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Abstract— Recently, tactile sensing has attracted great inter-
est in robotics, especially for facilitating exploration of unstruc-
tured environments and effective manipulation. A detailed un-
derstanding of the surface textures via tactile sensing is essential
for many of these tasks. Previous works on texture recognition
using camera based tactile sensors have been limited to treating
all regions in one tactile image or all samples in one tactile
sequence equally, which includes much irrelevant or redundant
information. In this paper, we propose a novel Spatio-Temporal
Attention Model (STAM) for tactile texture recognition, which
is the very first of its kind to our best knowledge. The proposed
STAM pays attention to both spatial focus of each single tactile
texture and the temporal correlation of a tactile sequence. In
the experiments to discriminate 100 different fabric textures,
the spatially and temporally selective attention has resulted
in a significant improvement of the recognition accuracy, by
up to 18.8%, compared to the non-attention based models.
Specifically, after introducing noisy data that is collected before
the contact happens, our proposed STAM can learn the salient
features efficiently and the accuracy can increase by 15.23% on
average compared with the CNN based baseline approach. The
improved tactile texture perception can be applied to facilitate
robot tasks like grasping and manipulation.

I. INTRODUCTION

The sense of touch is one of the important information
sources for both humans and robots to perceive the object
properties in the physical world. One of the key object
properties is the surface texture and the determination of
the surface textures is important for object recognition and
dexterous manipulation of objects. One of the good examples
of the surface textures is the patterns of fabric or clothing.
Humans are able to recognise the fabric textures with ease
as a result of interaction between the fabric and human
skin [1]. To have robots assist our daily life such as sorting
clothes for laundry, it is also important to understand the
properties of clothing for service robots. If robots are able
to distinguish whether a fabric is made by cotton or silk
through distinguishing their surface textures, clothes can be
better sorted, washed and maintained.

Tactile sensors have been used to discriminate surface
textures to enable robots have the sense of touch [2], [3].
Similar to video sequences collected by a vision camera,
a tactile sensor also collects information over a period of
time. A series of tactile data can be collected by a tactile
sensor while the sensor interacts with object surfaces. When
a tactile sensor scans a texture, physical features in the
stimulus are concatenated in a temporal order. The temporal
and spatial patterns embedded in tactile sequences are crucial
to interpreting the stimulus of surface textures [4].
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Fig. 1: Tactile selective attention. If pressing against a Lego
brick to distinguish what it is, the studs on the front side (left)
that have more distinctive features (e.g., the number/type of
the studs) provide more cues than the flat region on the back
side that is common in most of the bricks (right).

Humans perceive the surface textures by both temporal
and spatial patterns presented in tactile sequences [5]. When
we use our fingers to scan an object’s surface, i.e., exploring
the surface with lateral motions, both spatial and temporal
changes in skin deformation provide important cues for
fine texture perception [6]. In this exploratory procedure,
we experience the tactile selective attention [7]: in the
perceptual area of fingers, we pay our attention to the points
that give more excitement rather than treating the whole
contacting region equally. For instance, to distinguish a Lego
brick as illustrated in Fig. 1, the front side with studs provides
more cues (e.g., the number and the type of the studs) than
the back side that is common in most of the bricks. On the
other side, perception is an accumulation of cognition that
the previous contact events enable a prior knowledge for the
perception and later contacts verify the previous judgement.
It also means that the contact events are paid attention to
different extents while perceiving an object.

Compared to the popularity of the attention-based models
in other fields, e.g., the sequence-to-sequence translation in
Natural Language Processing (NLP) [8] and image caption
generation with visual attention [9], the attention mechanism
similar to the human tactile selective attention has not yet
been explored in robotics. In this paper, we propose a
novel Spatio-Temporal Attention Model (STAM) for tactile
texture recognition and we believe this is the first work
that investigates the attention mechanism in robotic tactile
perception. We implement the attention model in a task of
fabric texture recognition, with 100 pieces of fabrics used.
The experiments show that our STAM boosts the texture
recognition accuracy to a large extent, especially when the
data is noisy, compared to the non-attention based models.

The contributions of this paper are as follows:

1) We investigate the attention mechanism in the robotic
tactile perception, for the first time;
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2) We develop a spatio-temporal attention model that
attends to salient features in both spatial and time
dimensions of tactile perception;

3) A set of experiments demonstrate our proposed method
improves tactile texture recognition significantly, which
is promising to facilitate manipulation tasks in hand.

II. RELATED WORKS

In this section, we will first review works on tactile texture
perception, followed by a discussion of the applications of
attention models in different domains.

A. Tactile Texture Perception

Textures have played a key role in understanding prop-
erties as they convey important surface characteristics and
appearance of an object, given by the shape, size, density,
proportion and arrangement of its elementary parts. Different
from observing the object textures from a distance in visual
texture perception, tactile sensors have direct interaction with
the object surface textures [2]. Various approaches have been
proposed in the literature to retrieve the texture information
from the collected tactile data. In accordance with the
tactile sensors used, these approaches can be categorized into
tactile image-based, sequential tactile data-based and spatio-
temporal-based approaches.

Tactile image-based texture perception. Tactile array sen-
sors such as Weiss tactile sensors [10]–[15] and optical tactile
sensors GelSight [16] and TacTip [17], can sense the micro-
structure patterns of object textures from the collected tactile
images (similar to the visual images). In [18], height maps
of the pressed surfaces collected from a GelSight sensor are
used to discriminate surface textures using adapted Local
Binary Pattern (LBP) descriptors. In [3], [19], deep learning
models were applied to extract texture features from GelSight
tactile images and visual images. Similarly, another camera-
based tactile sensor TacTip has also been used to analyze
the object textures [17]. In such approaches, only the tactile
patterns are used to discriminate textures, regardless of the
temporal information.

Sequential data-based tactile texture perception. Most
prior approaches use strain gauges or force sensors to detect
vibrations during object-sensor interaction, to discriminate
surface textures. A BioTac sensor is used in [20] for iden-
tification of textures with Bayesian exploration that selects
optimal movements based on previous tactile sequence data.
In [4], the haptic signals from a BioTac sensor are fed
into a Convolutional Neural Network (CNN) that performs
temporal convolutions, combined with a visual CNN model
for multi-modal learning. The sequential tactile data such
as induced vibration intensities can also be transferred into
the frequency domain [21]. The surface characteristics like
frictions can be revealed from such tactile temporal analysis.
However, due to the use of single contact tactile sensors such
as strain gauges or force sensors, the local contact patterns
cannot be included in discriminating surface textures.

Spatio-temporal tactile perception. There have also been
prior works on using spatio-temporal tactile features for

robot perception tasks. Soh et al. [22] proposed an on-
line generative model using a sparse Gaussian Process to
learn spatio-temporal features from tactile data collected by
an iCub robot. In [11], unsupervised hierarchical feature
learning is applied to extract features from sequences of
raw tactile readings. The learned features are then used for
facilitating grasping and object recognition tasks. In [23],
tactile sequences are fed into neural networks to identify
the materials of clothing through tactile properties such as
thickness, softness and durability.

B. Applications of Attention Mechanism

Attention mechanism was first proposed to improve the
performance of machine translation [8]. Since then, it has
been popular in solving various problems in the field of
NLP. Attention based models have achieved the state-of-
the-art performance in different tasks like abstractive sen-
tence summarization [24]. Contextualized text representation
methods, which take the advantage of attention mechanism,
such as the Bidirectional Encoder Representations from
Transformers (BERT) [25], yield promising performance for
many NLP tasks. The attention mechanism is usually applied
to Recurrent Neural Networks (RNN) and Long Short Term
Memory (LSTM) to emphasize salient hidden states for
sequential prediction tasks [26]. Recently, several visual
attention models [9], [27] have been proposed. These models
are able to automatically locate the discriminated regions
in order to better capture differences between images [28].
However, to the best of the authors’ knowledge, there have
not been prior works investigating the selective attention in
tactile texture recognition.

III. METHODOLOGIES

In this section, our proposed Spatio-Temporal Attention
Model (STAM) is introduced. The STAM receives a se-
quence of tactile images I = {i1, i2, ..., in} as input, where
n is the length of the tactile sequence. The sequential
tactile images are collected from interactions, e.g., pressing,
twisting and slipping, between a camera based tactile sensor
and an observed object. The STAM outputs a predicted
label y which refers to the category of the contacted surface
texture. As illustrated in Fig. 2, the STAM model consists
of three parts: 1) CNNs that extract spatial features from
each input tactile image; 2) A spatial attention module which
highlights the salient features and simultaneously suppresses
trivial features in each tactile texture; 3) Temporal attention
modules which are used to model the correlation of salient
features in different tactile images in one sequence.

A. CNN Module

Following [3], each of the tactile images in the tactile
sequence I is first fed into a pre-trained AlexNet archi-
tecture [29] simultaneously to extract the spatial features.
AlexNet consists of five convolutional layers, the first, second
and fifth of which are followed by a max-pooling layer
respectively, and three fully connected layers are added on
top of the network to output the predicted label. We take the



Fig. 2: The proposed STAM framework for tactile texture recognition. The model receives a sequence of tactile images as
input. Each tactile image is fed into a CNN to extract spatial features that is followed by a spatial attention layer to assign
weights to different regions. Outputs of the spatial attention layers are then fed into temporal attention modules to learn
temporal features. Finally, after the fully connection layers, the STAM model outputs a predicted texture label y.

Sigmoid

F AvgPool,MaxPool  Attention Map AS(F)Conv layer FS

Fig. 3: Spatial Attention Module. We apply an Average
Pooling (AvgPool) and a Max Pooling (MaxPool) on F to
get F S

avgand F S
max. They are followed by a convolutional

layer and sigmoid activation to generate an attention map,
describing which region containing informative information
in F . ⊗ in the figure represents element-wise multiplication.

output feature map F ∈ Rh×w×c from the last max-pooling
layer of the AlexNet as the input to the spatial attention
module, where h,w, c refer to the height, width and the
number of channels of the output feature map respectively.

B. Spatial Attention Module

In order to emphasize informative areas in each texture
frame, we develop a spatial attention module to assign higher
weights to crucial areas, whereas lower weights are assigned
to the areas that contain less information. The architecture
of spatial attention is illustrated in Fig. 3. Inspired by [30],
we apply two pooling operations, i.e., max-pooling and
average-pooling, to the spatial feature F obtained from
the CNN module along the channel axis to form spatial
context descriptors. The average-pooling is applied to learn
tactile information effectively (with output F S

max) while
max-pooling is adopted to maintain prominent features (with
output F S

avg). F S
max and F S

avg are then concatenated and
convolved with a 7 × 7 kernel, and activated by a sigmoid

q(  FS(n))

k(  FS(n))

v(  FS(n))

transpose

softmax

1×1×1 conv

1×1×1 conv

1×1×1 conv

         FT

Attention
     Map

         FS(n)

Fig. 4: Temporal Attention Module. 1× 1× 1 convolutions
transform FS(n) into different feature spaces. The attention
map describes the correlation of any pairs of regions in a
tactile sequence. ⊕ represents element-wise addition.

function to produce a 2D spatial attention map AS(F ):

AS(F ) = σ(f7×7([MaxPool(F );AvgPool(F )]))

= σ(f7×7([F S
max;F

S
avg])),

(1)

where σ denotes the sigmoid function. Then we get the out-
put feature map FS = AS(F )⊗F from the spatial attention
module, where ⊗ refers to the element-wise multiplication.

C. Temporal Attention Module

After obtaining the extracted features from spatial atten-
tion module of each texture frame, we concatenate all the
features together to achieve a sequence of spatial features
which can be represented by FS(n). In order to model the



long-distance dependency in tactile sequence, we develop
a temporal attention module on top of the spatial attention
layer. As illustrated in the Fig. 4, the module aims to estimate
the salience and relevance of all the regions in a tactile
sequence through the time regardless of distance. FS(n)

is first converted into two feature spaces q(FS(n)) and
k(FS(n)) by two sets of 1 × 1 × 1 convolutions, where
q(FS(n)) = WqF

S(n) and k(FS(n)) = WkF
S(n) (Wq

and Wk are trainable weight matrices). Subsequently, we
reshape both q(FS(n)) and k(FS(n)) ∈ Rm×c, where
m = n × h × w, to calculate the attention map of any
pairs of regions through time dimension. The attention map
AT (F

S(n)) is given as follows:

AT (F
S(n))j,i =

exp (sij)∑m
i=1 exp (sij)

, (2)

where sij = q
(
F

S(n)
i

)
k
(
F

S(n)
j

)T
. AT (F

S(n))j,i demon-

strates how much F
S(n)
i correlates with F

S(n)
j . The out-

put feature map of the temporal attention is F T =
(FT

1 , F
T
2 , ..., F

T
j , ..., F

T
m), where

F T
j =

m∑
i=1

AT (F
S(n))j,iv

(
F

S(n)
i

)
+ F

S(n)
j (3)

v
(
FS(n)

)
= WvF

S(n) (Wv is a learnable matrix) and
F

S(n)
j is added back to keep more information.
We include multiple temporal attention modules, as shown

in Fig. 2, to allow the model to synthesize the information
jointly from different representation feature spaces [31]. In
the end, the learned hidden representations at the last layer
are fed into a fully connected layer to perform a classification
task that calculates the probability of a predicted label y.

IV. GELSIGHT SENSOR AND DATASET

In this section, both the GelSight sensor we used [16] and
the collected dataset are introduced.

A. The GelSight Sensor

As illustrated in Fig. 5, the GelSight sensor is a camera
based tactile sensor that uses a webcam of a resolution
960 × 720 at the base to capture the deformations of the
gel layer on the top. The gel layer is made of a piece of
clear elastomer coated with reflective membrane. When the
GelSight sensor interacts with an object, the geometry of
the object surfaces can be mapped to the deformations of the
membrane. The camera captures the memberane deformation
under illumination from embedded LEDs. To improve the
performance of perception in the spatial acuity, multiple
square markers with side length of around 0.4 mm are evenly
distributed on the elastomer membrane. Readers are referred
to [16] for more details of the GelSight sensor.

B. The ViTac Dataset

We use the tactile data of the ViTac Cloth dataset we
collected in [3]. The dataset includes 100 pieces of daily
clothing of different materials, e.g., cotton, wool, ramie,

LEDs LEDs

Camera

ElastomerSurporting 
plate

Light guiding
plate

Fig. 5: GelSight Sensor. Left: a GelSight Sensor. Right: the
GelSight structure that consists of a camera at the bottom, a
elastomer on a supporting plate to map the object geometry,
LEDs and light guiding plates to illustrate the space between
the elastomer and the camera.

silk and leather, and have different surface textures. Both
data collected from a GelSight sensor and a digital camera
is present in the dataset, however, only the tactile data
is utilized as we focus on tactile texture recognition in
this paper. The tactile data was collected by a GelSight
sensor [16] while the cloth was lying flat. The sensor was
held manually to interact with the surface of the fabrics. As
the sensor moves on the cloth, a sequence of GelSight images
of the cloth textures (raw video output from the camera)
is recorded. On average each cloth was contacted by the
sensor for around 30 times and the number of GelSight
readings in each sequence ranges from 25 to 36. There
were three different actions conducted to collect the tactile
data for each piece of fabric, i.e., pressing, slipping and
twisting. Three kinds of continuous sequences collected by
the GelSight sensor under different operations (press, slip,
twist) are shown in the Fig. 6, with their visual images
illustrated only for visualisation purpose. In total, it contains
5,036 tactile images sequences with a ratio of 7 : 1 : 2 for
pressing, slipping and twisting.

V. EXPERIMENTS AND ANALYSIS

A. Experimental Setup

In our experiments, we aim to understand whether our
designed spatio-temporal attention mechanisms can improve
the performance of tactile texture recognition. To this end,
we conduct an ablation study with different neural network
frameworks to learn how the spatial attention and temporal
attention help the recognition task step by step. We first apply
a pre-trained AlexNet on the tactile sequences directly to
form a baseline. Subsequently, we add the spatial attention
module to the AlexNet to learn the spatial features. In a
further step, both spatial attention and temporal attention
modules are included to form the spatio-temporal attention
model for tactile texture recognition.

A short input length of the tactile sequence can reduce
the processing time, but can also decrease the performance
of recognition. To study the impact of the length of input
sequences on our methods, we use different lengths for input
sequences. We only vary the length n of a sequence ranging
from 2 to 7, because the time complexity will be much higher



Fig. 6: Sample Tactile Sequences. Leftmost column: visual images of the fabric samples captured by a digital camera; Right
four columns: A sequence of 4 tactile images taken by the GelSight tactile sensor while the sensor was pressing (the first
row), slipping over (the second row) and twisting (the third row) the fabric surface.

whereas the improvement by attention mechanism is minimal
if the length continues to increase over 7.

We notice that there is data collected before the contact
happens in the ViTac dataset and cannot provide any useful
information for texture recognition. It is a quite common
scene while robots interact with different objects to collect
surface textures with a tactile sensor in a dynamic environ-
ment. Therefore, we conduct two sets of experiments: 1) We
detect the first valid tactile texture that indicates the sensor
starting to contact the object surface during an operation in
a tactile sequence, then we take the following n consecutive
tactile images after the detected texture as the input sequence
and feed it to the network. 2) We include the tactile images
before the contact as noisy data to verify the robustness
of our model, i.e., we take n consecutive tactile images
starting from the very beginning in each tactile sequence
of ViTac dataset, which is closer to an actual application.
This comparative experiment enables us to investigate how
the noisy data affects the performance of our models.

We split the data by a 7 : 2 : 1 ratio for training,
validation and testing. We use Keras (Tensorflow backend)
to implement our models. Due to GPU memory limitation,
we include 10 temporal attention modules running in parallel
in the STAM.

B. Experimental Results

From Table I and Table II, we can see that our proposed
STAM model achieves the best recognition performance for
all the cases with different lengths of sequences. Compared
to the baseline method which uses AlexNet, the recognition
accuracy of our proposed STAM model has increased by
4.45% on average. When the noisy data is introduced into
the dataset, the performance of the STAM improves in a
further step compared with the baseline, by 15.23% on
average. In addition, with the help of spatial attention and

temporal attention, the recognition accuracy of the STAM
model improves step by step in most of the cases with
different lengths of sequences. Furthermore, we can see that
the recognition accuracy has an upward tendency as the
length of the sequence increases.

From Table I, we can see that the recognition accuracies
of all the models on texture recognition tasks improve
as more tactile images exist in a sequence. The changes
in the lengths of sequences have different effects on the
performance of different methods. Specifically, when the
lengths of the sequences decrease from 7 to 2, the accuracy
of CNNs based method falls 14.06%, the accuracy of the
spatial attention method falls 8.74%, and the performance of
proposed STAM only has 5.43% drop. We can find that the
CNNs based model obtains the worst performance for most
of the cases. In terms of the model with spatial attention
module, which is connected with fine-tuned AlexNet to unify
spatial features, the accuracy has a slightly improvement
compared with the CNNs only model. With both spatial
attention and temporal attention applied, our proposed STAM
model achieves the best performance for all of the cases.
These results demonstrate that, by taking the advantage of the
attention mechanism, it is able to efficiently extract salient
information from each frame.

Similar trend can be observed in Table II. All the models
obtain their best performance with 7 tactile images used
in a sequence. From this table, we can find that, even
though adding noisy data results in lower accuracy for all
the models on the texture recognition task, the performance
of our proposed STAM model still maintains at the same
level while the other models cannot sustain the recognition
accuracy compared with the accuracy in Table I. Specifically,
in the column where n = 6, the accuracy of the baseline
model decreases by 14.96% while the performance of the
STAM model only decreases by 0.92% after introducing the



TABLE I: Texture recognition results using different models with different lengths of input sequences.

Models n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

CNNs 67.23% 72.04% 75.26% 78.06% 79.56% 81.29%
CNNs+Spatial Attention 72.12% 73.97% 78.60% 80.43% 80.43% 80.86%

STAM 76.50%76.50%76.50% 79.35%79.35%79.35% 80.00%80.00%80.00% 80.64%80.64%80.64% 81.72%81.72%81.72% 81.93%81.93%81.93%

TABLE II: Texture recognition results while tactile images collected before the contact are introduced into the dataset.

Models n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

CNNs 53.20% 58.20% 59.60% 61.23% 64.60% 69.40%
CNNs+Spatial Attention 55.40% 60.80% 62.60% 62.80% 65.40% 71.00%

STAM 72.00%72.00%72.00% 72.20%72.20%72.20% 75.80%75.80%75.80% 76.61%76.61%76.61% 80.80%80.80%80.80% 80.20%80.20%80.20%

noisy data. In addition, when n = 2, the STAM achieves the
largest improvement, by 18.8% compared with the baseline.
These results prove that our proposed STAM has strong
robustness to a redundant dataset and can select informative
information effectively from space and time dimensions.
We also calculate the number of parameters in the baseline
model and STAM respectively. The baseline model contains
57.4 million parameters and STAM contains 68.8 million
parameters (n = 2). It demonstrates that our spatial-temporal
attention mechanism is compact and effective.

In general, our proposed STAM model has two distinct
advantages: 1) A more robust method is achieved. Noise
has less effect on the STAM compared with other methods,
which means that the attention mechanism can help to select
salient features and suppress the noise for the recognition.
2) The informative features can be learnt more effectively.
The STAM achieves a larger improvement with a short input
sequence compared with baseline approach, which shows the
efficiency of our methods with limited data.

Spatial Attention Distribution. To ensure the effective-
ness of spatial attention module, we visualize the gradient
class activation maps (Grad-CAM) [32] on the non-attention
method and spatial attention method respectively for the
same texture sequence. The Grad-CAM uses the gradients
to describe importance of location w.r.t. the classification
result. It enables us to compare the differences of saliency
regions activated by each method. As shown in Fig. 7,
our spatial attention mechanism makes more contact regions
activated compared with the non-attention baseline, which
means that the spatial attention module is able to extract
more informative features for recognition.

Temporal Attention Distribution. To further investigate
how the temporal attention performs in modeling long dis-
tance dependency, we visualize the attention map of our
temporal attention module as shown in Fig. 8. The value
of attention map in temporal attention describes how much
of a region attend to another region while updating its
value. As we apply multiple temporal attention modules, the
attention maps from each module are averaged to have an
overall observation of correlations of any pairs of locations.
Specifically, we choose a region in the first texture which
is marked as a green dot in Fig. 8. Then we select 3 most
relevant regions for each texture that are pointed by the black

arrows. We find that the arrows always point to the latest
added contact region in most cases which means that the
green dot region is able to synthesize its value with the latest
information through time in our proposed method.

VI. CONCLUSIONS

In this paper, we propose a novel Spatio-Temporal At-
tention Model (STAM) for tactile texture recognition, which
pays attention to both spatial focus of a tactile image and
the temporal focus of a tactile sequence. In the experiments
on discriminating between 100 different fabric textures, the
spatially and temporally selective attention has resulted in a
significant improvement of the recognition accuracy, by up
to 18.8%, compared to the non-attention based models. After
introducing the noisy data, our proposed STAM shows strong
robustness over other methods. Furthermore, the STAM is
able to select informative features efficiently with limited
data through space and time dimensions. The improved
tactile texture perception can be applied to facilitate robot
tasks like grasping and manipulation.
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