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Abstract— For the time varying optimization problem, the
tracking error cannot converge to zero at the finite time
because of the optimal solution changing over time. This paper
proposes a novel varying parameter recurrent neural network
(VPRNN) based hierarchical optimization of a 7-DoF surgical
manipulator for Robot-Assisted Minimally Invasive Surgery
(RAMIS), which guarantees task tracking, Remote Center of
Motion (RCM) and manipulability index optimization. A theo-
retically grounded hierarchical optimization framework based
is introduced to control multiple tasks based on their priority.
Finally, the effectiveness of the proposed control strategy is
demonstrated with both simulation and experimental results.
The results show that the proposed VPRNN-based method
can optimal three tasks at the same time and have better
performance than previous work.

I. INTRODUCTION

Robotic technology is increasingly implemented to assist
surgeon [1]. Robot-assisted surgery has several advantages
such as better surgical accuracy, increased workspace, en-
hanced dexterity, and improved vision for surgeons [2].
Multiple tasks need to be considered during the surgical
operation [3], such as the control of the surgical tip and
the manipulability of the surgical manipulator, which is vital
in Robot-Assisted Minimally Invasive Surgery (RAMIS).
The accurate tracking control of the surgical tip is of
vital importance for surgical operations [4]. Manipulability
index [5], [6] of a surgical tool tip determines the maximum
distance from singularities, flexible motion, and more exten-
sive operational space of the robot manipulators. Usually, for
surgical robot operation, multiple tasks are characterized by
different priority levels. The multiple general tasks are listed
as follows (T1–T3):

T1: The tracking control of the surgical tip must be ac-
curate, which guarantees the success rate of surgery
using the robot manipulator [7].
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T2: In order to ensure the safety and rationality of the
operation, the surgical tip should pass through a small
incision in the abdominal wall of the patient. Kinematic
constraints produced by each small incision should be
respected, generally identified as the Remote Center of
Motion (RCM) constraint [8].

T3: The manipulability of the robot manipulator should be
enough to perform the surgical operation [9].

To effectively evaluate the multiple operational tasks on
the robot manipulator, a lot of research activity has been
attracted and performed in this area. Various approaches
have been implemented to track the desired position and
guarantee the RCM constraint at the same time using kine-
matic solutions [8]. Similarly, Su et al. [10] introduced an
adaptive decoupling impedance controller to exploit the re-
dundancy of the manipulator to maintain the RCM constraint,
as well. Except for fulfilling the RCM constraint, Jin et
al. [11] proposed to adopt neural networks to optimize the
manipulability index during the tracking without influence its
accuracy. Nevertheless, few works are proposed to handle all
the operational tasks at the same time.

In our previous work [12], [13], the hierarchical op-
erational space formulation is utilized to unite the three
parts: the main surgical tracking task based on the Cartesian
compliance control, the RCM constraint in its null space of
the end-effector, and a manipulability optimization control
in the null space of the robot wrist using a constrained
quadratic programming (QP). Although it achieved better
performance in terms of accuracy and manipulability index,
the convergence rate is slow, and the tracking error is larger.

In this paper, varying parameters recurrent neural network
(VPRNN) based hierarchical control of a 7-DoF robot ma-
nipulator for robot-assisted minimally invasive surgery has
been proposed, where it integrates multiple tasks based on
their priority and guarantees task tracking [14], RCM, and
manipulability optimization at the same time. The gradient
descent neural network-based traditional methods cannot
guarantee that the convergence of the error to 0 at the finite
time because of the optimal solution changing over time.
The proposed VPRNN framework can solve the time-vary
QP problem with fast convergence rate performance, which
is promising for online solution of the time-varying optimiza-
tion problem [15]. The proposed methodology represents an
advance concerning the manipulability optimization solution
proposed in [12]. It utilizes a VPRNN based hierarchical
control to combine the multiple tasks into a single con-
troller [16]. Furthermore, the overall convergence rate has
also been improved with respect to our previous works [11],
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Fig. 1. Multiple operational tasks in the Robot-assisted Minimally Invasive
Surgery

[12]. Finally, simulations and experiments applying a 7-DoF
serial robot KUKA LWR4+ are performed to demonstrate
the effectiveness of the proposed method.

II. RELATED WORKS

Generally, there are active and passive RCM constraints.
Moreover, it is prevalent in non-clinical research since its
low cost and flexible task space. As it is shown in Fig. 1,
the multiple operational tasks (T1–T3) should be considered
at the same time.

Sandoval et al. [16] proposed to exploit the redundancy
to combine the T1 and the T2 at the same time. In fact,
an improved dynamic control method is proposed to apply
the task redundancy for the RCM constraint (T2), without
the influence of the surgical operation (T1). Jin et al. [11]
proposed to use neural networks to combine the T1 and
the T3. In our previous works [12], [17], we utilized the
hierarchical operational space formulation [18] to combine
the three tasks T1, T2, and T3.

III. CONTROL METHODOLOGY

A. Remote Center of Motion Constraint

For the surgical tracking tasks, the robot’s tooltip should
respect the RCM constraint, which is shown in Fig. 1.
Obviously, rrcm should be held in a line of rm and rm−1,
where rm is the end of tooltip and rm−1 is the Cartesian
position of joint m− 1. Thus, the geometric relationship of
RCM error model is defined as,

−−−−−−−→rm−1rrcm ×−−−−−→rm−1rm = 0 (1)

where −−−−−−−→rm−1rrcm represents the vector of line rm−1rrcm,
and −−−−−→rm−1rm represent the vector of line rm−1rm, respec-
tively. It can be seen that line rm−1rrcm and line rm−1rm
should be parallel. Then, the RCM error constraint can be
expressed as,

Ercm (q) =
−−−−−−−→rm−1rrcm ×−−−−−→rm−1rm

d
(2)

B. Problem formulation

The kinematic formulation of multi-DOFs redundant ma-
nipulator is,

Xd = f1 (q)
Ercm = f2 (q)

(3)

where Xd ∈ Rn and Ercm ∈ Rn (n = 3) are end-effector
and RCM Cartesian coordinate, respectively. The relationship
between the end-effector velocity Ẋ and the joint velocity
q̇ ∈ Rm(m = 7) is expressed as,

Ẋd = JT q̇

Ėrcm = Jrcmq̇
(4)

where JT ∈ Rn×m and Jrcm ∈ Rn×m denote the end-
effector and RCM Jacobian matrix, respectively. As it is
well-known the manipulability measure gives a scalar rep-
resentation of the gain between joint velocities q̇ and task
velocities Ẋ , and, consequently, measures the ability of the
robot to move its end-effector, i.e., a configuration q for
which the Jacobian is rank deficient. The manipulability
measure depends on the JT and is given by:

µ =

√
det
(
JT (q)JT

T (q)
)

=
√
µ1µ2...µm (5)

where µi(i = 1, 2 . . . ,m) denotes the i-th largest eigenvalue
of JTJ

T
T

For a redundant manipulator with the desired workspace
task Xd and a RCM constraint Ercm, the manipulability
optimization problem can be formulated as [11]:

min −µ (6)
s.t. Xd = f1 (q) (7)

Ercm(q) = f2 (q) (8)
q, q̇ ∈ Rm

where f1(q) and f2(q) are the forward kinematic functions
of the end-effector and of the “wrist”, respectively. The two
equality constraints has been introduced to guarantee that
the optimization of the manipulability index does not affect
tracking of the desired end-effector trajectory (first equality
constraint) and fulfilment of RCM constraint (second equal-
ity constraint).

The previous optimization problem is characterized by a
cost function that is usually non-convex, and by nonlinear
equality constraints, and it thus represents a challenging
problem. In order to address the non-convexity of the cost
function, we can reformulate the optimization problem as
follows:

min −µ̇ (9)
s.t. J q̇ = vd (10)

Jrcm(q) = vrcm (11)
q, q̇ ∈ Rm

where vd = Ẋd, and vrcm = Ėrcm

On the other side, a way to handle the two nonlinear
equality constraints is introduced in Section III-C.

Considering the safety in surgical task [19], [20], the
joint velocities and joint angles cannot exceed kinematic
limitations. The convex sets of admissible joint positions and
velocities can be introduced as follows:

Ωq = {qi ∈ R |
¯
qi ≤ qi ≤ q̄i, i = 1, 2, . . . ,m}

Ωq̇ = {q̇i ∈ R | ˙
¯
q
i
≤ q̇i ≤ ˙̄qi, i = 1, 2, . . . ,m}
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where ˙
¯
q
i

and ˙̄qi are lower and upper bounds on joint
velocities, respectively, and

¯
qi and q̄i are lower and upper

bounds on joint angles, respectively.
In order to express these two constraints as a single constraint
on joint positions and velocities, the constraint on joint
positions can be reformulated [11] as follows:

Ωq = {q̇i ∈ R |
− α

(
qi −

¯
qi
)
≤ q̇i ≤ −α (qi − q̄i) , i = 1, 2, . . . ,m}

where α is a positive constant, and the two constraints can
be rewritten as:

Ωq̇ = {q̇i ∈ R | max( ˙
¯
q
i
,−α(qi −

¯
q
i
)) ≤ q̇i

≤ min( ˙̄qi,−α(qi − q̄i)), i = 1, 2, . . . ,m}

The derivative level manipulability can be obtained as,
d(µ2/2)

dt = det
(
JTJ

T
T

)
tr
(
J̇TJ

T
T (JTJ

T
T )
−1)

d(µ2/2)
dt = µµ̇ =

√
det
(
JTJ

T
T

)
µ̇

(12)

From (12), the µ̇ can be obtained,

µ̇ =

√
det
(
JTJ

T
T

)
tr
(
J̇TJ

T
T (JTJ

T
T )
−1)

(13)

We define the J̇T as,

J̇T =

m∑
i=1

∂JT

∂qi
q̇i =

m∑
i=1

hiq̇i (14)

Therefore,

tr
(
J̇TJ

T
T (JTJ

T
T )
−1)

=

m∑
i=1

q̇i · tr
(
hiJ

T
T (JTJ

T
T )
−1)

(15)
Considering the convenience of computing of (JTJ

T
T )
−1

,
we transform the variable with vectorization as,

tr
(
hiJ

T
T (JTJ

T
T )
−1)

= tr
((
JTh

T
i

)T (
(JTJ

T
T )
−1))

= vecT
(
JTh

T
i

)
vec
((

(JTJ
T
T )
−1))

(16)
Therefore the µ̇ can be further expressed as,

µ̇ = µ
m∑
i=1

q̇ivecT
(
JTh

T
i

)
vec
(

(JTJ
T
T )
−1)

= µ [q̇i, q̇2 . . . , q̇m] [d1, d2 . . . , dm]
T

vec
(

(JTJ
T
T )
−1)

(17)
where di = vecT

(
JTh

T
i

)
. Moreover, the new symbol ’�’ is

defined to simplify the expression in (17),

JT♦h = [d1, d2 . . . , dm]
T

=[
vecT

(
hT1
)
, vecT

(
hT2
)
. . . , vecT

(
hTm
)]T (

In ⊗ JT
T

)
(18)

where the rules of Kronecker product ’⊗’ satisfy:
vec (abc) =

(
bT ⊗ a

)
vec (c).

We define the notation ψ = vec
(

(JTJ
T
T )
−1)

(ψ ∈ Rn2

). Therefore, µ̇ = µq̇T (JT♦h)ψ, and

In = JTJ
T
T

(
JTJ

T
T

)−1
= JTJ

T
Tψ, vec (In) =

vec
(
JTJ

T
Tψ
)

=
(
In ⊗ JTJ

T
T

)
ψ.

It should be noted that µ is nonnegative and independent
of vector q̇ and ψ, so the optimization function is equivalent
to q̇T (JT♦h)ψ. Therefore, the manipulability optimization
problem, including all the aforementioned constraints, can be
formulated as:

min
q,q̇∈Rm

−q̇T (JT♦h)ψ

s.t.
(
In ⊗ JTJ

T
T

)
ψ = vec (In)

JT q̇ = vd
Jrcmq̇ = vrcm
q̇ ∈ Ωq,q̇

(19)

C. Reformulation as a constrained quadratic program

There exist the joint angle drift because of the loss of
explicit information on Xd and Ercm. Therefore, we design
the feedback controller to restrict the movement of robot for
end-effector and RCM velocity constraint in (4),

vd = −k1 (f1 (q)−Xd) + Ẋd

vrcm = −k2 (f2 (q)−Ercm) + Ėrcm
(20)

where k1, k2 are positive feedback gain.
Furthermore, in order to guarantee that the problem is

convex and compliant with the formulation proposed in [11],
the objective function including three tasks is defined as,

f (q̇,ψ) = −h0q̇
T (JT♦h)ψ + h1

2
‖q̇‖2 + h2

2
‖JT q̇ − vd‖2

+h3
2
‖Jrcmq̇ − vrcm‖2 + h4

2

∥∥(In ⊗ JTJ
T
T

)
ψ − vec (In)

∥∥2

(21)
where h0, h1, h2, h3, and h4 are positive constants.

The optimization problem in (19) can be reformulated as:

min
q,q̇∈Rm

f (q̇,ψ)

s.t.
(
In ⊗ JTJ

T
T

)
ψ = vec (In)

JT q̇ = vd
Jrcmq̇ = vrcm
q̇ ∈ Ωq,q̇

(22)

D. Varying-Parameter Hierarchical Optimization Scheme

To obtain the solution of QP problem in (22), the Lagrange
function is defined as,

L (q̇,ψ,λ1,λ2,λ3) = −h0q̇T (JT♦h)ψ + h1

2 ‖q̇‖
2

+
h2

2 ‖JT q̇ − vd‖2 + h3

2 ‖Jrcmq̇ − vrcm‖2 +

h4

2

∥∥∥(In ⊗ JTJ
T
T

)
ψ − vec (In)

∥∥∥2 + λT
1 (vd − JT q̇) +

λT
2 (vrcm − Jrcmq̇) + λT

3

(
vec (In)−

(
In ⊗ JTJ

T
T

)
ψ
)

(23)
where λ1 ∈ Rn, λ2 ∈ Rn, λ3 ∈ Rn2
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We define ∂L = [∂L/∂q̇, ∂L/∂ψ, ∂L/∂λ1,∂L/∂λ2,∂L/∂λ3].

∂L =

∂L/∂q̇ = −h0 (JT♦h)ψ + h1q̇ + h2J
T
T (JT q̇ − vd)

+h3J
T
rcm (Jrcmq̇ − vrcm)− JT

Tλ1 − JT
rcmλ2

∂L/∂ψ = −h0(JT♦h)
T
q̇ −

(
In ⊗ JTJ

T
T

)
λ3

+h4

((
In ⊗ JTJ

T
T

)((
In ⊗ JTJ

T
T

)
ψ − vec (In)

))
∂L/∂λ1 =− (JT q̇ − vd)
∂L/∂λ2 = − (Jrcmq̇ − vrcm)

∂L/∂λ3 = −
((
In ⊗ JTJ

T
T

)
ψ − vec (In)

)
(24)

If ∂L are continuous, the optimal solution satisfy ∂L = 0.
To solve the problem in (22), the VPRNN is pro-

posed. Firstly, the decision vector z is defined as: z =
[q̇,ψ,λ1,λ2,λ3]

T (z ∈ Rm+2n2+2n). Then, the equation
in (24) can be rewritten as form of a matrix,

Wz = l, z ∈ Ω (25)

where W ∈ R(m+2n2+2n)×(m+2n2+2n), l ∈ Rm+2n2+2n,

W =


w11 w12 −JT

T −JT
rcm 0

w21 w22 0 0 w25

JT 0 0 0 0
Jrcm 0 0 0 0
0 w52 0 0 0


l = [l11, l12,vd,vrcm, vec (In)]

T

where

w11 = h1 + h2J
T
TJT + h3J

T
rcmJrcm;

w12 = −h0 (JT♦h) ;w21 = −h0(JT♦h)
T

;

w22 = h4

(
In ⊗ JTJ

T
T

)(
In ⊗ JTJ

T
T

)
;

w25 = −
(
In ⊗ JTJ

T
T

)
;w52 = In ⊗ JTJ

T
T ;

l11 = h2J
T
Tvd + h3J

T
rcmvrcm;

l12 = h4

(
In ⊗ JTJ

T
T

)
vec (In) .

To obtain the optimization solution of (25), the error model
of neuro-dynamics optimization is defined as,

δ (t) = W (t) z (t)− l (t) (26)

where δ (t) ∈ Rm+2n2+2n. To make the error model in
(26) converge to 0, the varying parameter neuro-dynamics
optimization scheme is designed as,

dδ (t)

dt
= −β exp (t)φ (δ (t)) (27)

where β > 0 is the constant which can scale the convergence
rate. The activation function of (27) is defined as,

φ (δ (t)) =


δ−i , if δi (t) < δ−i
δi, if δ−i < δi (t) < δ+i
δ+i , if δi (t) > δ+i

(28)

where δ−i and δ+i are lower bound and upper bound of i-
the element. Then, substituting (26) into (27), the extend
expression of (27) can be rewritten as,

W (t) ż (t) = −Ẇ (t) z (t) + l̇ (t)

− β exp (t)φ (W (t) z (t)− l (t)) (29)

TABLE I
EXPERIMENTAL CONTROLLER PARAMETERS

Controller Controller parameters
KX = diag[3000, 3000, 3000]
DX = diag[30, 30, 30]

RNN KN = diag[800, 800, 800]
DN = diag[10, 10, 10], λ = 0.5
KN2 = [80, 120, 60, 30, 20, 10, 10]
KD2 = [6, 10, 5, 3, 2, 1, 1]
h0 = 0.01, h1 = 0.01, h2 = 1, h4 = 1
k1 = 5, β = 103

KX = diag[3000, 3000, 3000]
DX = diag[30, 30, 30]

VPRNN KN = diag[800, 800, 800]
DN = diag[10, 10, 10],
KN2 = [80, 120, 60, 30, 20, 10, 10]
KD2 = [6, 10, 5, 3, 2, 1, 1]
h0 = 0.1, h1 = 10, h2 = 50, h3 = 30
h4 = 30, k1 = 5, k2 = 5, β = 103

Fig. 2. Demonstration with Kuka Simulator.

IV. EXPERIMENTAL COMPARISON

To evaluate the proposed control scheme, Simulation and
experiments are carried out.The magnitude of the Cartesian
position error Eend, the RCM constraint error ‖Ercm‖ and
the manipulability index µ, defined in [7][21], are recorded
for analysis. The detailed parameters of the controller are
shown in Table I. For DCAC and MOC, the parameters can
be found in our previous works [12].

Firstly, as it is shown in Fig. 2, a simulation demonstra-
tion using the KUKA simulator is performed to check the
feasibility of the proposed methods. Here, the sinusoid task
is designed for testing.

To compare the performance of the proposed method
with related works, and experimental comparisons, includ-
ing RNN, Nullspace methods are performed n the same
trajectory for comparison. The detailed configuration and
development of the system can be found in our previous
works [21].

The operative procedure is organized as follows:
1) User 1 uses hands-on control to move the robot and

pass through the RCM constraint;
2) Then, the robot autonomously tracks the set trajectory
Xd to perform the surgical task, and User 2 is in
charge of urgency issues in front of the visual interface.
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Fig. 3. Experimental setup scene: 1) hands-on control to move the robot
manipulator to pass through the RCM constraint (small incision on the
patient’s body); 2) autonomous tracking is activated to run the application.

Fig. 4. Comparison results: Trajectory tracking.

Fig. 4 shows the comparison of online performance during
the tracking task. Fig. 5 and Fig. 6 show the comparison
results of tracking error and RCM error, respectively. Fig. 7
show the comparison results of the manipulability index.
Fig. 8 show the joint angles solution with VPRNN methods.
From Fig. 5, it can be seen that all the errors of the end-
effector are constrained in an acceptable error range within
5mm. From Fig. 6, it can be seen that the RCM error is also
in an acceptable error range within 15mm.

Obviously, the proposed VPRNN-based method has an
overall promising performance, including end-effector error,
RCM error, manipulability index. In addition, the RNN
method in [11] shows a better performance than the null
space of end-effector error, RCM error, manipulability index.
Therefore, we can conclude that VPRNN has the best ability
to guarantee task tracking, RCM constraint, manipulability,
and has the fastest convergence rate.

V. DISCUSSION AND CONCLUSION

This paper addresses varying parameters recurrent neural
network (VPRNN) based on hierarchical control of a 7-DoF
robot manipulator for Robot-Assisted Minimally Invasive
Surgery to achieve task tracking, Remote Center of Motion
(RCM) and manipulability optimization at the same time.
In order to efficiently accomplish the Cartesian compliance
control RCM constraint, surgical task, and manipulability
optimization, a hierarchical operational space formulation is

Fig. 5. Comparison results: End-effector error Eend.

Fig. 6. Comparison results: RCM error ‖Ercm‖.

Fig. 7. Comparison results: Manipulability index µ.

Fig. 8. Joint angles solution using VPRNN.
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investigated. The new optimization problem is the real-time
resolution for given tasks and has an excellent convergence
performance even in the random initial position. Finally,
in order to evaluate the accuracy of the proposed scheme,
experimental evaluation has been discussed on virtual sur-
gical tasks. Several remarks connected to [12] here detailed
explaining that the recommended control scheme not only
ensures the RCM constraint facing the auto-tracking phase
but also develops the robot manipulability.

VI. APPENDIX

A. Convergence Analysis

Theorem 1: Considering the optimization problem in (22),
if there exist the optimal solution z∗ when the activation
function in 28) is mapped to error model of varying pa-
rameter neural network, the decision variable z is defined
as: z = [q̇,ψ,λ1,λ2,λ3]

T (z ∈ Rm+2n2+2n) globally
converges to the optimal solution z∗ = [q̇∗,ψ∗,λ∗1,λ

∗
2,λ
∗
3]

T

(z ∈ Rm+2n2+2n) from any initial point.
Proof: The candidate Lyapunov function is defined as,

V (t) =
1

2
δT δ (30)

The time derivative of V (t) is expressed as,

V̇ (t) =
dV (t)

dt
= δT (t) δ̇ (t) (31)

Substituting (28) into (31),

V̇ (t) = −β exp (t) δT (t)φ (δ (t))

= −β exp (t)

N∑
i=1

δi (t)φ (δi (t)) (32)

As mentioned in (28), the function φ (δ (t)) is the monotone
nondecreasing, thus we have,

δi (t)φ (δi(t)) =

{
> 0, if δi(t) 6= 0
= 0, if δi(t) = 0

(33)

Finally, the time derivative V (t) is obtained as,

V̇ (t) =

{
< 0, if δi(t) 6= 0
= 0, if δi(t) = 0

(34)

From the (34), it can conclude that if and only if δi(t) = 0,
V̇ = 0; otherwise V̇ < 0. The proof is finished.
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