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Abstract— We present a pipeline for geomorphological analy-
sis that uses structure from motion (SfM) and deep learning on
close-range aerial imagery to estimate spatial distributions of
rock traits (size, roundness, and orientation) along a tectonic
fault scarp. The properties of the rocks on the fault scarp
derive from the combination of initial volcanic fracturing
and subsequent tectonic and geomorphic fracturing, and our
pipeline allows scientists to leverage UAS-based imagery to
gain a better understanding of such surface processes. We
start by using SfM on aerial imagery to produce georeferenced
orthomosaics and digital elevation models (DEM). A human
expert then annotates rocks on a set of image tiles sampled from
the orthomosaics, and these annotations are used to train a deep
neural network to detect and segment individual rocks in the
entire site. The extracted semantic information (rock masks)
on large volumes of unlabeled, high-resolution SfM products
allows subsequent structural analysis and shape descriptors
to estimate rock size, roundness, and orientation. We present
results of two experiments conducted along a fault scarp in
the Volcanic Tablelands near Bishop, California. We conducted
the first, proof-of-concept experiment with a DJI Phantom 4
Pro equipped with an RGB camera and inspected if elevation
information assisted instance segmentation from RGB channels.
Rock-trait histograms along and across the fault scarp were
obtained with the neural network inference. In the second
experiment, we deployed a hexrotor and a multispectral camera
to produce a DEM and five spectral orthomosaics in red, green,
blue, red edge, and near infrared. We focused on examining
the effectiveness of different combinations of input channels in
instance segmentation.

I. INTRODUCTION

Geographic Information Systems (GIS) have helped in-
tegrate a wide range of data sources, enabling efficient
approaches for geological studies [1]. Traditionally, field
surveys have been a gold standard for data collection due to
low bias and high tolerance for ambiguity. However, there are
logistical constraints to field surveys, and findings may not be
as unbiased as previously assumed [2]. Meanwhile, remote
sensing for the collection of close-range terrestrial data has
evolved from traditional methods such as airplanes, balloons,
and kites equipped with cameras and LiDARs to the use of
versatile robotic platforms such as Unpiloted Aerial Vehicles
(UAV) or Unpiloted Aerial Systems (UAS) [3, 4]. Combining
data collection with UAV/UAS and Structure from Motion
(UAS-SfM) offers a low-cost solution for rapid mapping
of geologic sites, and generates data products like digital
surface models (DSM), digital elevation models (DEM), and
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Fig. 1: Visualization of instance segmentation. Colors indicate rock
sizes. (A) Partial enlargement of the black rectangle in B. (B)
Instance segmentation at the study area I. (C) Ground view after
loading the GeoTiff image into Google Earth.

cm-scale orthomosaics. Such data products require semi-
automatic methods to yield interpretable information.

In recent years, deep neural networks have demonstrated
unprecedented success in image classification, segmentation,
and object detection, leading to extensive application in
satellite and airborne image analysis. Compared with deep
learning applications with satellite imagery [5, 6], close-
range UAS imagery with high resolution extends the use
of deep learning to features of interest over a large range of
feature sizes, ranging as low as a few centimeters. However,
directly using camera perspective images from UAS does not
provide precise georeference for features of interest, which
is essential in some applications, such as geological studies.

Our work is motivated by the need for precise, large
spatial-scale estimation of geomorphological features. In this
study, we collect and process data that potentially correlate
with surface processes of tectonic fault scarps in Volcanic
Tablelands near Bishop, California [7]. Rock traits such
as size, roundness, and orientation are of importance in
many surface process studies, including earthquake geology
research. Rock size distributions in the field site reflect
both the initial cooling joint fracture geometry and the
faulting-induced fracturing, which both vary with position
as a function of strain magnitude and linkage characteristics.
In addition, impacts during transport and thermal cycling
may further drive fracturing and influence the particle sizes
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Fig. 2: Workflow of UAS-SfM-DL. The presented pipeline expands the utilities of models from UAS-SfM.

and shapes [8]. Rock orientations indicate the character
of downslope transport along the fault scarps, enhancing
our understanding of erosional processes. Current analyses
of topographic or imagery-based models produced by SfM
largely rely on experts manually annotating features of
interest (rocks).

We present a pipeline that combines UAS, SfM, and deep
learning (UAS-SfM-DL) to produce high-resolution semantic
maps of objects, such as rocks, with wide variation in size
and appearance (Fig. 2). We show that deep learning can
be effectively applied to products from SfM, which may
contain artifacts resulting from reconstruction. Advantages
of the presented system include low-cost, rapid deployment
and analysis, and automated processing with limited expert
intervention. In comparison with deep learning methods on
perspective UAS imagery [9], the UAS-SfM-DL paradigm
can produce consistent georeferenced semantic maps (e.g.
Fig. 1), enabling large-scale, precise spatial analysis. The
map size, however, increases significantly when applying
deep neural networks on large orthomosaics. Instead of
relying on expensive computation, we propose an affordable
solution that trains and infers on small tiles split from a large
map. We present a registration algorithm to merge semantic
objects from multiple tiles during inference.

We applied the UAS-SfM-DL system to two experiments
analyzing rock traits along a tectonic fault scarp in Bishop,
California (Fig. 3). In the first experiment, we deployed a
DJI Phantom 4 Pro with an RGB camera to demonstrate
proof of concept, and inspected how much elevation infor-
mation improved instance segmentation from RGB channels.
In the second experiment, we equipped a hexrotor with a
multispectral camera (MicaSense RedEdge MX) that can
capture spectral imagery from five bands: red (R), green
(G), blue (B), red edge (RE), and near infrared (NIR). The
orthomosaics of the five channels and the DEM acquired
from SfM were used to train a deep neural network to
detect and segment individual rocks. We compared the neural
network inference performance for different input channel
combinations. This UAS-SfM-DL system presents a new
way to automatically characterize surface processes on fault
scarps.

II. RELATED WORK

A. Unpiloted Aircraft Systems and Structure from Motion
(UAS-SfM)

Structure from motion originated in the computer vision
community and has become popular with the utilization
of bundle adjustment optimization [10]. With the recent

Fig. 3: Areas of study and UAVs. (A) Areas of study. The top-right
rectangle: experiment I; the bottom-left rectangle: experiment II.
(B) DJI Phantom 4 Pro with an RGB camera. (C) Hexrotor with a
MicaSense RedEge MX.

availability of low cost UAS and software such as Agisoft
[11], UAS-SfM have widely been used in physical geography
[12] ranging from coastal environments [13], to Antarctic
moss beds [14], to fault scarps [15, 16]. However, geomor-
phological analysis of products from UAS-SfM still depends
a lot on interpretive models carefully designed by experts
[17, 18].

B. Deep Learning in Close-range Aerial Imagery Processing

The advances in deep learning have facilitated the devel-
opment of visual perception models deployed aboard UAS
as well as ground vehicles in various applications like weed
classification [19], car detection [9], and fruit counting [20].
However, previous work largely targets camera perspective
imagery as the input to the deep learning models. Although
feature tracking algorithms [21] can reconstruct objects of
interest, they lack ground control points (GCPs) to globally
correct geographic distortions, which is an essential step
in geological and surveying applications. Deep learning has
also been used to process 3D information, such as LiDAR
point clouds. For example, point cloud data generated from
scanning trees were processed by fully connected layers for
tree classification [22].

III. SYSTEM DESCRIPTION

The workflow of our UAS-SfM-DL pipeline is shown in
Fig. 2. Although each component in the pipeline is not new,
we focus on system integration and solutions to practical
implementation issues involved in this fault scarp application
in geomorphological analysis. Additionally, we present the
pipeline from a high-level perspective to avoid curbing the
generalization to other potential applications.



Fig. 4: Spectral and DEM representations. All tiles on each row
are of the same area. Column (A) RGB orthomosaic tiles. Column
(B) Colormap elevation tiles. Column (C) Relative elevation tiles.
Column (D) NDVI orthomosaic tiles.

Aerial imagery from UAS along with GCPs are processed
using SfM algorithms to reconstruct a high-resolution study
site. Geologists annotate features of interest, such as rock
boundaries, from a portion of the RGB orthomosaics. We
train deep neural networks on annotated images, and carry
out inference on unlabelled images from the entire site.
Segmented objects inferred by the deep learning models are
post-processed by geometric structural analysis and shape
descriptors to estimate properties such as rock size, round-
ness, and orientation. We generate semantic maps by combin-
ing the post-processed inference results with georeferenced
metadata. Statistics describing the distribution of rock traits
are acquired from the semantic maps, and they can be used in
statistical descriptions for future geomorphological studies.

A. UAS-SfM

Georeferenced aerial imagery collected from UAS and
GCPs measured from differential GPS devices are pro-
cessed by bundle-adjustment-based SfM algorithms [23],
which produce precise georeferenced products including
point clouds, DEM, DSM, and orthomosaics for each spectral
band. In practice, the orthomosaics and DEM are formatted
as GeoTiff files with metadata such as global coordinates,
projection type, and ground resolution. These data give us
access to global coordinates of each 3D point or pixel in
the models, which enables succeeding spatial analysis of
semantic features from deep learning.

B. Deep Learning

We use deep neural networks to automatically extract
semantic information in large-scale georeferenced models
produced from SfM. Deep learning accommodates versatile,
selectable inputs such as RGB orthomosaics, DEMs, and
other spectral orthomosaics from multispectral cameras. The
selection of neural network architecture depends on the
features and distributions of objects of interest. We use the
Mask R-CNN deep neural network architecture [24] for this
study because it generates both bounding boxes and the
corresponding masks for object instances (rocks). Faster R-
CNN [25] with a large number of Regions of Interest is
adopted for the object detection branch in the Mask R-CNN
because of the dense spatial distribution of the rocks at this

fault scarp. Additionally, because of the large range of rock
sizes (major-axis lengths ranging between 0.2-3.6 meters),
we select the Pyramid Feature Network (PFN) [26] as the
backbone of the Faster R-CNN. PFN’s multi-scale, pyramidal
hierarchy of anchor generation mechanism is suitable for
object detection in such a setting. For other potential studies,
segmentation neural networks such as U-Net [27] can be used
when a goal is a pixel-level segmentation. Region proposal
networks such as Faster R-CNN [25] can detect individual
objects with bounding boxes, when instance segmentation is
not demanded.

While it is common to scale spectral orthomosaics by
intensity values, directly scaling DEM by elevation range
values will overshadow the rock information in the scaled
space. This is because the fault scarp slope elevation (20-30
meters) is greater than the height of most of the rocks (0.2-
3 meters). Instead of compressing elevation into one single
channel, we use a colormap (3 channels) to encode the DEM:

Drgb = c(s(h)) (1)

where h is absolute elevation, s is a linear scale function
s : [hmin,hmax]→ [0,1], and c is a colormap function mapping
scaled value to RGB color domain c : [0,1]→ {r,g,b}. In
doing so, we capture the rock elevation in the three channels
so that the rock height will not be overshadowed. An example
of jet colormap is shown in Fig. 4(B). Because colormap
elevation represents absolute elevation, one concern is that
deep learning networks may be constrained to learn features
only from a certain range of absolute elevation. This issue
may become more serious in this study because the number
of rocks on the fault scarp is greater than the number of
rocks on the lower-side hanging wall.

Apart from colormap elevation, we present another eleva-
tion representation that preserves local, relative elevation:

D = g(Drgb) =
Dr

3
+

Dg

3
+

Db

3
(2)

where Dr, Dg, and Db are three channels from Drgb. The
relative elevation representation (Fig. 4(C)) is superior in the
sense that it can reflect local elevation such that deep neural
networks can attain generalization to detect and segment
rocks on any elevations. One potential concern of relative
elevation is that the mapping g(c(s(·))) is noncontinuous
on the absolute elevation domain, which may result in
high-frequency noises in relative elevation tiles. However,
our experiments in the next section show that such high-
frequency noises will not cause problems for deep neural
networks.

C. Tiling and Registration

The orthomosaics of survey sites produced by SfM are
of high resolution and large scale (for our first fault scarp
study, 2 cm/pixel, 25664x10589 pixels). Directly working
with high-resolution images for neural network training or
inference is computationally challenging because it places a
high demand on GPU RAM. To address this limitation, we
split the orthomosaics into smaller tiles (400x400 pixels).



Fig. 5: Rock registration at tile boundaries. (Left) Rocks detected by
the neural network at the edges of each inference are not merged;
(right) any two rocks at the edges of each inference are merged and
registered as one if they belong to the same instance.

Algorithm 1 Rock Registration
input: orthomosaics, neural_network
output: registered_rocks
1. tiles = overlap_split(orthomosaics)
2. rocks = project(neural_network(tiles))
3. registered_rock = Empty_list
4. for rock in rocks:

if rock.bbox is on its own tile edges:
id = check_bbox_overlap(rock.bbox, registered_rocks)
if id 6= None:

if check_mask_overlap(rock.mask, registered_rocks[id].mask)
> threshold:
merge(registered_rocks[id], rock)
continue

register(registered_rocks, rock)
Comments:
overlap_split splits orthomosaics into 400x400 pixel tiles with 10-pixel
overlap at four edges
project projects local bounding boxes with pixel coordinates to global
coordinates
check_bbox_overlap returns None if there is no registered rocks having
bounding box overlap with the rock, otherwise returns the overlapped
registered rock’s id
check_mask_overlap returns the intersection of two masks
merge merges the bounding boxes and masks to the registered rock
register registers a new rock

We select a subset of tiles and annotate rocks as bounding
polygons in LabelMe [28], then divide them into a training
dataset and a testing dataset. We augment the training dataset
with a combination of random left-right flipping, top-down
flipping, rotation, and zooming-in (cropping) and zooming-
out.

Splitting the orthomosaics into tiles causes some rocks to
be divided. As a result, rocks detected at the edges of tiles
may belong to one single instance and risk getting treated as
several smaller rocks as shown in Fig. 5(right). To address
this problem, we split the orthomosaics into 400x400 pixel
tiles with 10-pixel overlaps on four edges when carrying
out inference. A registration scheme is applied to merge
objects detected at the edges of tiles if they are from a single
instance (Algorithm I). We determine that two georeferenced
rock instances within the 10-pixel region of overlap are the
same instance by checking if the intersection of their masks
is greater than a threshold. If true, the two rock instances
are merged and registered as one instance (Fig. 5(left)). To
keep the comparison in check_bbox_overlap from becoming
quadratic with rock numbers, we utilize the spatial relation
and only compare rock overlaps for rocks on the 10-pixel
overlap zones of four neighbor tiles.

Fig. 6: Identifying the fault scarp. (A) Slope map. (B) Fault scarp
contour. (C) Overlap with RGB orthomosaics.

Fig. 7: Contour analysis to compensate for instability of segmen-
tation prediction. (A) Mask prediction from Mask R-CNN. (B)
Contours by topological structure analysis. (C) The largest contour
kept to approximate outline of the rock. (D) Filtered mask.

D. Post Processing

Post processing is necessary to identify the rocks on the
fault scarp, and to compensate for errors resulting from deep
neural networks. Because only rocks near the fault scarp are
of interest for tectonic study, we need to clear away rocks
detected on the perimeter. As the fault scarp has a steep slope,
we first estimate the gradient of the DEM [29], then denoise
it with Gaussian filtering. From the smoothed slope map, the
fault scarp is identified by the slope above a certain threshold
and further processed through morphological transformations
such as opening, dilation, erosion, etc.

The segmentation sub-network has stochastic errors, with
an example shown in Fig. 7(A) where a hole is present
in the segmented rock body. We assume that there are
no rocks with torus topology on the fault scarp, and use
topological structure analysis to remove such artifacts [30].
The contours of rocks are generated, with the largest or most
exterior contours retained as the outlines of the rocks. The
rock sizes are approximated by the number of pixels in the
largest contours. Note that georeferenced models enable us to
associate rock size in pixels and rock size in meters, which
is more accurate than the association from perspective 2D
camera photos where object scale is ambiguous with depth.

IV. EXPERIMENTS

In this section, we discuss the results of our pipeline
in two experiments at the Volcanic Tablelands, which is
a faulted plateau of approximately 150-meter-thick welded
Bishop Tuff (760 ka) at the north end of Owens Valley near
Bishop, California [7].



TABLE I: Experiment I: Neural Network Inference Results*

Detection
(Bounding Box)

Segmentation
(Mask)

AP1 AP2 AP3 AP4 AR1 AR2 AP1 AP2 AP3 AP4 AR1 AR2

TL
1 RGB 21.7 46.5 17.0 36.9 31.4 48.3 20.8 46.5 14.6 48.6 29.8 51.7
2 RGB+DEM3 22.7 45.3 19.4 51.1 32.1 58.3 21.2 45.7 16.4 50.7 30.3 53.3
3 RGB+DEM1 23.1 46.9 20.5 53.9 32.6 58.3 25.1 47.4 16.2 61.0 30.8 65.0

NTL
4 RGB 21.2 46.2 16.5 42.9 29.9 43.3 21.2 45.7 16.3 42.9 29.3 50.0
5 RGB+DEM3 20.5 42.6 16.6 40.2 29.9 45.0 19.4 42.4 14.6 48.6 28.1 53.3
6 RGB+DEM1 21.4 45.9 16.1 40.6 30.9 48.3 21.6 46.6 16.5 49.9 31.0 56.7

* TL: transfer learning, NTL: no transfer learning, IoU: intersection over union, AP1: average precision (%) with
IoU=0.5:0.95, AP2: average precision (%) with IoU=0.5, AP3: average precision (%) with IoU=0.75, AP4: average
precision (%) with IoU=0.5:0.95 for large objects, AR1: average recall (%) with IoU=0.50:0.95,
AR2: average recall (%) with IoU=0.50:0.95 for large objects

Fig. 8: Prediction of Mask R-CNN on test dataset sample tiles.
Colors are randomly selected to distinguish rocks.

A. DJI Phantom 4 Pro and RGB Camera

The study area for the first experiment is shown in the top-
right rectangle in Fig. 3(A). One goal of this experiment is
to demonstrate the proof of concept by going through imple-
mentation details in the presented pipeline and obtaining the
rock-trait histograms. We conducted surveys of the Volcanic
Tablelands with a DJI Phantom 4 Pro in March 2018. A grid
flight pattern was implemented with 66% image overlap and
a 90° (nadir) camera angle. The flight altitude varied between
70-100 meters above the ground level because the height of
the fault scarp slope is around 30 meters. The onboard RGB
camera had an 84° field of view and 5472x3648 resolution.

We used Agisoft [11] for SfM and produced a DEM and
an RGB orthomosaic (25664x10589 pixels, 2 cm/pixel). The
orthomosaics were split into 400x400 tiles. It took about 65
work hours for a human expert to annotate 67 tiles with
4095 rocks (49 tiles for training, and 18 for testing). We
trained Mask R-CNN (ResNet-50 backbone) on an Nvidia
RTX 2080 Ti, and the inference results on the test dataset
are shown in Table I.

For transfer learning, the neural network weights were
initialized with training results from COCO 2017, except
that the first and the last layers were initialized from a
uniform distribution. When comparing trials between TL
and NTL (Table I), we found the neural networks benefited
from transfer learning. Both colormap elevation (DEM3)
and relative elevation (DEM1) improved neural network
performance from RGB orthomosaics in the case of transfer
learning. DEM3 assisted the neural network performance
in transfer learning but decreased in non-transfer learning.
Considering key performances (AP1, AR1 for both detection

Fig. 9: Ellipse fitting and estimation of major orientations from the
inferred rock boundaries. Yellow line indicates major axis.

and segmentation), RGB+DEM1 outperformed others in both
transfer learning and non-transfer learning.

Once neural network inference was conducted on all tiles
from the study area, we carried out post-processing to obtain
rock-trait histograms at the fault scarp. We removed outliers
on the perimeter and identified the boundaries of the fault
scarp from the slope map utilizing terrain gradient. The slope
map and the fault scarp contour are shown in Fig. 6. The
enclosed rocks were then estimated by the refined masks
from topological structure analysis. The results of the filtered
rock instances at the fault scarp of this study area are shown
in Fig. 1. Some predictions randomly selected from the test
dataset are shown in Fig. 8.

Lastly, we used the georeferenced rock boundary informa-
tion to estimate rock diameter, roundness, and orientation. To
approximate roundness and major orientations of rocks, we
fitted the refined masks with ellipses as shown in Fig. 9.
We used ellipse eccentricity to describe rock roundness. The
orientations of rocks were parameterized by orientations of
the ellipses’ major axes. Fig. 10 shows rock-trait histograms
of the fault scarp. In this experiment, 12,682 rocks were
detected along the fault scarp in the study area, which only
has an area of 513 meters by 212 meters.

We are not only interested in the distribution of rock traits
along the length of the scarp, but along the cross strike
as well, which is the perpendicular direction of the fault
scarp (Fig. 11). We computed the skeleton of the fault scarp
contour to acquire the middle spline [31], then selected a
subsection of the spline and approximated it with a straight
line by linear regression. We considered the normal vector of
the straight line as the cross strike direction. The whole fault
scarp is divided into 16 areas that are lying in the center
of the spline. Each area is divided into 9 boxes along the
cross strike direction. Within each box, there are 20 bins
representing the normalized rock diameter histogram in the
true box. From the bottom (south) to top (north) in each area,



Fig. 10: Histograms of rock traits. (A) Rock size histogram of the
fault scarp. The rock sizes are approximated by the area of the
refined masks. The horizontal axis is rock area in meters2, and the
vertical axis is the number of rocks. (B) Rock eccentricity histogram
of the fault scarp. (C) Rock major-axis length histogram on the fault
scarp. The major-axis length is L = 2a, where a is the semimajor
axis of the fitting ellipse x2

a2 +
y2

b2 = 1. (D) Polar histogram of major-
axis orientation at the fault scarp.

the histogram axis (major-axis length) varies from 0 to 3.6
meters.

B. Hexrotor and Multispectral Camera

In this experiment, we focused on examining the presented
pipeline on different combinations of inputs including multi-
spectral orthomosaics, color elevation, and relative elevation.
The study area for this experiment is shown in the bottom-left
rectangle in Fig. 3(A). We equipped a hexrotor with an RTK
GPS and a straight-down multispectral camera (MicaSense
RedEdge MX) that can capture spectral bands of blue (465-
485 nm), green (550-570 nm), red (663-673 nm), red edge
(712-722 nm), and near infrared (820-860 nm). We deployed
a lawnmower pattern with a flight altitude of 30-50 meters
above the fault scarp (the height of the fault scarp slope is
about 20 meters) and collected synchronized multispectral
imagery in April 2019. Agisoft [11] was used for SfM and
produced a DEM and five spectral orthomosaics (9258x8694
pixels, 2 cm/pixel). We split the spectral orthomosaics and
DEM into 400x400 tiles with 10-pixel size overlap at four
edges. It took about 50 work hours for a human expert to
annotate 37 tiles for training and 18 tiles for testing (2541
rocks annotated in total). We trained Mask R-CNN (ResNet-
50 backbone) on an Nvidia RTX 2080 Ti.

The inference results on the test dataset are shown in
Table II. We consider RGB results (trials 1 and 8) as
the baseline and discuss the neural network performances
with different input combinations. Because there are several
different performance metrics in the table and neural network
prediction can be noisy, we emphasize four key metrics - AP1
and AR1 from detection and segmentation.

1) DEM: Additional elevation information improved the
performance by the comparisons of trial 3/4 versus trial 1,
and trial 10/11 versus trial 8. Elevation information alone,
however, only worked for the detection and segmentation of
large rocks, which may be caused by the comparable-size

Fig. 11: Detailed rock diameter (major-axis length) histogram
colormap for the study area. The colormap on the fault scarp shows
the mean rock diameter for each box along the scarp. The smaller
black plots at the left show detailed histograms of rock diameter
with transparency indicating lower spatial density.

bushes in the site, e.g. Fig. 4. Relative elevation (DEM1)
outperformed colormap elevation (DEM3) in trial 3 versus
trial 4, trial 10 versus trial 11, and trial 13 versus trial 14.
Though from trial 6 versus trial 7 these two elevation repre-
sentations had comparable improvements, relative elevation
showed slight advances in key metrics.

2) Multispectral orthomosaics: RE and NIR can reveal
information that RGB alone cannot obtain. For example,
normalized difference vegetation index (NDVI) has largely
been used for vegetation detection. An example of NDVI



TABLE II: Experiment II: Neural Network Inference Result*

Detection
(Bounding Box)

Segmentation
(Mask)

AP1 AP2 AP3 AP4 AR1 AR2 AP1 AP2 AP3 AP4 AR1 AR2

TL

1 RGB 25.7 60.7 17.2 51.9 37.0 57.0 23.4 51.8 15.3 52.9 27.8 55.0
2 DEM1 4.9 15.3 2.3 39.5 11.2 58.0 4.3 12.5 2.0 45.5 9.9 53.0
3 RGB+DEM3 28.4 64.0 19.7 64.9 39.5 69.0 26.6 61.6 18.7 61.1 36.3 62.0
4 RGB+DEM1 28.8 64.7 22.1 59.1 40.1 63.0 26.8 61.8 19.1 54.5 36.3 56.0
5 RGB+RE+NIR 28.5 61.7 22.2 58.8 38.8 61.0 25.8 57.2 20.1 57.1 35.1 58.0
6 RGB+RE+NIR+DEM3 29.6 63.4 23.7 60.2 39.1 64.0 29.0 62.0 22.1 54.9 37.7 56.0
7 RGB+RE+NIR+DEM1 29.7 64.7 23.7 58.3 40.6 63.0 28.3 61.6 21.0 54.4 38.2 56.0

NTL

8 RGB 24.9 60.4 16.1 40.2 34.2 45.0 22.5 55.9 14.3 43.5 31.2 45.0
9 DEM1 3.8 11.5 1.8 31.7 8.7 45.0 3.3 9.8 1.1 31.1 7.3 36.0
10 RGB+DEM3 26.0 62.3 17.9 45.0 36.0 55.0 24.1 57.4 16.3 51.6 33.6 54.0
11 RGB+DEM1 27.1 63.8 19.0 36.6 38.5 41.0 25.2 62.0 16.2 44.4 35.5 45.0
12 RGB+RE+NIR 27.6 63.5 18.7 41.5 39.3 47.0 23.5 59.6 14.6 49.1 34.2 51.0
13 RGB+RE+NIR+DEM3 26.9 63.5 17.0 32.1 38.8 37.0 23.2 59.3 14.3 30.6 34.0 30.0
14 RGB+RE+NIR+DEM1 28.0 65.8 17.8 40.0 39.3 41.0 25.8 62.2 16.7 47.7 35.7 49.0

* Refer to the table note in Table I

tiles is shown in Fig. 4(D). While NDVI was not directly
used in our experiment, we included original RE and NIR
in the input and let the neural networks mine the multi-
spectral orthomosaics themselves. RE+NIR assisted neural
network performance when added to RGB, RGB+DEM3,
and RGB+DEM1 in both transfer learning and non-transfer
learning.

3) Transfer learning: The trials with transfer learning
generally outperformed the ones without transfer learning
with the exception of some acceptable noises in AP2. Consid-
ering key metrics, transfer learning did demonstrate advances
in the inference performances.

4) DEM and Multispectral orthomosaics:
RGB+RE+NIR+DEM3/RGB+RE+NIR+DEM1 yielded
better results than other trials. While in transfer learning
RGB+RE+NIR+DEM1 was slightly better at key metrics, it
surpassed other trials in non-transfer learning.

V. CONTRIBUTION AND FUTURE WORK

In this paper, we presented a pipeline for geomorpholog-
ical analysis using structure from motion and deep learning
on close-range aerial imagery. Our UAS-SfM-DL pipeline
was used to assess the effectiveness of multispectral data
and elevation representations in neural networks and to
estimate the distribution of rock traits (size, roundness, and
orientation) on a fault scarp in the Volcanic Tablelands,
California. Although presented in the context of fault zone
geology, we foresee our pipeline being extended to a variety
of geomorphological analysis tasks in other domains such as
crop property estimation in precision agriculture and debris
field analysis after natural disasters.

From our first, proof-of-concept experiment, we conclude
that relative elevation improved the neural network per-
formance in both transfer learning and non-transfer learn-
ing. With transfer learning, we have shown both elevation
representations assisted neural network performance from
RGB data, and the relative elevation resulted in the best
improvement. We also obtained rock-trait histograms along
and across the fault scarp. The distributions of rock size
are asymmetrical throughout the fault, with larger rocks
in the north and smaller rocks in the south. Additionally,

the larger particles are typically in the mid scarp position.
Such information can guide future scientific inquiries about
strain across the fault as well as geomorphic modifications of
fault scarps to better understand earthquake recurrence in a
tectonically active region. As far as we know, this is the first
time that UAVs and machine learning are used to measure
rock traits on fault scarps.

In the second experiment, we focused on examining the
effectiveness of different input combinations of multispectral
orthomosaics and two elevation representations. From the
inference results, additional spectral data and elevation in-
formation improved the performance of the neural networks.
Even though the first convolutional layer of Mask R-CNN
needed to be retrained, transfer learning showed general ad-
vances over non-transfer learning in all combination settings.

Field inspection of the fault scarp indicated that the grain
size of the rocks included those smaller than the mode of
0.2 meters (Fig. 10(C)). The rollover in grain size to the
smaller side is therefore likely due to a sensitivity issue from
both image resolution (2-cm pixels for orthomosaics) and
neural network architectures. Addressing the finer size tail
on the rock size distribution is an important topic for future
research.

Rock sizes are approximated using 2D areas from ortho-
mosaics. We will look at rock size estimation from 2.5D
(elevation) and 3D (point cloud) approaches. In this work,
we simply stack all different data as input and implicitly
rely on neural networks to learn useful features from in-
put channels for instance segmentation. We will investigate
attention mechanism to actively weight interesting input
channels, which will benefit deep neural network learning
in multispectral and hyperspectral data.
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