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Abstract— The isoline tracking of this work is concerned
with the control design for a sensing robot to track a given
isoline of an unknown 2-D scalar filed. To this end, we propose
a coordinate-free controller with a simple PI-like form using
only the concentration feedback for a Dubins robot, which is
particularly useful in GPS-denied environments. The key idea
lies in the novel design of a sliding surface based error term in
the standard PI controller. Interestingly, we also prove that the
tracking error can be reduced by increasing the proportion
gain, and is eliminated for circular fields with a non-zero
integral gain. The effectiveness of our controller is validated
via simulations by using a fixed-wing UAV on the real dataset
of the concentration distribution of PM 2.5 in Handan, China.

I. INTRODUCTION

The isoline tracking refers to the tactic that a mobile robot
reaches and then tracks a predefined contour in a scalar field,
which is widely applied in the areas of detection, exploration,
monitoring, and etc. In the literature, it is also named as curve
tracking [1], boundary tracking [2], [3], level set tracking [4].
In fact, it covers the celebrated target circumnavigation as a
special case [5]–[7].

Compared with the static sensor networks, it is more
flexible and economical to utilize mobile sensors to collect
data or track target. The methods for isoline tracking by
robots have been applied to many practical problems, e.g.,
exploring environmental feature of bathymetric depth [3],
tracking boundary of volcanic ash [8], tracking curve of sea
temperature [9], and monitoring algal bloom [10].

Roughly speaking, we can categorize the methods for
isoline tracking depending on whether the gradient of the
scalar field can be used or not. The gradient-based method
is extensively used to the extreme seeking problem, which
steers a robot to track the direction of gradient descending
(ascending) to reach the minimizer (maximizer) of a scalar
field [9], [11].

If the explicit gradient is not available, many works
focus on the problem of gradient estimation, which mainly
include two main strategies: (i) a single robot changes
its position over time to collect the signal propagation at
different locations; and (ii) multiple robots collaborate to
obtain measurements at different locations at the same time.
For the case (i), Ai et al. [12] show a sequential least-squares
field estimation algorithm for a REMUS AUV to seek the
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source of a hydrothermal plume. Moreover, the stochastic
method for extreme seeking is also gradient-based, the idea
behind which is to approximate the gradient of the signal
strength and to use this information to drive the robot towards
the source by adding an excitatory input to the robot steering
control [13], [14]. For the case (ii), a circular formation of
robots is adopted in [15], [16] to estimate the gradient of
fields. Moreover, a provably convergent cooperative Kalman
filter and a cooperative H∞ filter are devised to estimate the
gradient in [9] and [11], respectively.

In many scenarios, robots cannot obtain its position and
can only measure the signal strength at the current location of
the sensor, i.e., the measurement in a point-wise fashion [4].
Thus, it is impossible to estimate the field gradient, and re-
searchers turn to exploiting gradient-free methods. A sliding
mode approach is proposed for target circumnavigation by
[17] and then is adopted to similar problems, e.g., level sets
tracking [4], boundary tracking [18], etc. Without a rigorous
justification, they address the “chattering” phenomenon by
modeling dynamics of the actuator as the simplest first
order linear differential equation in implementation. A PD
controller is devised in [19] for a double-integrator robot to
track isolines in a harmonic potential field. Besides, a PID
controller with adaptive crossing angle correction is shown
in [20]. Furthermore, there are some heuristic methods for
isoline tracking, e.g., sub-optimal sliding mode algorithm of
[21].

In this paper, we propose a coordinate-free controller in
a PI-like from for a Dubins robot to track a desired isoline
by using only the concentration feedback. That is, we do not
use any field gradient or the position of the robot, which
renders our controller particularly useful in the GPS-denied
environment. Our key idea lies in the novel design of a
sliding surface based error term in the standard PI controller.
Similar to the standard PI controller, we show that the final
tracking error can be reduced by increasing the proportion
gain, and is eliminated for circular fields with a non-zero
integral gain. For the case of smoothing scalar fields, we
explicitly show the upper bound of the steady-state tracking
error, which can be reduced by increasing the proportional
gain. To validate the effectiveness of our controller, we adopt
a fixed-wing UAV to track the isoline of the concentration
distribution of PM 2.5 in Handan, China.

The rest of this paper is organized as follows. In Section
II, the problem under consideration is formulated in details.
Particularly, we clearly describe the desired isoline tracking
pattern. To achieve the objective, we propose a PI-like
controller for a Dubins robot in Section III. In Section
V, we explicitly show the upper bound of the steady-state
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Fig. 1. (a) PM2.5 concentration observed in Handan, a city in North China, at 2018/11/25 22:00:00. (b) Coordinates of the Dubins robot in scalar fields.
(c) Coordinates of the Dubins robot in circular fields.

error in scalar fields. Moreover, we show that the isoline
tracking system is locally exponentially stable in Section
IV. Simulations are performed in Section VI, and some
concluding remarks are drawn in Section VII.

II. PROBLEM FORMULATION

In Fig. 1(a), we provide a 2-D example of the concentra-
tion distribution of PM 2.5 in Handan, China on November
25, 2018. In the environmental monitoring, it is fundamen-
tally important to investigate the concentration distribution
of air pollutants. To achieve it, we design a sensing robot to
track an isoline of its distribution function. Mathematically,
the concentration of a 2-D scalar field can be described by

F (p) : R2 → R, (1)

where p ∈ R2 is the position. Given a concentration level
sd, an isoline L(sd) is defined as

L(sd) = {p|F (p) = sd}. (2)

The isoline tracking problem is on the design of a con-
troller for a sensing robot to reach a given isoline and
maintain on the isoline with a constant speed. That is, the
objective is to asymptotically steer a sensing robot such that

lim
t→∞

|s(t)− sd| → 0 & ‖ṗ(t)‖ = v, (3)

where s(t) = F (p(t)) is the concentration measurement of
the scalar field at the GPS position p(t) of the robot and v
is its constant linear speed. For a circular field, e.g., acoustic
field, then

F (p) = I0 exp(−ς‖p− po‖2), (4)

where po is the source position of the field and I0, ς are
unknown parameters. The isoline tracking in (3) is exactly
reduced to the celebrated circumnavigation problem [5]–[7].

In this work, we are interested in the scenario that both the
concentration distribution F (p) and the GPS position of the
sensing robot are unknown. Moreover, we cannot measure a
continuum of the scalar field, which implies that the gradient-
based methods [1], [9], [16] cannot be applied here.

III. CONTROLLER DESIGN

In this section, we design a coordinate-free controller in
a PI (proportional integral)-like form for a Dubins robot to
complete the isoline tracking problem. The key idea lies in
the novel design of a sliding surface based error term in the
standard PI controller.

A. The PI-like controller for a Dubins Robot

Consider a Dubins robot on a 2-D plane

ṗ(t) = v

[
cos θ(t)
sin θ(t)

]
, θ̇(t) = ω(t), (5)

where p(t) = [x(t), y(t)]′, θ(t), ω(t) and v are the position,
heading course, the tunable angular speed and constant linear
speed, respectively.

To achieve the objective in (3) by the Dubins robot (5),
we propose a novel PI-like controller

ω(t) = kpe(t) + kiσ(t), (6)

where σ̇(t) = e(t), kp > 0 and ki ≥ 0 are the control
parameters to be designed.

Let the tracking error be ε(t) = s(t) − sd. The major
difference of (6) from the standard PI controller lies in the
novel design of the following error term

e(t) = ε̇(t) + c1 tanh (ε(t)/c2) , (7)

where c1,2 > 0 are constant parameters, and tanh(·) is
the standard hyperbolic tangent function to ensure that the
selection of the control parameters is independent of the
maximum range of the operating space of the controller. In
fact, the error term e(t) in (7) can also be regarded as a
sliding surface. For example, once reaching the surface, i.e.,
e(t) = 0, it follows that

ε̇(t) = −c1 tanh (ε(t)/c2) ,

which further implies that ε(t) will tend to zero with an
exponential convergence speed, i.e., the robot will eventually
reach the isoline L(sd).

Intuitively, the PI-like controller (6) consists of two terms:
(i) the proportional term for global stability, and (ii) the



integral term to eliminate the steady-state error. Similar to the
standard PI controller, the integral coefficient ki is generally
much smaller than the proportional coefficient kp. It is worth
mentioning that c1 affects the convergence speed and c2
affects the sensitivity to the tracking error ε(t).

Clearly, the PI-like controller (6) of this work only uses
the concentration measurement s(t) of the scalar field, and
is particularly useful in GPS-denied environments.

B. Comparison with the existing methods

Some related methods to our proposed control laws are (i)
the sliding mode controller in [4], (ii) the PD controller in
[19], and (iii) the sliding mode controller with two-sliding
motions in [3]. The sliding mode approach in [4] is originally
designed for the problem of target circumnavigation [17]
with range-based measurements, and then is adopted to
isoline tracking in [4]. Besides the existence of the chattering
phenomenon, their method cannot achieve zero steady-state
error even for the task of circumnavigation. In contrast, our
PI-like controller (6) is continuous and particularly useful to
isoline tracking in circular fields, since the integral part can
exactly eliminate the steady-state error. Moreover, the PD
feedback controller in [19] is devised for a double-integrator
robot, and their control parameters depend on maximum
range of the controller operating space. We address this
issue by introducing a hyperbolic tangent function tanh(·).
Furthermore, the controller in [3] needs two-sliding motions.
They validate their controller by both simulations in a syn-
thetic data-based environment and sea-trials by a C-Enduro
ASV in Ardmucknish Bay off Dunstaffnage in Scotland.
However, their method is heuristic and in fact only offers
uncompleted justification.

IV. ISOLINE TRACKING IN CIRCULAR FIELDS

In this section, we first consider the case of a circular field
in (4). Taking logarithmic function on both sides of (4), there
is no loss of generality to write it in the following form

F (p) = sd − α(d(t)− rd), (8)

where sd is the desired isoline, α ≥ α is an unknown positive
constant, d(t) = ‖p(t)−po‖2 is the distance from the robot
to the position po of the source, and rd denotes the unknown
radius when the robot travels on the desired isoline, i.e.,
s(t) = sd.

Let n = ∇F (p) denote the gradient vector of F (p), see
Fig. 1(b), and h = [cos θ, sin θ]′ represent the course vector
of the Dubins robot and τ to represent the tangent vector of
h. By convention, h and τ form a right-handed coordinate
frame with h× τ pointing to the reader.

After converting the coordinates of the robot from the
Cartesian frame into the polar frame, we use the concen-
tration s(t) and angle φ(t) to describe the tracking system.
See Fig. 1(c) for illustrations, where n exactly points to the
source and φ(t) is formed by the negative gradient vector −n
and the heading vector h. The counter-clockwise direction
is set to be positive.

By definitions of s(t) and φ(t), we have that

ṡ(t) = −αḋ(t) = −αv cosφ(t),

φ̇(t) = ω(t)− v

d(t)
sinφ(t).

(9)

If s(t) converges to sd, then d(t) also converges to rd.
However, rd is unknown to the sensing robot, which is sub-
stantially different from the target circumnavigation problem
[5], [6], and we cannot use the control bias ωc = v/rd to
eliminate the tracking error as in [7]. To solve it, we design
an integral term kiσ(t) in (6).

Proposition 1: Consider the tracking system in (9) under
the PI-like controller in (6). Define x(t) = [s(t), φ(t)]′ and
xe = [sd, − π/2]′. If the control parameters are selected to
satisfy that

kp(kp − 2)vα > ki and vα > c1 > 0, (10)

then xe is a locally exponentially stable equilibrium of the
tracking system (9).

Proof: By (9), the tracking system under the PI-like
controller (6) is written as

ḋ(t) = v cosφ(t),

φ̇(t) = − kp
(
αḋ(t) + c1 tanh (α/c2 · (d(t)− rd))

)
+ kiσ(t)− v sinφ(t)/d(t),

σ̇(t) =− αḋ(t) + c1 tanh (−α/c2 · (d(t)− rd)) .

(11)

Then, we define an error vector

z(t) = [z1(t), z2(t), z3(t)]
′

= [d(t)− rd, φ(t) + π/2, σ(t) + v/kird]
′,

and linearize (11) around [rd, −π/2, −v/kird]′ as follows

ż(t) = Az(t), (12)

where the Jacobian matrix A is given by

A =

 0 v 0
−kpc1α/c2 − v/r2d −kpvα ki

−c1α/c2 −vα 0

 .
Consider a Lyapunov function candidate as

V (z) = µ2z
2
1(t) + µ3z

2
2(t) + µ4z

3
3(t) (13)

+
1

2

(
−µ1z

2
1(t)− c1vαz2(t) + c2z3(t)

)2
,

where µ1 = kpc1α/c2 + v/r2d, µ2 = kpα(kpαvµ1 −
kic1α/(2c2)), µ3 = µ1v/2 + kiαv/2, and µ4 =
kpkic2vµ1/c1 − k2i /2. It is clear that the conditions in (10)
ensure that V (z) is nonnegative.

Then, we write (13) as the following form

V (z) = z′Pz, (14)

where

P =
1

2

2µ2 + µ2
1 kpαvµ1 −kiµ1

kpαvµ1 2µ3 + (kpαv)
2 −kpkiαv

−kiµ1 −kpkiαv 2µ4 + k2i

 ,



Q =


kpαvµ

2
1 −

kic1αµ1

c2
0 0

0 (kpαv)
3 ki(kpαv)

2 − k2i αv/2 +
kpkic2(αv)

2µ1

c1α

0 ki(kpαv)
2 − k2i αv/2 +

kpkic2(αv)
2µ1

c1α
kpk

2
i αv

 (17)

which leads to that

λmin(P )‖z‖22 ≤ V (z) ≤ λmax(P )‖z‖22, (15)

where λmin(P ) and λmax(P ) denote the minimum and
maximum eigenvalues of P .

Taking the derivative of V (z) along with (12) leads to that

V̇ (z) = −z′Qz, (16)

where Q is shown in (17) and is positive definite by the
conditions in (10).

Then, it follows from (15) and (16) that

V̇ (z) ≤ −λmin(Q)‖z‖22 ≤ −
λmin(Q)

λmax(P )
V (z). (18)

By the comparison principle [22], the tracking system (9) is
locally exponentially stable under the PI-like controller (6).

V. ISOLINE TRACKING IN SCALAR FIELDS

In this section, we consider a scalar field in (1) under the
assumption that F (p) is twice differentiable and satisfies

γ1 ≤ ‖∇F (p)‖ ≤ γ2, ‖∇2F (p)‖ ≤ γ3, ∀p ∈ R2 (19)

where γi is a positive constant. Note from (19) that
|h′∇2F (p)h| ≤ γ3 for any h = [cos θ, sin θ]′.

To this end, we follow from Fig. 1(c) that

ṡ(t) = vn′h = −v‖∇F (p)‖ cosφ(t). (20)

Then, taking the derivative of ṡ(t) leads to that

s̈(t) = ω(t)vn′τ + v2h′∇2F (p)h (21)

= ω(t)v‖∇F (p)‖ sinφ(t) + v2h′∇2F (p)h.

Proposition 2: Consider the isoline tracking system in
(20) and (21) under the PI-like controller in (6) and (19).
If φ(t0) ∈ [−ε,−π + ε] where ε ∈ (0, π/2) and the control
parameters are selected to satisfy that

kp > max

(
γ3v

γ1 sin ε (vγ1 cos ε− c1)
,
c2γ3v + c1γ2
c1γ1 sin ε

)
,

and ki = 0, then

lim sup
t→∞

|s(t)− sd| ≤ tanh−1
(
c2γ3v + c1γ2
kpc1γ1 sin ε

)
.

The proof depends on the following technical result.
Lemma 1: Consider the following system

ż(t) = −k tanh(z(t)) + b. (22)

If k > b > 0, then lim supt→∞ |z(t)| ≤ tanh−1 (b/k) .
Proof: Consider a Lyapunov function candidate as

Vz(z) = 1/2 · z2(t).

Taking the derivative of Vz(z) along with (22) leads to that

V̇z(z) = z(t) (−k tanh(z(t)) + b)

≤ −kz(t) tanh(z(t)) + b|z(t)|.

By k > b > 0, it holds that V̇z(z) ≤ 0 for
all |z(t)| ≥ tanh−1 (b/k). Furthermore, it follows that
lim supt→∞ |z(t)| ≤ tanh−1 (b/k) .

Remark 1: Given a specific b in (22), we can reduce the
upper bound by increasing the gain k. Similarly, Proposition
2 implies that increasing kp can reduce the upper bound of
the steady-state tracking error.

Proof: [of Proposition 2] Firstly, we show that φ(t) can
not escape from the region [−ε,−π + ε]. Substituting the
PI-like controller (6) into (21) yields that

s̈(t) = kpvn
′τ (ε̇(t) + c1 tanh (ε(t)/c2)) + v2h′∇2F (p)h.

(23)

Since ṡ(t) and φ(t) are continuous with respect to time t by
(20) and (23), we only need to verify the sign of s̈(t) when
φ(t) = −ε and −π + ε. When φ(t) = −ε, it follows from
(23) that

s̈(t) = v2h′∇2F (p)h− kpv‖∇F (p)‖ sin ε×
(v‖∇F (p)‖ cos ε+ c1 tanh (ε(t)/c2))

≤− kpvγ1 sin ε (vγ1 cos ε− c1) + γ3v
2 < 0. (24)

Similarly, φ(t) = −π + ε yields that

s̈(t) ≥− kpvγ1 sin ε (−vγ1 cos ε+ c1)− γ3v2 > 0. (25)

Thus, φ(t) stays in the region [−ε,−π + ε] for all t ≥ t0 if
φ(t0) ∈ [−ε,−π + ε].

Consider a Lyapunov function candidate as

Ve(e) = 1/2 · e2(t).

Its derivative along with (20) and (23) is obtained as

V̇e(e) = e(t)
(
s̈(t) + c1/c2 ·

(
1− tanh2 (ε(t)/c2)

)
ṡ(t)

)
= kpvn

′τe2(t) + e(t)×(
v2h′∇2F (p)h+ c1/c2 ·

(
1− tanh2 (ε(t)/c2)

)
ṡ(t)

)
≤ kpvn′τe2(t) +

(
γ3v

2 + c1/c2 · γ2v
)
|e(t)|

≤ − (kpvγ1 sin ε) e
2(t) +

(
γ3v

2 + c1/c2 · γ2v
)
|e(t)|.
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Fig. 2. (a) Fields distribution and trajectory of the Dubins robot. (b) Trajectories of the Dubins robot with different initial states. (c) Tracking errors of
the Dubins robot with different control parameters.
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Fig. 3. (a) Coordinates of a fixed-wing UAV. (b) Trajectory of the fixed-wing UAV in the field of PM2.5. (c) Tracking errors and concentration rate of
the fixed-wing UAV.

Thus, V̇e(e) ≤ 0 holds for all

|e(t)| ≥ ρ =
γ3v + c1γ2/c2
kpγ1 sin ε

.

This implies that |e(t)| will be eventually bounded by ρ, i.e.,

lim sup
t→∞

|ε̇(t) + c1 tanh (ε(t)/c2)| ≤ ρ.

By Lemma 1, it holds that

lim sup
t→∞

|s(t)− sd| ≤ tanh−1
(
c2γ3v + c1γ2
kpc1γ1 sin ε

)
.

VI. SIMULATIONS

The effectiveness and advantages of the PI-like controller
are validated by simulations in this section. Particularly, the
PI-like controller (6) is performed on a realistic simulator of
a 6-DOF fixed-wing UAV [23].

A. Isoline Tracking in Scalar Fields

Consider a Dubins robot in (5), and let q(t) =
[p′(t), θ(t)]′ denote its state. The linear speed of the robot
is set as v = 0.5 m/s. Let the Dubins robot travel in a scalar
field of Fig. 1(a), under the PI-like controller (6) with the
parameters shown in Table I. The field distribution and the

TABLE I
PARAMETERS OF THE CONTROLLER (6) IN SECTION VI-A

Parameter kp ki c1 c2

Value 10 0 0.1 1

TABLE II
PARAMETERS OF THE CONTROLLER (6) IN SECTION VI-B

Parameter kp ki c1 c2

Value 10 1 0.2 1

trajectory of the Dubins robot are given in Fig. 2(a) with
sd = 10 and q(t0) = [0, 20, − π/2]. It is clear that the
objective (3) is eventually achieved.

B. Isoline Tracking in Circular Fields

In this subsection, we validate the performance of the PI-
like controller (6) in a circular field

F (p) = 20 exp
(
−0.1

√
x2 + y2

)
(26)

where the source position is set to origin. The control
parameters are selected as Table II. Fig. 2(b) illustrates the
field distribution and trajectories of the Dubins robot with
different initial states. Furthermore, Fig. 2(c) depicts the



tracking errors with different control parameters. It can be
observed that increasing kp can exactly enforce the steady-
state error to approach zero, however only the controller (6)
with ki = 1 eventually achieves the objective in (3) with a
zero steady-state error.

C. Isoline Tracking in a field of PM2.5

In this subsection, a 6-DOF fixed-wing UAV [23] is
adopted to test the effectiveness of the PI-like controller
(6) in the field of PM2.5, see Fig. 1(a) and Fig. 3(a). To
be consistent with the notions in [7], [23], we also adopt
[pn, pe, pd]

′ and [φ, θ, ψ]′ to denote the position and orienta-
tion of the UAV in the inertial coordinate frame, respectively.
Moreover, we use [u, v, w]′ and [p, q, r]′ to denote the linear
velocities and angular rates in the body frame. Due to page
limitation, we omit details of the mathematical model of the
UAV, which can be found in [23], and adopt codes from [24]
for the model. Moreover, Fig. 3(b) depicts the distribution of
the PM2.5 and the trajectory of the UAV, where the square
and arrow denote its initial position and course. Furthermore,
the tracking error and the concentration measurement rate of
the sensing robot versus time are illustrated in Fig. 3(c). In
details, the sampling frequency for the PM2.5 is set as 1 Hz
and the linear speed of the UAV is maintained as 30 m/s by
its original controller.

Overall, the objective (3) is eventually achieved by the
Dubins robot (5) under the proposed PI-like controllers (6).

VII. CONCLUSION

To track a desired isoline of a scalar field, we have
designed a coordinate-free controller in a simple PI-like form
for a Dubins robot by using concentration-based measure-
ments in this work. A novel idea lies in the design of a
sliding surface based error term, which render our PI-like
controller different from the standard PI controller. Moreover,
the simulation results validated our theoretical finding.
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[15] L. Briñón-Arranz, L. Schenato, and A. Seuret, “Distributed source
seeking via a circular formation of agents under communication
constraints,” IEEE Transactions on Control of Network Systems, vol. 3,
no. 2, pp. 104–115, 2015.
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