN, the function in (32)
is expanded as,

H (t) u̇ (t) = −Ḣ (t)u (t)− αPΩ (H(t)u(t)− F (t)) + Ḟ (t)
(33)

We further modify the novel recurrent neural network in
(33) as,

u̇ (t) = (I −H (t)) u̇ (t)− αPΩ (H (t)u (t)− F (t)) + Ḟ (t)
(34)

For comparison, the traditional gradient descent-based
recurrent neural network in [18] is denoted as,

u̇ (t) = −αHT (t) (H (t)u (t)− F (t)) (35)

For the online solving process, the neural network consists
of N neurons and the neural network is designed as,

u̇i =

N∑
j=1

(Iij −Hij (t))u̇j (t)−
N∑
j=1

Ḣij (t)uj (t)

−αPΩ

 N∑
j=1

Hij (t)uj (t)− Fi (t)

+ Ḟi (t) (36)

B. Convergence Analysis

Theorem 1: If there exists the optimal solution u∗ =
[q̇∗, λ∗1, λ

∗
2]
T , for any initial state u(0), then u = [q̇, λ1, λ2]

T

globally converges to the equilibrium point u∗.
Proof: The candidate Lyapunov function is defined as,

V (t) =
1

2
eT e (37)

The V (t) can be described as below:

V̇ (t) =
dV (t)

dt
= eT (t) ė (t) (38)

Equations (32) and (38) are combined as,

V̇ (t) = −αeT (t)PΩ (e(t)) (39)

= −α
N∑
i=1

ei (t)PΩ (ei(t)) (40)

Since PΩ (e(t)) is the monotone nondecreasing activation
function, we can conclude the following,

ei (t)PΩ (ei(t)) =

{
> 0, if ei(t) > 0 or ei(t) < 0
= 0, if ei(t) = 0

(41)

Hence, the time derivative V (t) is formulated as,

V̇ (t)

{
< 0, if ei(t) 6= 0
= 0, if ei(t) = 0

(42)

From the (42), it can conclude that only if ei(t) = 0,
V̇ = 0; otherwise V̇ < 0. The proof is done.
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Fig. 3: Learning tumor resection from human demonstra-
tions.

Fig. 4: Regression results corresponding to the nonlinear item
F .

Fig. 5: Motion trajectories obtained using the KUKA simu-
lator.

Fig. 6: Experimental demonstration: 1) hands-on control to
enable the robot manipulator to learn how to remove tumors
by demonstrations; 2) autonomous tracking is activated to
demonstrate the surgical operation.

Fig. 7: Trajectories tracking.

Fig. 8: The comparative performance for the position error
of the end effector.

Fig. 9: The comparative results for the distribution of the
RCM constraint error.

Fig. 10: Joint position of the manipulator.
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IV. SIMULATION AND EXPERIMENTAL DEMONSTRATION

The parameters of neural networks are chosen as: η0 =
0.1, η1 = 20, η2 = 20, γ = 0.01, k1 = 7, k2 = 7. In
order to evaluate the proposed control scheme, comparison
experiments are carried out. The Cartesian position error
Eend and the RCM constraint error ‖Ercm‖ are recorded
for analysis [19]–[21]. After that, a demonstration using the
KUKA simulator is performed to verify the feasibility of the
proposed optimization framework firstly, as it is shown in
Fig. 5.

Firstly, 9 sample trajectories of tumor resection are col-
lected from human demonstrations, and the learning results
are shown in Fig. 3–Fig. 4. Considering the effectiveness of
the developed method combined with the related works for
the surgucal robot, the experiments are conducted, as shown
in Fig. 6. The proposed null space solution in our previous
works [5] is performed for comparison.

The approaches described in the related works are also
implemented and applied to the same trajectory for the
purpose of comparison. Fig. 7 represents the motion trajec-
tories tracking of the real experiments. It should be noted
that the real trajectory is able to converge and to track
the desired trajectory. Fig. 8-9 represent the comparison of
the performance in terms of the tracking error and RCM
error estimated in real time during the tracking task. Fig. 10
depicts the actual joints trajectory during the tracking. It can
be seen that all errors of the end effector are constrained
within the acceptable error range of 4 mm; however, it
should be outlined that the proposed RNN achieves the
lowest error compared with other considered approaches. The
constraint error demonstrates that the proposed RNN has the
appropriate performance to ensure compliance with the RCM
constraint within 3 mm.

V. DISCUSSION AND CONCLUSION

In this article, we present a novel optimization control
method based on improved RNN for a surgical manipulator
control under the RCM constraint. It can be used to enable
conducting multiple tasks simultaneously, including surgical
operation tracking, controlling RCM, and joint limits, etc..
The robot manipulator is developed in such way to learn
tumor resection skills in the Cartesian space from human
demonstrations. The proposed neural network optimization
problem is formulated as a real-time resolution for the given
tasks. We observe that it achieves the acceptable convergence
performance even in the case of a random initial position.
Finally, experimental evaluation has been performed to test
the proposed method on the virtual surgical tasks related to
the organ phantom.
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