
Expressing Diverse Human Driving Behavior with Probabilistic
Rewards and Online Inference

Liting Sun∗, Zheng Wu∗, Hengbo Ma and Masayoshi Tomizuka

Abstract— In human-robot interaction (HRI) systems, such
as autonomous vehicles, understanding and representing human
behavior are important. Human behavior is naturally rich and
diverse. Cost/reward learning, as an efficient way to learn
and represent human behavior, has been successfully applied
in many domains. Most of traditional inverse reinforcement
learning (IRL) algorithms, however, cannot adequately capture
the diversity of human behavior since they assume that all
behavior in a given dataset is generated by a single cost function.
In this paper, we propose a probabilistic IRL framework that
directly learns a distribution of cost functions in continuous
domain. Evaluations on both synthetic data and real human
driving data are conducted. Both the quantitative and subjective
results show that our proposed framework can better express
diverse human driving behaviors, as well as extracting different
driving styles that match what human participants interpret in
our user study.

I. INTRODUCTION

Understanding human behavior in the real world is im-
portant for robotic systems that interact with humans. They
need to build knowledge not only at the action level, i.e.,
how humans’ actions change the physical states of the
environment, but also at the decision level, i.e., what humans
might do given current states, and why humans choose
such actions. For example, autonomous vehicles predict
future movements of other human drivers/pedestrians based
on historical observations, so that they can take safe and
efficient actions to transport the passengers/cargo without
causing too much inconvenience to other traffic participants
[1]. Industrial collaborative robots also need prediction to
help them interpret the intentions of human co-workers and
provide assistance accordingly.

To describe human behavior in human-robot interaction
(HRI), particularly at the decision level, many models have
been proposed in the past decades. In terms of representation,
most of them can be grouped into two categories: 1) the
policy representation and 2) the incentive representation. In
policy representation, instead of finding out “why humans
choose such actions”, a policy is directly fit/learned con-
necting from “what we have observed” to “what humans
might do next”. Such policies can be parameterized either
via pre-specified rules/models [2] or deep neural networks (
imitation learning [3], [4], reinforcement learning [5]–[8]).
On the other hand, incentive representation tries to formulate
“why humans choose such actions” based on the “Theory of
Mind” [9]. It treats humans as noisily rational optimizers
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whose actions are driven to pursue some internal incentives.
Therefore, human behavior can be efficiently represented by
cost/reward functions that capture the incentives of human
actions. Such cost/reward functions are typically acquired
via inverse reinforcement learning (IRL) [10].

Human incentives, however, are naturally rich and diverse.
For example, in a highway merging scenario, a conservative
driver prefer to yield to the straight-going car, while an
aggressive driver tend to pass first. Moreover, in practice,
demonstrations with different cost/reward functions might
be mixed in a given dataset without labeling. For instance,
most of the vehicle motion datasets are recorded on public
roads that contain multiple human divers with unknown
but different driving preferences. Similar situations also
exist for human motion datasets in HRI. A dataset might
contain behavior collected from multiple people who have
quite different preferences. Mixed and diverse cost func-
tions in datasets poses a great challenge on the applica-
tion of traditional IRL algorithms ( [10]–[16]) since they
assume that all demonstrations in the training set share
an identical cost/reward function. Some works have been
proposed to relax such assumption. For example, [17] derived
an expectation-maximization (EM) approach that iteratively
clusters observed trajectories and updates multiple cost func-
tions until convergence. [18] further generalized the frame-
work by constructing a hierarchical Bayesian graph model
with a non-parametric distribution over the cost function.
However, the above two methods were formulated in the
Markov Decision Process (MDP) setting and hard to deal
with problems in large continuous domain due to the curse
of dimension. Authors in [19] addressed the problem by
first clustering human demonstrations into different types
via unsupervised learning based on the transition matrix
between the joint human-robot actions, and then performing
traditional IRL within each cluster. The features for the two
steps were different, which makes it unable to assure that
demonstrations clustered in the same category in the first
step actually share the same reward function.

In this work, we advocate that IRL should be able to learn
a rich representation of human’s incentives directly from
a mixture of continuous behavior generated under multiple
unknown cost/reward functions. As shown in Fig. 1, given a
set of continuous-space demonstrations, instead of learning
a single cost function to represent the average behavior
(traditional IRL), we propose a probabilistic IRL that learns
multiple cost/reward functions capturing the richness of
human behavior.

In summary, we make the following contributions:
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Fig. 1: We propose a IRL framework to directly learn a set/distribution of cost functions from continuous-domain
demonstrations with multiple unknown cost/reward functions. The traditional IRL in (a) uses a single cost function to
represent behaviors from multiple agents, which fails to capture the diversity of human behavior. The proposed probabilistic
IRL in (b) can extract different preferences among humans and helps improve the performance of online inference.

Developing a framework to learn multiple cost/reward
functions from unlabelled data in continuous domain.
A probablistic IRL framework is developed, aiming to di-
rectly learn an optimal set or distribution of the cost/reward
functions from demonstrations in continuous domain. On-
line inference and prediction with the multiple cost/reward
functions are also addressed.
Applying the framework to real world human driving
data and extracting interpretable human driving styles.
We have applied the developed framework to real-world
human driving motion data. Both quantitative and subjective
tests were conducted, which showed that the framework
can effectively extract different driving styles, capturing the
richness of human behavior.
Analysing the effects of prior knowledge regarding the
distribution of cost functions. We show that prior knowl-
edge regarding the distribution of cost functions in a given
set will help us gain better learn results. We implement both
parametric and non-parametric prior models, and analyse the
influence of prior knowledge to the algorithm performance
in both offline learning and online inference.

II. PROBLEM FORMULATION

In this section, the problem of continuous domain
IRL from multiple agents/demonstrations with different
cost/reward functions is formulated. Define the states of the
agents as x, actions as u, and the dynamics model as

xk+1 = f (xk, uk) . (1)

Therefore, a trajectory contains a sequence of states and
actions, i.e., ξ = [x0, u0, x1, u1, · · · , xN−1, uN−1], where
N is the length of the trajectory.

Given a set of trajectory demonstrations D, we assume
that all the agents / demonstrations share the same dynamics
model in (1). For instance, for human driving behavior, we
assume that all the driving trajectories satisfy the kinematics
of vehicle model. Moreover, we assume all agents to be
noisily rational planners, i.e., their trajectories are expo-
nentially more likely when they have lower cost. For each
trajectory demonstration, the cost function is assumed to be
fixed, similar to [18]. Different demonstrations, however, can

have different cost functions, and we do not assume further
information regarding which demonstrations are generated
under the same cost function and how many cost functions
we might have.

We assume that cost functions can be written as linear
combinations of features f(ξ), i.e.,

C(ξ, θ)=θT f(ξ) (2)

A. IRL with A Single Cost Function

Given D, traditional IRL algorithms (e.g., maximum-
entropy IRL, Bayesian IRL, etc) try to find the optimal cost
function, i.e., the optimal θ∗, that maximizes the posterior
likelihood of the demonstrations in D:

θ∗ = arg max
θ
P (D|θ) = arg max

θ

M∏
i=1

P (ξi|θ) (3)

where M is the number of demonstration trajectories in D.
P (ξi|θ) represents the probability of trajectory ξi given θ,
which can be expressed as follows based on the principle of
maximum entropy:

P (ξi|θ) ∝ exp (−βC(ξi, θ))

=
exp (−βC(ξi, θ))∫
exp

(
−βC(ξ̃, θ)

)
dξ̃

(4)

β is a hyper-parameter that reflects the rationality of the
agents. From (3), we can see that traditional IRL algorithms
inexplicitly assume that all the demonstrations in D are
generated under a single cost function which can be well
represented via θ∗.

B. Probabilistic IRL with Multiple Cost Functions

There are scenarios, however, where D contains demon-
strations with multiple unknown cost functions. For example,
most datasets describing human drivers’ behaviour contain
driving trajectories from multiple drivers who rarely share
the same cost function. In such scenarios, a single optimal
θ∗ from (3) cannot well describe the diversity of behaviour.

Instead, we assume θ as a random variable:

θ ∼ Gφ (5)



where Gφ is a distribution (either in parametric or non-
parametric forms) characterized by φ. Each cost function in
D, represented by θi with i = 1, 2, · · · ,K≤M , is an instance
drawn from Gφ. Under each θi, the probability of trajectory
ξj is also assumed to satisfy the maximum-entropy principle
as given in (4). θi is given by:

θ?i = arg max
θi

P (Di|θi) = arg max
θi

Mi∏
k=1

P (ξk|θi) (6)

where Di ⊆ D, and Mi is the number of trajectories in subset
Di. During online inference, for a new demonstration, the
most likely cost functions from Gφ to represent the observed
behavior is inferred and used for prediction. We will describe
more details in Section III.

III. METHOD

To achieve the two goals for the probabilistic IRL (PIRL)
in continuous domain, we propose a two-stage framework
as shown in Fig. 2. It includes an offline learning module
and an online inference module. For offline learning, we
first obtain a distribution over the space of cost features, i.e.,
the space defined by f(ξ) in (2), and denote it by p(f(ξ)).
Afterwards, a mapping T : p → p is built to translate the
distribution p(f(ξ)) to a distribution over the cost functions,
Gφ(θ) as in (5) by utilizing the IRL algorithm in [14]. In
online inference module, for an arbitrary new demonstration
data ξnew, we query for the most likely θ∗ from the learned
Gφ(θ)=T (p(f(ξnew))) based on its feature f(ξnew).

Sequences
in training data

Compute features 
for each sequence

Obtain distribution 
of all feature data

Obtain mapping  between feature 
space and reward function space 

Offline Learning Process

New sequence Compute features 
for the sequence

Query the mapping

Obtain reward function

Online Inference Process

Fig. 2: The pipeline of our proposed method.

The key idea of the framework is to perform continuous-
domain IRL on demonstrations with locally consistent fea-
tures in feature space defined by f(ξ). It is based on an
assumption that similarities on the feature space reflect
similarities on the space of the cost functions, as suggested
by the feature matching algorithm in [11] based on the
defined linear form of cost functions in terms of features
in (2).

We start by constructing prior knowledge regarding the
distribution Gφ. In this work, we implement two types of
prior distributions, one parametric and one non-parametric,
as two exemplar prior models:
• Gφ is a mixture of Gaussian distributions, i.e., Gθ(φ)

can be represented via a Gaussian Mixture Model
(GMM);

• Gφ is a non-parametric distribution represented via k-
nearest neighbors (k-NN).

A. Prior models

1) GMM as a prior model: In this scenario, we assume
that the distribution over the cost functions (represented by
θ) can be expressed as a GMM:

Gφ =

k∑
i

ωiPφi (7)

where k is the number of Gaussian kernels represented by
Pφi

and ωi is the weight of Pφi
. Within each kernel for

i=1, 2, · · · , k, φi = (µi,Σi) represent the mean µi and
covariance Σi of the kernel. Hence, Pφi=N (µi,Σi).

With GMM as a prior, during offline learning phase, we
learn the set of parameters, i.e., (ωi, φi), i=1, 2, · · · , k using
an EM algorithm. Each kernel encodes a cost/reward function
that can be learned via the continuous-domain IRL algorithm.
Among kernels, preferences vary. During online inference
phase, for an arbitrary new demonstration data, we first query
for the most likely kernel to obtain the most likely cost
function θ∗, and use θ∗ to express the human behavior in
the future.

2) KNN as a prior model: In GMM, we need to pre-
define the number of the kernels k which determines how
many cost functions/preferences we can represent. Hence, it
limits the capability of the model to express the richness of
human behavior. As an extension, we also introduce another
prior: the k-NN model, and formulate the online inference
as a k-NN regression problem.

Hence, during offline learning, we perform a continuous-
domain IRL for each of the demonstration. During online
query, we perform k-NN regression to find the optimal θ∗

and use it to express the human behavior in the future.

B. Continuous-Domain IRL

With both prior models, we use the continuous-domain
IRL proposed in [14] to learn the cost function using either
multiple demonstrations from the same kernel (GMM as a
prior) or single demonstrations (k-NN as a prior). As men-
tioned in (2), we assume that cost function is parameterized
as a linear combination of features, and aim to solve the
problem defined in (3) and (4).

C. Algorithm Implementation

Detailed algorithms based on the two prior models and the
continuous-domain IRL is given below. Algorithm 1 and 2
demonstrate, respectively, how the GMM model is learned
offline and utilized for online inference. Algorithm 3 gives
the details for online inference based on a prior model with
k-NN. Note that once we obtained the cost function, we
simulate future behaviors of humans via the framework of
model predictive control (MPC). Namely, at each time step,
we solve an optimization problem given historial states:

ξ∗(x0) = arg min
ξ
C(x0, ξ, θ)= arg min

xi,ui

N−1∑
i=0

θT f(xi, ui)

s.t. xi+1 = f(xi, ui), (8)



where ξ∗(x0) is the predicted future trajectory. Note that at
each time step t, we collect T ′ step historical observations
and use them to infer the optimal reward/cost function. The
inferred cost function is used as the input of the MPC in (8).
Thus the inference can capture dynamically changing cost
functions of humans over time, which means that if an agent
change its cost function along the trajectory, the proposed
algorithm can identify that and generate predictions based
on the latest identified cost function. The metric d in the
algorithms could be chosen as Euclidean distance, i.e. || · ||2.

Algorithm 1: GMM methods
Result: {θi , i = 1, 2, . . . , k}
Input: number of kernels of GMM k, initial parameters

φ, a metric d, dataset: Dn = {f(ξi)}i=1:n.
1 Get the GMM parameters φ by EM algorithm;
2 Cluster the dataset into k subsets Si , i = 1, 2, . . . , k

according to the Gaussian mixture model;
3 Learn θi within each subset Si for i = 1, 2, . . . , k by

continuous-domain IRL;

Algorithm 2: online prediction using GMM methods

Result: ξ̂
Input: estimated GMM model Pφ, a query trajectory:

q = f(ξnew)
1 Get the most probable cluster that the query belongs to,

i.e., find out k = argmaxipφi
(q) via Pφ;

2 Get the cost function C(ξnew, θk) = θTk f(ξnew);
3 Leverage MPC to predict the future trajectories ξ̂new

with the cost function C(ξnew, θk);

Algorithm 3: KNN methods

Result: θ̂(q)
Input: a query feature q = f(ξi), number of nearest

neighbors k, a metric d. dataset:
Dn = {f(ξi)}i=1:n

1 Get the k nearest neighbors of query q:
Sk(q) = {s : first k elements in sort(d(s, q)), s ∈ Dn};

2 Calculate each θ(s) by IRL for ∀s ∈ Sk(q). with
locally consistent features method;

3 θ̂(q)←∑
s∈Sk(q)

1
d(s,q)θ(s);

IV. EXPERIMENTS ON SYNTHETIC DATA

To verify the effectiveness of the proposed framework in
Section III, we first conduct experiments on synthetic data.

A. Synthetic Data Generation

We generate our synthetic data in an optimal control
problem based on a linear quadratic regulator (LQR). We let
an agent track desired reference states over a finite horizon
N . A simple point-mass kinematic model is utilized:

xk+1 =

[
1 dt
0 1

]
xk +

[
0
dt

]
uk (9)

where dt is the sampling period. The cost function of the
LQR is formulated as

J(ξ) =

N∑
i=0

xTi Qxi + ru2i = r

N∑
i=0

xTi
Q

r
xi + u2i (10)

with r > 0 and Q ≥ 0. We assume that Q = qI2 where I2 is
a 2-dimensional identity matrix. Hence, different preferences
in LQR can be represented by the ratio θ = q/r. To construct
the synthetic data with multiple cost functions, we draw
different samples of θi=qi/ri from a mixture of Gaussian
distributions with two kernels represented by µ1 = 4, σ1 =
1, µ2 = 0.4, σ2 = 0.1, respectively. With each sampled
θi, i=1, 2, · · · ,M , we run LQR to synthesize the continuous-
domain trajectories. We sampled 2,000 trajectories in total,
out of which 1,800 trajectories are used as training data and
200 trajectories are used as test data. Figure 3 shows the
synthesized demonstration set, where the red trajectories are
generated from θ sampled from the first kernel and the light
blue one are generated via θ from the second kernel.
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Fig. 3: The synthesized trajectories generated via LQR
with multiple cost functions. Red: with q/r sampled from
Gaussian distribution parameterized by σ1 = 1, µ1 = 0.4;
Light blue: with q/r sampled from Gaussian distribution
parameterized by µ2 = 0.4, σ2 = 0.1.

B. Independent Variables

In our experiments, we controlled the methods we adopt
to learn the reward functions. This independent variable
takes one of three values, which we refer to as “TIRL” (the
traditional IRL), “PIRL-GMM” (the probabilistic IRL with
GMM as a prior model) and “PRIL-kNN” (the probabilistic
IRL with k-NN as a prior model).

1) TIRL - We used traditional IRL algorithm [14] in
training phase to learn a reward function from all
demonstrations. For trajectory prediction, we solved an
optimization with the learned reward function.

2) PIRL-GMM - In the training phase, we first computed
features for each demonstration in the dataset. Then
all data points were clustered in the feature space via
EM algorithm based on GMM and a unique reward
function was learned for each cluster, as described
in Section III. During online inference, a new data
point is first clustered to find out the most probable
cost function it might use, and then MPC is utilized
to generate future trajectory prediction based on the
corresponding cost function.



3) PIRL-kNN - A reward function was learned for each
demonstration in the training set. During online infer-
ence, k nearest neighbors in the feature space were
queried and θ was computed as described in 3. The
obtained cost function was used in MPC to generate
the predicted trajectories. We also did experiments with
different k to see how the performance varies with
value of k.

C. Hypotheses

H1. PIRL-GMM and PIRL-kNN will be better than TIRL in
capturing the diversity of cost functions, and thus perform
better in trajectory prediction.

D. Experimental Results

To evaluate the performance of different algorithms, we
compared the differences between the ground-truth trajec-
tories in the test set and the predicted trajectories using
different algorithms. We adopted Mean Euclidean Distance
(MED) as a metric. It is defined as follows:

E =
1

M

M∑
i=1

1

Ni

Ni∑
j=1

|ξground
j − ξprediction

j |. (11)

M is the number of trajectories in the test set, and Ni is the
length of each trajectory.

The results are shown in Table I. We can see that compared
to TIRL, both PIRL-GMM and PIRL-kNN can obtain better
performance. Moreover, PIRL-kNN performed better than
PIRL-GMM since more local information is utilized, which
increases the capability of the model in expressing more
diverse behavior.

TABLE I: Experimental results on synthetic data (Unit: m)

TIRL PIRL-GMM (k=2) PIRL-kNN (k=1)

MED 5.6e-2 9.8e-3 3.2e-3

To further investigate the influence of k in the PIRL-
kNN model, we tested the performance of PIRL-kNN with
different k, and the results are given in Fig. 4. We can see that
as k increases, both the mean and variance of the prediction
error increase since large k reduces the capability of the
model in terms of expressing more diverse behavior.
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Fig. 4: Performance of kNN with different k on the synthetic
dataset.

V. EXPERIMENT ON HUMAN DRIVING

We also applied the proposed framework on real human
driving data to verify its effectiveness via both quantitative
metrics and user studies.

A. Data

We selected the real human driving data from
INTERACTION dataset [20] in two roundabout
scenarios: DR DEU Roundabout OF and US
DR USA Roundabout SR. We selected 270 driving
trajectories where the drivers drove independently without
too much interaction with other drivers. The sampling time
of trajectory is ∆t=0.2s. The data is separated into two
sets: a training set of size 210, and a test set of size 60. We
visualized the driving trajectories in S−T domain in Fig. 5
(S: the travelled distance in meters along the reference
path; T : the travelled time in second.). We can see that the
human driving behavior is quite diverse in terms of speeds,
accelerations, jerks, and so on.
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Fig. 5: The selected human driving trajectories from the
interaction dataset in the two roundabout scenarios.

B. Feature Selection

We focused on the human driving behavior in longitudinal
direction, therefore we converted trajectories from Cartesian
coordinate system to S − D coordinate system (S: the
travelled distance along the reference path; D: the deviation
w.r.t. the reference path). We defined our features as

f1(ξ) =
1

N

N∑
i=1

(vi(s)− vdesired(s))2 (12)

f2(ξ) =
1

N

N∑
i=1

a2i (s) (13)

f3(ξ) =
1

N

N∑
i=1

j2i (s) (14)

where vi, ai, ji denote to velocity, acceleration, jerk along
longitudinal direction at time step i respectively. vdesire is
calculated based on the curvature of the reference path as
follows:

vdesire(s) =
√
adesireκ(s) (15)



where adesire is a hyperparameter and set as 1.8m/s2 in our
experiments. κ(s) is the curvature of the reference path.

C. Independent Variables and Hypotheses

Similar to the independent variables for synthetic data in
Section IV-B, we controlled the methods we adopt to learn
the reward functions. This independent variable can take one
of three values: “TIRL”, “PIRL-GMM”, and “PRIL-kNN”.
Two hypotheses are posited:
H2. The PIRL-GMM can extract different driving styles from
real human data.
H3. PIRL-GMM and PIRL-kNN will be better than TIRL in
capturing the diversity of human behavior, and thus perform
better in trajectory prediction.

D. Experiment Results

Figure 6 showed the clustering results in the feature space
based on an EM algorithm in PIRL-GMM. We can see
that PIRL-GMM grouped the driving trajectories into three
clusters represented by red, green and blue points. In online
inference, for each new data point, the PIRL-GMM will use
one of the three clusters to obtain the driving style of the
data. To evaluate the effectiveness and interpretability of such
clustering results, we conducted a user study.

Fig. 6: The clustering results in the feature space based on an
EM algorithm in PIRL-GMM. Red: cluster 1; Blue: cluster
2; Green: cluster 3.

1) User study I: Ten participants consisting of a mix of
undergraduate and graduate students were recruited. All of
the participants have technical background on autonomous
driving and were comfortable and confident with questions
and terminologies about different features of driving trajecto-
ries (e.g., velocity, acceleration, jerk). In the user study, each
participant was shown 60 videos which contained trajectories
and speed profiles generated by the cost functions learned via
PIRL-GMM. The participants were asked by the following
question:
• “How would you describe the driver’s driving prefer-

ence?”.
The participants could choose an answer from three options:
1) track desired velocity, 2) minimize acceleration, and 3)
no preference.

Results from the first user study are shown in Fig. 7 where
the y-axis represents the percentages of the participants who
chose the corresponding options to describe the driving styles
of the tested trajectories. We can see that the identified results
obtained by PIRL-GMM matched well with what participants
interpreted.
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Fig. 7: Results of user study I.

To prove H3, we evaluated the prediction performance
of the three methods using both quantitative metrics and
subjective metrics such as user studies.

2) Quantitative Results for Prediction: Quantitatively, we
again adopted MED defined in (11) as a metric. The results
are listed in Table II, where we can see that both PIRL-GMM
and PIRL-kNN achieved better performance in prediction
compared to the traditiona IRL (TIRL).

TABLE II: MED of the prediction results on real data. k =
19 for PIRL-kNN is shown as it is the best. (Unit: m).

TIRL PIRL-GMM (k = 3) PIRL-kNN (k = 19)

MED 9.91 8.67 6.46

3) Subjective Results for Prediction: User study II:
The same ten participants were recruited in the second
user study. During the user study, each participant did two
sets of experiments. Within each set, each participant was
shown 60 groups of videos. In each group, three videos
were included, which respectively described three different
driving trajectories: a ground-truth one and two simulated
driving trajectories using the cost function learned via the
traditional IRL and the proposed method, i.e., PIRL-GMM
in experiment set I and PIRL-kNN in experiment set II. The
participants were asked by the following question in each
experiment set:
• “Which video do you think better mimics the driver’s

behavior in the real video?”
Results from “User study 2” is shown in Fig. 8 where

the y-axis represents the percentages of participants who
believed the video generated via the corresponding method
(i.e., TIRL, PIRL-GMM or PIRL-kNN) mimicked the real
trajectories better. We can see that the clustering results (both
the PIRL-GMM and PIRL-kNN) matched well with what
participants identified. Such results also proved H3.

We also have investigated the influence of k to the perfor-
mance of PIRL-kNN using real data. As we were varying k,
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Fig. 8: Results of user study II.

the results of PIRL-kNN are shown in Fig. 9. Different from
the results in synthetic data shown in Fig. 4, as k increases,
the performance of k-NN on real data also increases with
reducing prediction errors (both the mean and variance).
The reason behind such controversial results is that the
real data is contaminated by measurement noises and quite
sparse. Therefore, although using only local information in
the feature space to query for the cost functions can enhance
the expressive capability of the model in terms of diversity,
the model also suffers from poor robustness. Hence, when
we apply the PIRL-kNN to real world data, careful attention
should be paid in selecting an appropriate hyper-parameter
k to balance the expressive capability and the robustness of
the model.
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Fig. 9: The performance of PIRL-kNN on real dataset as k
increases.

VI. CONCLUSION

In this paper, we proposed a probabilistic IRL framework
which can directly learn a distribution of cost function from
multiple demonstrations with different cost functions. We
considered two prior models, i.e., GMM and k-NN, and
developed corresponding algorithms for offline learning and
online inference. Two sets of experiments were conducted,
with one on synthetic data and one on real human driving
data. The results from both experiments verified the effec-
tiveness of the proposed framework: it can better capture
the diversity of human behavior and thus achieve better
prediction performance. Moreover, results from user studies
also verified that the proposed framework can extract human-
interpretable driving styles.

The work in this paper can be further extended in many
directions. One direction is to increase the expressiveness of

cost functions. We used a linear combination of manually
selected features as the cost functions, however, human
incentives might not be only compromise among such fea-
tures, but contains other functional formats. We will explore
humans’ diversity at that level in future works.
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