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Abstract— Learning-based approaches often outperform
hand-coded algorithmic solutions for many problems in
robotics. However, learning long-horizon tasks on real robot
hardware can be intractable, and transferring a learned policy
from simulation to reality is still extremely challenging. We
present a novel approach to model-free reinforcement learning
that can leverage existing sub-optimal solutions as an algo-
rithmic prior during training and deployment. During training,
our gated fusion approach enables the prior to guide the initial
stages of exploration, increasing sample-efficiency and enabling
learning from sparse long-horizon reward signals. Importantly,
the policy can learn to improve beyond the performance of
the sub-optimal prior since the prior’s influence is annealed
gradually. During deployment, the policy’s uncertainty provides
a reliable strategy for transferring a simulation-trained policy
to the real world by falling back to the prior controller in
uncertain states. We show the efficacy of our Multiplicative
Controller Fusion approach on the task of robot navigation and
demonstrate safe transfer from simulation to the real world
without any fine-tuning. The code for this project is made
publicly available at https://sites.google.com/view/
mcf-nav/home

I. INTRODUCTION

Deep reinforcement learning (RL) shows immense po-
tential for autonomous navigation agents to learn complex
behaviours that are typically difficult to specify analytically
via classical, hand-crafted approaches. However, they often
require extensive amounts of online training data, a lim-
iting factor for real-world robot applications. Additionally,
RL policies overfit to their training environment, making
them unreliable for safe deployment in new environments,
particularly when transferring from simulation to the real
world. On the other hand, classical approaches for reactive
navigation can guarantee safety and can reliably adapt to
diverse environments via parameter-tuning. They, however,
lack the capabilities to efficiently navigate in cluttered envi-
ronments, are susceptible to oscillations [1], and seizure in
local minima [2]. The high-level skills required to overcome
these inefficiencies are difficult to hand-engineer explicitly
and tend to deteriorate in performance when extensively
tuned for a particular environment.

In this work, we combine classical and learned strategies
in order to address their respective limitations. We present
Multiplicative Controller Fusion (MCF), an approximate
Bayesian approach which fuses a classical controller (prior)
and stochastic RL policies for guided policy exploration
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Fig. 1. Multiplicative Controller Fusion (deployment) system diagram for
real world navigation. Policy ensemble shown was trained in simulation.
In cases where policy ensemble exhibits high uncertainty in the real world,
the resulting distribution will bias towards the prior controller distribution
allowing for safer navigation.

during training, and safe navigation during deployment (see
Figure 1). This work primarily focuses on a goal-directed
navigation task with sparse rewards, but can be extended
to any continuous control task where a competent prior is
available.
As opposed to Reinforcement Learning from Demonstrations
(RLfD), MCF operates directly within the exploration phase
and does not require an expert prior controller. It addition-
ally utilises a single objective to optimise the policy. We
formulate the action output from the prior as a distribution
around the deterministic action. Sampling from this distri-
bution during the early stages of training allows the agent
to explore the most relevant regions for the task including
the surrounding state-action pairs, which stabilises training.
As the agent’s performance improves, a gating function
gradually shifts the resulting sampling distribution towards
the policy, allowing the agent to fully exploit its behaviours,
and improve beyond that of the prior. At deployment, MCF
provides an uncertainty-aware navigation strategy for safe
deployment in the real world. The multiplicative fusion of
the two distributions results in a composite distribution which
naturally biases towards the controller exhibiting the least
uncertainty at a given state while attaining the performance
of the learned system where it is more confident.

To summarise, the key contributions of our paper are:
• a novel training strategy which utilises a sub-optimal

controller to guide exploration for continuous control
tasks involving sparse, long-horizon rewards, demon-
strating significant improvements to the sample effi-
ciency and the ability for the agent to improve beyond
the performance of the controller;

• a novel deployment strategy for continuous control
reactive navigation agents which leverages policy un-
certainty estimates to safely fall back to a risk-averse
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prior controller in states of high policy uncertainty;
• an evaluation of our approach to allow a simulation

trained policy to transfer to the real world for safe
navigation in cluttered environments without any fine-
tuning, capable of outperforming both the prior and end-
to-end trained systems.

II. RELATED WORK

A. Classical Navigation Approaches

Classical approaches to navigation can be largely divided
into two categories: deliberative and reactive systems. De-
liberative systems typically rely on the availability of a
globally consistent map to plan out safe trajectories [3],
whereas reactive systems rely on the immediate perception
of their surrounding environment. This allows them to handle
dynamic objects and those unaccounted for in the global
map. Vector Field Histograms (VHF) [4] is a real-time
motion planning algorithm that generates a polar histogram
to represent the polar density of surrounding obstacles. The
robot’s steering angle is then chosen based on the direction
exhibiting the least density and closeness to the goal. For this
approach, the polar histogram has to be computed at every
time step, making it suitable for dynamic obstacle avoidance.
Artificial Potential Field (APF) [5], [6] based approaches
compute a local potential function which attracts the robot
towards the goal while repelling it away from obstacles.
Other approaches leverage short term memory [7] in order to
build local maps of the surrounding environment, allowing
the agent to identify potential dead-ends. The bug family of
algorithms [8] can guarantee completeness when searching
for a goal but lack efficiency.
A common disadvantage of all these approaches is the need
for extensive tuning and hand engineering to achieve good
performance with a tendency to deteriorate in performance
when tuned for a particular domain. Additionally, they are
susceptible to oscillations, getting stuck in local minima [1],
[2] and exhibit suboptimal path efficiency.

B. Learning for Reactive Navigation

Learning navigation strategies is an attractive alternative to
robot control when compared to classical analytically derived
approaches. Common approaches are imitation learning [9]
and deep reinforcement learning [10]. Imitation learning
trains a model by mimicking a set of demonstrations pro-
vided by an expert. Such approaches have been shown to
successfully teach an agent to navigate along forest trails
[11], and accomplish uncertainty aware visual navigation
tasks [12]. Kim et al. [13] and Pfeifer et al. [14] train
a navigation agent using a global path planner as the set
of labelled demonstration data. These systems are however
limited by the performance of the demonstration set. On the
other hand, deep reinforcement learning based approaches
do not rely on a dataset and rather allow the agent to
gain experience via interaction with the environment. Zhu
et al. [15] train a monocular based robot for target driven
navigation in a high fidelity simulation environment and fine-
tune it for deployment in the real world. Given the close

correspondence between laser scans in simulation and the
real world, Tai et al. [16] and Xie et al. [17] show that
training an agent in simulation can be transferred directly to
a real robot without any fine-tuning when using laser-based
sensors. Despite showing reasonable performance, the robot
was still shown to fail in scenarios it did not generalise to
during training. Recent approaches have made attempts to
improve the safety of these systems when presented with
unknown states. Kahn et al. [18] propose an uncertainty-
aware navigation strategy using model-based learning. They
rely on uncertainty estimates of a collision prediction module
and utilise this as a risk term in model predictive control
(MPC). Lotjens et al. [19] extend this approach to avoid
dynamic obstacles in complex scenarios by utilising an
ensemble of LSTM networks to estimate the uncertainty
of surrounding obstacles. We extend these ideas to model-
free reinforcement learning and propose a unified approach
which leverages risk-averse prior controllers for safe real-
world deployment.

C. Combining Classical and Learned Systems

Instead of assuming no prior knowledge, a better-informed
alternative is to leverage the large body of classical ap-
proaches to aid learning-based systems. Several recent works
have taken steps towards this notion. Xie et al. [17] leverage
a proportional controller to speed up the training process
during exploration in navigation tasks. The idea is based
on the hand-crafted controller yielding higher rewards than
random exploration alone. Bansal et al. [20] train a per-
ception module to produce obstacle-free waypoints with
which an optimal controller can path plan towards. Our
prior work [21] proposes a tightly coupled training approach
between a classical controller and reinforcement learning,
based on the residual reinforcement learning framework.
A residual policy is trained to improve the performance
of a suboptimal classical controller while leveraging the
classical controller to guide the exploration. Similarly, Iscen
et al. [22] demonstrate how a learned policy can be used
to modify trajectory generators to improve their base level
of performance and show its applicability for real robot
locomotion. These approaches however only learn a residual
policy to modify the prior, limiting the expressiveness of the
overall system. We formulate an alternative approach which
gradually allows the policy to be independent of the classical
controller enabling it to improve far beyond its performance.
Reinforcement Learning from Demonstrations (RLfD) [23]–
[26] provides an alternative approach to introducing prior
knowledge from classical systems to aid the learning process,
however heavily rely on the presence of perfect demonstra-
tions and utilise multiple objectives to optimise the system
in order to stabilise training. Our approach does not rely on
perfect demonstrations and can instead leverage demonstra-
tions from suboptimal handcrafted controllers to guide the
learning process, gradually allowing the policy to improve
beyond their inefficiencies. We additionally leverage these
classical controllers as a safe fallback in cases of high policy
uncertainty when deployed in the real world.



III. PROBLEM FORMULATION

We consider the reinforcement learning framework in
which an agent learns an optimal controller for a given
task through environment interaction. While providing an
attractive solution to solve complex control tasks which
are difficult to derive analytically, their application to real
robots is plagued by high sample inefficiency during training
and unsafe behaviour in unknown states. This hinders the
overall adoption of these systems in the real world. We
propose an approach which leverages the vast number of
suboptimal classical controllers (priors) developed by the
robotics community to address these limitations.

Traditionally in RL, an agent begins by randomly explor-
ing its environment, starting at any given state s, the agent
performs an action a and arrives in state s′, receiving a
reward r(s,a,s′) ∈ R. In order to learn an optimal policy,
the goal of the agent is to maximise the expectation of
the sum of discounted rewards, known as the return Rt =

∑
∞
i=t γ ir(si,ai,si+1), which weighs future rewards according

to the discount factor γ . In this work, we leverage existing
classical controllers to both guide exploration during training
as well as provide safety guarantees during deployment.
We assume that a suboptimal classical controller is present
for this task and that its explicit analytical derivation can
provide such performance guarantees, which generally are
not provided by learned policies. We refer to this as risk-
averse behaviour.

IV. MULTIPLICATIVE CONTROLLER FUSION

We introduce Multiplicative Controller Fusion (MCF),
which takes a step towards unifying classical controllers and
learned systems in order to attain the best of both worlds
during training and deployment. Our approach focuses on
continuous control tasks, a staple in robotics. We formulate
the action outputs from both the prior controller and policy
as distributions over actions where a composite policy is ob-
tained via a multiplicative composition of these distributions.
The general form of our approach is given by:

π
′(a|s) = 1

Z
(πθ (a|s) ·πprior(a|s)) (1)

where πθ (a|s) and πprior(a|s) represents the distribution
over actions from the policy network and prior controller
respectively. Z is a normalisation coefficient which ensures
that the composite distribution π ′(a|s) is normalised.

A. Components

MCF consists of two components: a reinforcement learn-
ing policy and a classical controller which we refer to as the
prior. We describe each of these systems below.

Policy: We leverage stochastic RL algorithms that output
each action as an independent Gaussian πθ (a|s) = N (µ,Σ)
with µ containing the component-wise means µv for the
linear velocity and µω for angular velocity. The diagonal
covariance matrix Σ contains the corresponding variances
σ2

v for the linear velocity and σ2
ω for the angular velocity.

This output distribution is suitable for use during training,

however since the distribution is trained to maximise entropy
over the actions, its variance does not reflect the model’s
uncertainty. At deployment it is particularly important that
the distribution provides a representation of the policy’s
state uncertainty, known as epistemic uncertainty. To attain
such a distribution at deployment, we follow approaches for
uncertainty estimation from the deep learning literature based
on training ensembles [27]. N randomly initialised policies
are trained and at inference, the agreement between them at
a given state indicates the level of uncertainty. We employ
this idea at the deployment phase on a real robot.

Prior Controller: We utilise the large body of work
developed by the robotics community consisting of ana-
lytically derived controllers. These hand-crafted controllers
demonstrate competent levels of performance across various
domains but are inefficient in unstructured environments and
are limited to the behaviours defined at the design stage.
For uncertainty-aware deployment, MCF relies on a distri-
bution over the actions. However, most classical methods do
not produce principled and calibrated uncertainty estimates.
Therefore, we construct an approximate distribution based
on the sensor noise, which is the main source of uncertainty
in these systems. We do this by propagating the sensor
uncertainty using Monte Carlo sampling to extract an uncer-
tainty estimate over the action space. For guided exploration,
the training distribution primarily serves as a medium for
Gaussian exploration, allowing the policy to explore the
surrounding state-action pairs for potential improvements.

B. Guided Exploration

Exploration is difficult in sparse long horizon settings for
standard reinforcement learning techniques, requiring large
amounts of environment interaction. As an alternative to
random Gaussian exploration, we impose a soft constraint on
exploration by guiding it during the initial stages of training
using a prior controller. We utilise a gated variant of Equation
1 for Gaussian exploration using the composite distribution.
The gating function biases the composite distribution π ′(a|s)
towards the prior early on during training, exposing it to
the most relevant parts of the state-action space. As the
policy becomes more capable, the gating function gradually
shifts π ′(a|s) towards the policy distribution by the end of
training. This allows the policy to fully exploit its learned
behaviours and improve beyond the prior. The multiplicative
fusion constrains the exploration such that the policy does
not deviate far off from the prior, exploiting unwanted
behaviours.

π
′(a|s) = 1

Z
(πθ (a|s)1−α ·πprior(a|s)α) (2)

Equation 2 defines the gated form of our multiplicative
fusion strategy used during training, where α represents
the gating term that shifts the resulting distribution. By
formulating the action outputs of the prior as a unimodal
Gaussian, we allow the surrounding state-action regions
of the Q-value network to be correctly updated, reducing
the chances of overestimation bias and stabilising training.



Algorithm 1: MCF Training

1 Given: Given Policy Network πθ , Prior Controller
πprior

Input: State st , Gating Function α

Output: Trained Policy, πθ

2 for t = 1 to T do
3 Compute the composite distribution

π ′(a|st)∼N (µ ′,σ2′)
π ′(a|st) =

1
Z (πθ (a|st)

(1−α) ·πprior(a|st)
α)

4 Sample action a from the new distribution π ′(a|st)
and step in environment.

5 Store (st ,a,r,st+1)
6 Update πθ

7 Compute α

8 end
9 return πθ

The gating formulation is reminiscent of the epsilon-greedy
strategy used in Q-learning [10], however, as opposed to
totally random actions, we utilise a distribution around a
competent controller. The complete MCF Training algorithm
is shown in Algorithm 1.

The mean µ ′ and variance σ2′ defining the composite
Gaussian π ′(a|st) can be expressed as follows,

µ
′ =

µθ σ2
prior(1−α)+µpriorσ

2
θ

α

σ2
prior(1−α)+σ2

θ
α

(3)

σ
2′ =

σ2
θ

σ2
prior

σ2
prior(1−α)+σ2

θ
α

(4)

This expansion implicitly handles the normalisation term
1
Z . The multiplicative formulation constrains the exploration
process, allowing the agent to focus on the most relevant
regions in the environment, reducing the overall training
time. The gating parameter, α initially begins at 1, indicating
a complete shift towards the prior distribution and gradually
shifts entirely towards the policy distribution when its value
is 0. The gating function should ideally be a function of
the policy’s performance during training however we leave
the exploration of this idea to future work. In this work, we
represent the gating function as a reverse logistic function
which is a function of the training steps taken.
An advantage of using this type of fusion during exploration
is that the policy distribution is biased towards the state-
action trajectories followed by the prior. This mitigates the
exploitation of unwanted behaviours commonly seen during
random exploration. It also makes the policy suitable for
multiplicative combination with the prior during deployment,
as we will describe in the following section.

C. Uncertainty-Aware Deployment

At deployment, we directly utilise Equation 1 to derive a
composite policy, π ′(a|s) which demonstrates the complex
navigational skills attained by the learned system while
exhibiting the risk-averse behaviours of the prior in states

Algorithm 2: MCF Deployment

1 Given: Ensemble of N Trained Policies
([πθ1,πθ2...πθN ]), Prior Controller (πprior)

Input: State st
Output: Action a

2 Approximate ensemble predictions as a unimodal
Gaussian π∗

θ
(a|st) = N (µ∗

θ
,σ2∗

θ
), where:

µ∗
θ
= 1

N ∑
N
n=1 µθn

σ2∗
θ

= Var[µθn]
3 Compute the composite distribution

π ′(a|st)∼N (µ ′,σ2′)
π ′(a|st) =

1
Z (π

∗
θ
(a|st) ·πprior(a|st))

4 Sample action a from the distribution π ′(a|st)
5 return a

of high policy uncertainty. This allows for efficient and
safe real-world deployment. In order to attain this behaviour
in the fusion process, we require the policy distribution
to represent its state uncertainty. Given that all training is
completed in a non-exhaustive simulation environment, the
policy is bound to encounter states it did not generalise well
to when transferred to the real world. We encapsulate this
uncertainty by training an ensemble using Algorithm 1 and
computing the mean and variance of the action produced by
the ensemble at a given state during inference. This allows
the distribution to indicate a higher standard deviation in
unknown states and lower values when all policies agree at
familiar states. The complete MCF Deployment algorithm is
described in Algorithm 2.

The mean µ ′ and variance σ2′ representing this composite
Gaussian can be expressed as follows,

µ
′ =

µ∗
θ

σ2
prior +µpriorσ

2∗
θ

σ2
prior +σ2∗

θ

(5)

σ
2′ =

σ2∗
θ

σ2
prior

σ2
prior +σ2∗

θ

(6)

where this expansion implicitly handles the normalisation
term 1

Z .

V. EXPERIMENTS

In this work we focus on the goal-directed navigation task
presented by Anderson et al. [28] which requires the agent
to efficiently navigate to the desired goal while avoiding
obstacles and dead-ends.

A. Experimental Setup

Training Environment: All policy training was conducted
in simulation and deployed in the real world without any
additional fine-tuning. We utilise the laser-based navigation
simulation environment provided in [21] to train all agents
and transfer the trained policy to an identical robot in the
real world. The training environment consists of 5 arenas
with different configurations of obstacles. The goal and start
location of the robot are randomised at the start of every



episode, each placed on the extreme opposite ends of the
arena (see Figure 3). This sets the long horizon nature of the
task. As we focus on the sparse reward setting, we define
r(s,a,s′)= 1 if dtarget < dthreshold and r(s,a,s′)= 0 otherwise,
where dtarget is the distance between the agent and the goal
and dthreshold is a set threshold. The length of each episode is
set to a maximum of 500 steps. The action space consists of
two continuous values: linear velocity v∈ [−1,1] and angular
velocity ω ∈ [−1,1]. We assume that the robot can localise
itself within a global map in order to determine its relative
position to a goal location. The 180◦ laser scan range data
is divided into 15 bins and concatenated to the robots angle
and distance-to-goal, and the previously executed linear and
angular velocity. This 19-dimensional tensor represents the
state input st to the policy. The prior controller takes as input
the entire 180◦ laser scan data and angle-to-goal data in order
to build its local potential field.

Prior Controller: For the prior controller, we utilise a
variant of the Artificial Potential Fields controller introduced
by Warren et al. [5]. It demonstrates a competent level of
obstacle avoidance capabilities while exhibiting the same
limitations faced by most reactive planners. As the standard
form of this prior produces a deterministic action for the
linear and angular velocities [v,ω], we approximate the
distribution over these actions using Monte Carlo sampling.
Given a known noise model of the laser scan range values
N (0,σ2), we sample a 180-dimensional noise vector and
add it to the laser scan value at a given state. This is passed
through the controller producing the resulting linear and
angular velocity. This is repeated N times and the mean and
variance of these values are computed to represent the dis-
tribution over the prior actions. At training, the distribution
over the prior action space primarily serves as a medium
for Gaussian exploration, allowing the policy to explore the
surrounding state-action pairs for potential improvements,
which we found important to stabilise training. We set this
to a value of 0.3 throughout training.

Policy: For training, we utilise Soft Actor-Critic (SAC)
[29], an off-policy RL algorithm which naturally expresses
its output as a distribution over its action space. SAC is
known for its stability and robustness to hyper-parameters
during training when compared to other off-policy algo-
rithms. It incorporates an entropy regularisation term during
training and is optimised to maximise a trade-off between
expected return and entropy. This encourages exploration
and prevents the policy from prematurely converging to a
bad local optimum. The outputs from this policy follow
the same convention outlined in section IV. We utilise the
implementation provided by OpenAI SpinningUp [30].

B. Evaluation of Training Performance

We provide an evaluation of the training performance
of our approach when compared to 3 learned baseline
alternatives described below:
End-to-end: We train an agent using the standard Gaussian
exploration provided in the SAC implementation.
Baseline: This method illustrates the naive use of
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Fig. 2. Learning curves showing average path length during training. MCF
achieved the best performance compared to all alternatives with the least
variance across 10 different seeds.

demonstrations in the replay buffer. The replay buffer
is filled with 50% demonstrations from our prior and 50%
experience gathered by sampling the agent’s policy.
MCF (no-gating): A variant of our proposed approach
which does not rely on a gating function.

After every 5 episodes, we evaluated the policies’ perfor-
mance and the results are shown in Figure 2. All agents were
trained across 10 different seeds. We additionally overlay
the performance of the prior controller for comparison. Our
approach shows the fastest convergence to an optimal policy
and the least variance across all seeds. Note that MCF
improves beyond the performance of the prior controller
attaining a lower path length on average. The end-to-end
based approach is shown to exhibit the worst performance
with very high variance. The baseline approach also shows
very high variance and is shown to converge to a suboptimal
policy. We note that the no-gating variant of MCF, while
showing lower variance, quickly convergences towards a
suboptimal policy with similar performance to the prior.
This is a result of it not being able to fully exploit its own
policy and identify improvements beyond that of the prior,
highlighting the importance of the gating parameter.
Figure 3 shows the state space coverage during exploration
by standard Gaussian exploration, the baseline approach and
MCF in an environment with a fixed start and goal location.
It illustrates the poor performance of standard Gaussian
exploration in sparse long horizon reward settings incapable
of moving far beyond its initial position. The baseline, while
benefiting from the demonstrations, is seen to spend time
exploring unnecessary regions of the state space. MCF, on
the other hand, illustrates structured exploration around the
deterministic path of the prior controller (indicated by the
dashed line), allowing it to focus on parts of the start space
most relevant to the task while exploring the surrounding
state-action regions for potential improvements.

Figure 4 shows the progression of the composite MCF
distribution used for exploration during training and the
impact of the gating function. Without gating, the standard
multiplicative fusion will result in a distribution which sits



(a) Gaussian Exploration (b)  Baseline (c)  MCF (Ours)

Fig. 3. State space coverage during exploration. The dashed line in
(c) illustrates the deterministic path taken by the prior controller. Note
how our formulation explores the immediate surrounding regions of this
demonstration.

Fig. 4. Progression of MCF during training showing the impact of the
gating parameter over the course of training. We utilise a reverse logistic
function which ranges from 1 to 0 in this work.

between the two systems. This limits the amount of guided
exploration the prior can provide and the potential of the
policy to fully exploit its own distribution in order to correct
for extrapolation errors and improve beyond the prior. On the
other hand, the gated variant allows us to sample actions from
the distribution around the prior early on during training,
allowing all the state-action regions surrounding the prior’s
trajectories to be updated. As the training progresses and the
policy becomes more capable, we see its distribution natu-
rally move closer towards that of the prior. Simultaneously,
the gating function gradually shifts the resulting distribution
to be fully on-policy. This allows the policy to correct any
errors in its Q values while enabling it to explore potential
improvements beyond that of the prior. Our results show that
MCF constantly biases the policy’s action distribution to be
close to that of the prior with the necessary adjustments to
overcome the inefficiencies of the prior.

C. Evaluation of Deployed Systems

We compare our deployment strategy to 3 different
approaches in order to highlight the key advantages MCF
exhibits during execution:
Policy-only: An individual policy trained end-to-end using
SAC. Given that the standard Gaussian exploration used in
the algorithm was insufficient to learn in the sparse reward
setting, this algorithm was trained using Algorithm 1.

TABLE I
EVALUATION IN SIMULATION ENVIRONMENT

Training Environment Unseen Environment

Method SPL Actuation Time
(Steps) SPL Actuation Time

(Steps)

Prior 0.793 207 0.666 305
Policy Only 0.946 126 0.608 247
MCF (Ours) 0.965 119 0.728 227
Random 0 500 0.148 478

Prior: This represents the analytically derived reactive
navigation controller based on the Artificial Potential Fields
approach [5].
ROS Move-Base: For the real-world experiments, we
compare to the state of the art classical local planner
provided in the ROS navigation stack.
Random: Actions are randomly sampled from a uniform
distribution between -1 and 1.

To evaluate the performance of these systems, we report
the average Success weighted by (normalised inverse) Path
Length (SPL) [28] and the episodic actuation time. SPL
weighs success by how efficiently the agent navigated to
the goal relative to the shortest path. The metric requires a
measure of the shortest path to goal which we approximate
using the path found by an A-Star search across a 2000 ×
1000 grid. An episode is deemed successful when the robot
arrives within 0.2m of the goal. The episode is timed out after
500 steps and is considered unsuccessful thereafter. We do
not report the SPL metric for the real robot experiments as we
did not have access to an optimal path. We, however, provide
distance travelled along each path and compare them to the
distance travelled by a fine-tuned ROS movebase planner.
For computational efficiency, we utilised an ensemble of 5
trained policies to compute the policy distribution required
by MCF across all evaluation runs. In most states, we found
that the prior controller utilised in this work exhibited little
variance in the magnitude of laser noise present in the
robot’s laser scanner. As a result, we set the variance of the
distribution to max(σ2

mc,C) where σ2
mc represents the variance

computed by the Monte Carlo sampling approach and C was
empirically set to 0.2. This prevented the prior distribution
from collapsing to a very confident value, limiting the impact
of the policy on the overall system. We leave C as a tuning
variable which governs how risk-averse the system is allowed
to behave in the real world.

1) Simulation Environment Evaluation: We deploy the
agent in both its training environment and an unseen en-
vironment to evaluate its performance when presented with
unknown states. Table I summarises the results. As expected,
both our approach and the policy-only systems show superior
performance in the training environment given that the
policies have generalised well to all given states present,
as indicated by the high SPL values. Additionally, we note
that both learning-based systems exhibit lower actuation
times than the prior, illustrating the efficiency gained via
interaction. We attribute the higher actuation time of the prior



0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Policy

Prior

Combined

Po
lic

y 
U

n
ce

rt
ai

n
ty

MCF (Ours) Prior Only

1 1

2 2
AB

C

D

1

2

Policy Only

G

G

G

G

G

G

Fig. 5. Trajectories taken by the real robot for different start (orange) and goal locations in a cluttered office environment with long narrow corridors.
The trajectory was considered unsuccessful if a collision occurred. The trajectory taken by MCF is colour coded to represent the uncertainty in the linear
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to its oscillatory behaviour and lower SPL in cases where it
got stuck in local minima. In the unseen environment, we
see the key benefit of our approach which yields a higher
SPL than both the prior and policy-only system and lowest
actuation time. MCF attains the efficiency of the learned
system while achieving a higher success rate than the policy-
only system as a result of the prior fallback, which allows
the agent to progress through regions that the policy would
have otherwise failed.

2) Real Robot Evaluation: Given the close correspon-
dence of laser scans between the simulation and training
environment, we directly transfer the systems to a real robot.
We utilise a PatrolBot mobile base shown in Figure 1 which
is equipped with a 180◦ laser scanner. All velocity outputs
are scaled to a maximum of 0.25 m/s before execution
on the robot. The environment in which the system was
deployed was a cluttered indoor office space which had been
previously mapped using the laser scanner. We utilise the
ROS ACML package to localise the robot within this map to
extract the necessary system inputs for the policy network
and prior. Despite having a global map, the agent is only
provided with global pose information with no additional
information about its operational space. The environment
also contained clutter which was unaccounted for in the
mapping process. To enable large traversals through the
office space, we utilise a global planner to generate target
locations, 3 meters apart for our reactive agents to navigate
towards.

We evaluate the performance of the system on two differ-
ent trajectories indicated as Trajectory 1 and Trajectory 2 in
Table II and Figure 5. Trajectory 1 consisted of a lab space
with multiple obstacles, tight turns, and dynamic human
subjects along the trajectory, while Trajectory 2 consisted of
narrow corridors never seen by the robot during training. As
a comparative baseline, we include the performance achieved
by a fine-tuned ROS move-base planner. We summarise the
results in Table II. In all cases, the policy-only approach
failed to complete the task without any collisions, exhibiting
random reversing behaviours. We attribute this to its poor
generalisation to certain states given the limited simulation
training environment. The prior was capable of completing
all trajectories however had the largest execution times as
a result of its inefficient oscillatory behaviour. MCF was

successful in all cases and showed significant improvements
in efficiency when compared to the prior. We attribute this to
the impact the policy has on the system. It also demonstrates
competitive results with a fine-tuned move-base planner with
similar distance coverage.
To gain a better understanding of the reasons for MCF’s
success when compared to the prior and policy only alter-
natives, we overlay the trajectories taken by these systems
as shown in Figure 5. The trajectory taken by MCF is
colour-coded to illustrate the policy uncertainty in the linear
velocity as given by the standard deviation of the policy
ensemble outputs. We draw the readers attention to the region
marked A which exhibits higher values of policy uncertainty.
The multiplicative combination of the distributions at this
region is shown within the orange ring. As expected, given
the higher policy uncertainty at this point, the resulting
composite distribution was biased more towards the prior
which displayed greater certainty, allowing the robot to
progress beyond this point safely. We note here that this is the
particular region that the policy-only system failed as shown
in Figure 5. The purple ring at region C illustrates regions of
low policy uncertainty with the composite distribution biased
closer towards the policy. Comparing the performance benefit
over the prior, we draw the readers attention to regions B
and D which show the path profile taken by the agents. The
dense darker path shown by the prior indicates regions of
high oscillatory behaviour and significant time spent at a
given location. On the other hand, we see that MCF does
not exhibit this and attains a smoother trajectory which we
can attribute to the policy having higher precedence in these
regions, stabilising the oscillatory effects of the prior. We
provide a video illustrating these behaviours with the real
robot on our project page 1.

VI. CONCLUSIONS

In this paper, we propose Multiplicative Controller Fusion
(MCF), a stochastic fusion strategy for continuous control
tasks. It provides a means to leverage the large body of work
from the robotics community into learning-based approaches.
MCF operates both during training and deployment. At
training, we show that our gated formulation allows for

1https://sites.google.com/view/mcf-nav/home

https://sites.google.com/view/mcf-nav/home


TABLE II
EVALUATION FOR REAL WORLD NAVIGATION

Trajectory 1 Trajectory 2

Method
Distance
Travelled
(meters)

Actuation Time
(seconds)

Distance
Travelled
(meters)

Actuation Time
(seconds)

Prior Only 34.398 271.1 24.8 148
End-to-end Fail Fail Fail Fail
MCF 32.9 184 23.8 131
Move Base 33.6 154.1 23.3 153

low variance sample efficient learning from sparse, long-
horizon reward tasks. At deployment, we demonstrate how
MCF attains the efficiencies of learned policies in familiar
states while falling back to a classical controller in cases of
high policy uncertainty. This allows for superior performance
when transferring a policy from simulation to the real world
when compared to both the policy and classical systems
individually. A limitation of our approach is when both the
prior and policy are confident on totally different actions,
which stagnates the resulting distribution. This may occur
if the policy exploits an unwanted behaviour during training
and hence acts considerably different from the prior. One
way to mitigate this stagnation is to always fall back to the
reliable classical controller in cases of total disagreement.
Additionally, the gating function could be defined to directly
relate to the policy’s performance. We leave the exploration
of these ideas to future work.
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