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Abstract— Visually poor scenarios are one of the main
sources of failure in visual localization systems in outdoor
environments. To address this challenge, we present MOZARD,
a multi-modal localization system for urban outdoor environ-
ments using vision and LiDAR. By extending our preexisting
key-point based visual multi-session local localization approach
with the use of semantic data, an improved localization recall
can be achieved across vastly different appearance conditions.
In particular we focus on the use of curbstone information
because of their broad distribution and reliability within urban
environments. We present thorough experimental evaluations
on several driving kilometers in challenging urban outdoor en-
vironments, analyze the recall and accuracy of our localization
system and demonstrate in a case study possible failure cases
of each subsystem. We demonstrate that MOZARD is able
to bridge scenarios where our previous work VIZARD fails,
hence yielding an increased recall performance, while a similar
localization accuracy of 0.2m is achieved.

I. INTRODUCTION

Due to increasing traffic in urban environments and chang-
ing customer demands, self-driving vehicles are one of the
most discussed and promising technologies in the car and
robotics industry. Still no system was presented yet, that
allows to localize robustly under all light, weather and
environmental conditions. However, precise localization is
a vital feature for each autonomous driving task, since a
wrong pose estimate may lead to accidents. Especially in
urban environments, safety margins on the position of the car
are small due to crowded traffic and other traffic participants
(e.g. pedestrians, cyclists). Because of multi-path effects or
satellite blockage, GPS sensors cannot be used reliably under
those urban conditions. Thus, other sensors have to be used
for localization. For this purpose, mainly LiDARs and cam-
eras have been used in the last years. Appearance changes in
urban environments challenge visual localization approaches.
However, such driving scenarios contain persistent structures
even under those appearance changes. Curbstones are one
such feature. Curbstones are used to protect pedestrians from
cars and to separate the sidewalk from the street. As they
delimit the street, they also offer information of the area
where the car is allowed to be placed in. Detection of their
position relative to the car can thus allow to localize inside
the lane. In contrast to other geometrical shapes such as poles
and road markings, curbstone measurements are found more
frequently in urban environments and yield a reliable, contin-
uous lateral constraint for pose refinement. Due to their shape
and their contrasting color with respect to the pavement in

Fig. 1. We aim at accurately localizing the UP-Drive vehicle in a
map of features extracted from vision and LiDAR data depicted on the
right side. Our proposed algorithm can be separated into two distinct
steps. We extract keypoint-based features from camera and additional 3D
geometrical curbstone information from a semantic vision-LiDAR pipeline.
The features extracted from images of the surround-view camera system
(top-left corner) are matched against 3D landmarks in the map while
our raw curbstone measurements (bottom-left corner) are matched to their
corresponding landmarks. Inlier matches, centered on the estimated 6DoF
pose of the vehicle in the map, are illustrated as dark yellow lines on the
right side. Purple indicates our pre-generated curbstone map data represented
by splines. During runtime we downsample the nearest splines spatially to
match with the current raw curbstone measurements indicated by the red
and green color.

many cases, they can be detected both in camera images
as well as in LiDAR pointclouds. Therefore, our pipeline
named MOZARD extends our previous visual localization
system - VIZARD [1] with the use of additional geometrical
features from LiDAR data, for the self-driving cars used
in the UP-Drive project1. In a thorough evaluation of our
proposed localization system using our long-term outdoor
dataset collection, we investigate key performance metrics
such as localization accuracy and recall and demonstrate in
a case study possible failure scenarios.

We see the following aspects as the main contributions of
this paper:

‚ A semantic extension of our key-point-based localiza-
tion pipeline based upon the extraction of curbstone
information is presented, that allows to bridge sparse
key-point based feature scenarios in visual localization.

‚ In a thorough evaluation on the long-term dataset col-
lection UP-Drive, we demonstrate a reliable localization

1The UP-Drive project is a research endeavor funded by the European
Commission, aiming at advancing research and development towards fully
autonomous cars in urban environment. See www.up-drive.eu.
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performance across different appearance conditions in
urban outdoor environments. We compare our results to
our vision-based localization pipeline and demonstrate
significant performance increases.

‚ A computational performance analysis showing that our
proposed algorithm exhibits real-time capabilities and
better scalability.

II. RELATED WORK

Since our localization system is a multi-modal semantic
extension of our previous work we will concentrate the
related work on frameworks that exploit semantic features
using either one modality or fusing multiple modalities in
different ways. Therefore these works can be subdivided into
each of their specific sensor setup. For general related work
on our prior visual key-point based system we refer to our
previous work [1].

Vision-only: A recent example of using semantic features
for the purpose of localization and mapping is Lu et al. [2]
using a monocular camera for road-mark detection whereas
other studies use traffic signs [3], line segments from multi-
view cameras [4] or poles [5] [6] for feature matching.
On the detection of curbstones, traditional image based
curbstone detection mostly uses the vanishing point and color
distribution to detect the corresponding pixels [7], [8]. Recent
work such from Enzweiler et al. [9] and Panev et al. [10]
also demonstrate a learning based approach to detect curbs
in images. In contrast to the vision based approaches, we
concentrate on the multi-modal aspect as provided by Goga
et al. [11].

LiDAR-only: LiDAR based methods use assumptions
about the shape of the semantic features like curbs, poles and
planes by evaluating the difference in elevation [12], [13],
slope [12] or curvature [14], [15]. Authors such as Schaefer
et al. [16] detect and extract 3D poles from the scenery which
are then being used for map tracking. In regards to the usage
of curbstones, most applications use geographical map data
[17], [18] or road networks [19] as a reference to localize
with detected curbstones. Unlike these works, our approach
does not rely on external pre-generated data for curbstone
map construction.

Vision and LiDAR: Recent work such from Kampker et
al. [20] use a camera to extract pole like landmarks and a
LIDAR for cylinder shapes for the task of self-localization.
Kummerle et al. [21] demonstrate that basic geometric prim-
itives can be extracted using vision and LiDAR to obtain
road markings, poles and facades which can then be used for
localization and mapping for the purpose of self-localization
on various weather conditions. While these approaches use
both modalities for mapping and localization separately, there
has been recent research into cross-modality. Xiao et al.
[22] uses a LiDAR to build an HD map and extract 3D
semantic features from the map. Then a monocular camera
is used with a deep learning based approach to match these
semantic features with the ones from the camera. In contrast
to the graph-based SLAM formulation used in our approach,
the mentioned approaches are filter-based, with Extended

Fig. 2. The key-point based map-tracking module extracts 2D features
from current camera images, and matches them with 3D map landmarks
locally in image space using a pose prior T̂ t

MB while our semantic
map-tracking module matches point-cloud based curbstone measurements
between our map and immediate input. The state estimation module fuses
the visual 2D-3D and geometrical 3D-3D matches with the current wheel-
odometry measurement to obtain a current vehicle pose estimate T t

MB .

Kalman Filters [23] or Monte Carlo Localization [18], [20],
and they are evaluated at low speed and/or on short maps
of a few hundred meters [22]. In addition they do not use
raw curbstone measurements as a feature for localization and
mapping [16]–[18], [21], [22]. Our work is evaluated on a
long-term map with a length of over 5km using urban driving
speed of around 50km{h.

III. METHODOLOGY

A schematic overview of MOZARD can be found in
Figure 2. Since our work extends the VIZARD framework,
we refer to the general methodology from Buerki et al.
[1]. We assume that our visual localization pipeline already
created a map by tracking and triangulating local 2D features
extracted along a trajectory.

A. Curbstone Detection

For our curbstone detection we employ the work from
Goga et al. [11]. Goga et al., fuse a vision-based segmenta-
tion CNN with LiDAR data. In a post-processing step they
extract, refine and filter semantic curb ROIs to obtain new
curb measurements. In the following we use their curbstone
detection as input into our pipeline.

B. Map Extension

The curbstones are added to a map that was built using the
VIZARD pipeline [1]. This map is called the base map in
the following. Curbstone points detected in a specific LiDAR
pointcloud frame will be called curbstone observation. The
detection pipeline finds curbstone pointclouds in the vehicle
frame FB . We find the closest vertex in time within the
base map and allocate the curbstone pointcloud. This is
performed for all curbstone detections along the trajectory.
From the base map, the respective transformations from the
map coordinate frame FM to the body frame at time t can
be looked up. Using T t

MB at each vertex in the base map
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Fig. 3. For our curbstone parameterization pipeline we first obtain raw
curbstone measurements. After a voxelization processing step, we cluster the
curbstones into segments. Finally, a cubic b-spline is fitted to each segment.
In case the fitting algorithm fails, we store the raw points.

that contains a curbstone observation, a curbstone map in
FM can then be created.

C. Curbstone Map-Tracking

The curbstone tracking module is the core component of
the curbstone localization pipeline. It performs an alignment
between the map curbstones and the input curbstones to
estimate the vehicle pose. A sanity check is performed to
detect wrong alignments. If it is fulfilled, a pose constraint is
added to the graph. The integration into the VIZARD system
is shown in Figure 2. The single steps are explained in detail
in the following section.

1) Reference Curbstone Retrieval: To retrieve the map
curbstones, a prior estimate T̂ t

MB is used. In a fixed radius
rlookup around the estimated position P̂ t, we then search
for the closest vertex in Euclidean distance in the base map
that contains curbstones. Furthermore, a criterion on the
maximum yaw angle between the prior pose estimate and the
base map vertex pose is used to prevent wrong associations.

2) Pointcloud Registration: Given the map and input
curbstones a pointcloud registration is performed. As the
registration algorithm NDT (Normal Distribution Transform)
[24] is used from the implementation of the Point Cloud
Library [25]. Additionally, outlier points are removed using a
fixed ratio since some artifacts might only be included in one
of both pointclouds, due to occlusion or unsimilar detection.
The pointcloud registration estimates a transformation Talign
that aligns the input cloud to the map cloud.

3) Sanity Check: In some regions, the input or map
pointcloud can consist of very few points. Matching in those
scenarios can be ambiguous and lead to wrong associations.
Thus, matching is only performed if both pointclouds exceed
a minimum amount of points. Since urban street scenarios
change frequently, e.g due to constructions or parked cars,
the input and map pointcloud can diverge heavily. In those
cases, pointcloud registration might fail, ending up in wrong
alignments and thereby wrong pose estimates. Therefore,
a sanity check has to be performed, to detect wrong pose
estimates. To do so, a matching score can be calculated, that

can be used as an indicator if the alignment was successful.
Magnusson et al. [24] proposed a matching score for NDT.
It corresponds to the likelihood that the aligned input points
lie on the reference scan. A more detailed explanation can be
found in his work [24]. The alignment is considered valid,
if the mean likelihood over all input points is higher than a
threshold Pmin.

4) Pose Constraint: The new pose estimate is calculated
as:

T t
MBestimate

“ T̂ t
MB ˚ Talign

If the sanity check is successful, the pose constraint is
added to the pose graph using a fixed covariance. For our
experiments, the covariance was determined empirically.

D. Curbstone Parameterization

Since curbstone maps can scale quickly given the multi-
tude of possibly redundant observations, a memory overhead
is induced. To reduce this memory footprint, we perform a
curbstone parameterization. Since the map contains several
artifacts like intersections or roundabouts, a curve param-
eterization was preferred over a polyline. Curbstones are
not continuous throughout the whole map, as they often
end at intersections. Thus, it naturally makes sense to split
the map into single connected regions. In a first step, the
raw curbstone pointcloud is subsampled. A clustering is
then performed on the subsampled points, to find connected
segments of a maximum length. The length-to-width ratio
of each segment is then calculated. If a certain threshold is
fulfilled, a Cubic B-Spline is fitted to the segment. By doing
so, only the control points of the spline have to be saved,
instead of all raw curbstone points. If the threshold is not
fulfilled, the raw points are saved. The steps are explained
in detail in the following and shown in Figure 3.

1) Subsampling: The high point density of the raw point-
cloud can result in high runtimes of the clustering as well
as in overfitting of the spline to noise in the points. Thus,
a spatial subsampling using a voxel grid with a leaf size of
30cm is performed. A pointcloud of the means of the points
inside each voxel is then used for clustering.

2) Clustering: The clustering is performed in a two-step
fashion. First, a Euclidean clustering using a tolerance of
more than 2m is performed to find large segments. Since
the curvature can vary along long segments, fitting a single
spline to it can be problematic, as different levels of detail
are needed along the segment. An example is a curb going
around a corner: While low curvature is desired in the
straight sections, high curvature is needed in the area of the
corner to properly describe the curb. Thus, the coarse cluster
is split into smaller sub-clusters with a maximum expansion
of 20m before validating each sub-cluster by using an SVD
Decomposition.

3) Cubic B-Spline Fitting: Spline fitting usually refers to
fitting a spline that goes through each single input point.
However, due to the noisy nature of the curbstone segment,
a best fit given a fixed amount of control points is preferred
in this case instead of fitting every single point. To achieve



this, the approach proposed by Wang et al. [26] to fit an
open cubic B-Spline is used. The number of control points
is calculated proportionally to the approximate length of the
segment, using 0.25 points{m, but a minimum of 4. For
segments with a large width (indicating an intersection, road
curve or round-about) a fixed amount of 20 points is used
to allow for a proper representation. To validate our fitted
spline, we define our goodness score GS as follows:

GS “
#Spline Inliers

#Spline Points
˚
#Point Inliers

#Points

whereas SplineInliers is the number of sampled spline
point close to a raw point and PointInliers the number
of raw points close to points sampled from a spline. Naively
using all sub-segment points for the spline fitting can lead
to an overfitting of the curve. Thus, the best set of points is
found in a RANSAC-like manner. In each iteration, one third
of the sub-segment points is sampled randomly. The spline
is then fitted to the sampled points. Eventually, the spline
with the highest score is chosen.

4) Spline Sampling: To be able to perform matching with
the input cloud, points are spatially uniformly sampled from
the splines during runtime. Those sampled points are then
used as the map pointcloud.

IV. EVALUATION

In the following section, the performance of the proposed
pipeline is evaluated and compared against the VIZARD
pipeline as a benchmark. Long-term experiments in an urban
scenario are performed on varying weather and appearance
conditions. A special focus is set on how curbstone map
tracking influences localization accuracy and recall. Example
cases are presented, where localization gaps in the VIZARD
pipeline could be bridged using curbstone localization. The
sensor set-up of the UP-Drive vehicle and the datasets used
in the experiments are described in the next section.

A. The UP-Drive Platform

For the collection of the datasets, the UP-Drive vehicle
was used. Its sensor setup consists of four fish-eye cameras,
resulting in a surround view of the car. Gray-scale images
with a resolution of 640x400px are recorded at 30Hz.
Five Velodyne LiDARs are mounted on top of the car.
Curbstones are obtained from the approach as described by
Goga et al. [11]. Additionally, a low-cost IMU and wheel
tick encoders are used to provide odometry measurements. A
consumer-grade GPS sensor is used to gain an initial position
estimate and near-by map poses are used to generate an initial
orientation estimate.

B. UP-Drive Dataset Collection

The UP-Drive dataset collection was recorded between
December 2017 and November 2019 in Wolfsburg, Germany,
at the Volkswagen factory and its surrounding area and
aggregate a total driving distance of multiple 100 kilometers.
The environment is urban, with common artifacts such as
busy streets, buses, zebra crossings and pedestrians. Since the
data was collected over several months, seasonal appearance

changes as well as multiple weather and day-time conditions
are present. For this work, our dataset selection is dependent
on the availability of curbstone measurements, which result
from the curbstone detection pipeline from Goga et al. [11].
Since the curbstone detection module was only enabled
in some of our datasets, our evaluation dataset collection
consists of 5 sessions which totals to 10 drives from August
2019 to November 2019. Each session contains two partially
overlapping routes in opposite directions and consists of the
same amount of sunny and cloudy/rainy conditions captured
throughout a day. Recordings in rainy conditions are catego-
rized as Cloudy, since there is little difference in performance
on rainy datasets as opposed to in dry conditions.

C. Metrics

1) Localization Recall: The fraction of the total travelled
distance in which a successful localization was achieved is
calculated as the localization recall r[%]. While using only
the visual pipeline, a localization attempt at time t is accepted
as successful if a minimum of 10 inlier landmark obser-
vations is present after pose optimization. When using the
combined pipeline, a localization is counted as successful,
if the condition above is fulfilled or if a viable curbstone
alignment (see section III-C) could be performed.

2) Localization Accuracy: As no ground-truth for the
described dataset exists, the poses estimated by an RTK GPS
sensor are used instead as a reference. RTK GPS altitude
estimates are not reliable, thus the error in z can not be
calculated reliably. Therefore, we focus on the planar pe

xy

and lateral translation error pe
y as well as on the orientation

error θexyz.

D. Localization Accuracy and Recall

In order to fully rely on MOZARD to control the car
in the UP-Drive project, a high localization recall with an
accuracy below 0.5m is paramount, as only short driving
segments with no localization may be bridged with wheel-
odometry before the car may deviate from its designated
lane. Curbstones are not available for the whole trajectory,
but for around 89% of the distance of the map. We compare
localization recall and accuracy of our localization system to
our prior work on visual localization - VIZARD [1]. Note,
however, that our prior work relied on the use of cameras for
localization, as in contrast to the former, the latter is now able
to use LiDAR and vision. To demonstrate that curbstones
provide useful additional information, we construct and
expand a map iteratively using multiple datasets. Our first
map is constructed from two datasets (one session) from
August 2019. We then evaluate this map against multiple
sessions from different months and add these sessions to our
(multi-session) map in a iterative fashion. We present the
resulting key evaluation metrics (localization recall rmt[%]
and localization accuracy) in Table I over all sessions. By
including this comparison, we aim at highlighting the gain
in localization recall attainable by using MOZARD while
keeping a consistent median translation and orientation error.
As shown in Table I, MOZARD is able to attain close to a



rmt[%] p̄e
xy , p̄e

y θ̄exyz

10-08 10-25 11-08 11-20 10-08 10-25 11-08 11-20 10-08 10-25 11-08 11-20

MOZARD - Map

p08-21q 100.0 99.94 99.06 99.82 0.08 [0.34],0.04 [0.21] 0.07 [0.26], 0.03 [0.13] 0.09 [0.37], 0.04 [0.2] 0.13 [0.37], 0.05 [0.2] 0.64 [0.75] 0.74 [0.76] 1.04 [1.33] 1.09 [1.4]
p08-21; 10-08q - 100.0 100.0 100.0 - 0.06 [0.15], 0.03 [0.08] 0.07 [0.24], 0.03 [0.13] 0.1 [0.29], 0.04 [0.14] - 0.66 [0.65] 1.15 [1.4] 1.2 [1.4]

p08-21; 10-08; 10-25q - - 100.0 100.0 - - 0.07 [0.22], 0.03[0.11] 0.09 [0.27], 0.03 [0.12] - - 1.21 [1.43] 1.23 [1.42]
p08-21; 10-08; 10-25; 11-08q - - - 100.0 - - - 0.07 [0.18], 0.02 [0.1] - - - 1.13 [1.38]

V IZARD - Map

p08-21q 100.0 98.2 97.94 91.76 0.08 [0.28], 0.04 [0.16] 0.07 [0.26], 0.03 [0.13] 0.09 [0.29], 0.04 [0.17] 0.13 [0.37], 0.05 [0.21] 0.64 [0.76] 0.74 [0.76] 1.1 [0.16] 1.07 [1.28]
p08-21; 10-08q - 100.0 99.9 97.89 - 0.06 [0.13], 0.02 [0.07] 0.07 [0.24], 0.03 [0.13] 0.1 [0.29], 0.04 [0.14] - 0.55 [0.67] 1.15 [1.4] 1.19 [1.37]

p08-21; 10-08; 10-25q - - 100.0 99.18 - - 0.07 [0.22], 0.03 [0.11] 0.09 [0.25], 0.03 [0.13] - - 1.21 [1.43] 1.23 [1.41]
p08-21; 10-08; 10-25; 11-08q - - - 99.7 - - - 0.07 [0.18], 0.02 [0.1] - - - 1.13 [1.38]

TABLE I
THE LOCALIZATION PERFORMANCE ON THE UP-Drive DATASET, SHOWING LOCALIZATION RECALL, AND THE MEDIAN PLANAR p̄e

xy , LATERAL p̄e
y

AND ORIENTATION (θ̄exyz) ACCURACY. THE 90 PERCENTILE IS SHOWN IN SQUARE BRACKETS. NUMBERING IN ROUND BRACKETS DEFINES THE

TIMESTAMP OF THE SESSIONS USED FOR MAPPING. E.G. (08-21) REPRESENTS AUGUST, 21TH.

100% recall performance on all 4 sessions on the UP-Drive
dataset, while VIZARD performance increase correlates with
the addition of sessions to its base map due to the change
in visual appearance. We further note that in both cases
the planar median localization accuracy are below 15cm,
while the median lateral error is below 10cm. The median
orientation errors are on average less than 1 degree. For
MOZARD the 90th percentile shows an increase which is
likely to be due to the higher uncertainty in precision of
curbstone measurements.

E. Runtime

On our live car platform Goga et al. [11] demonstrated that
their curbstone detection pipeline deployed on 2 Nvidia GTX
1080 takes around 20ms for the CNN image segmentation to
complete on all 4 cameras. An additional 32ms are needed
for the fusion of 5 LiDARs to run on an Intel i7-3770K
CPU. Our curbstone alignment module takes an average of
approximately 25ms, while the map tracking module (with
vision) can take from 27ms with a single session map up
to 48ms on our largest multi-session map (see Table I) and
has been evaluated on an Intel Xeon E3-1505M CPU. This
would allow MOZARD to run with around 10Hz on a single
machine on a single session map. Table II summarizes our
findings.

Module Average Runtime [ms]
Curbstone Detection 52
Curbstone Tracking 25

Map Tracking (VIZARD) 27-48
Total 104-125

TABLE II
RUNTIME OF EACH COMPONENT OF MOZARD . CURBSTONE

DETECTION AND CURBSTONE TRACKING WITH AVERAGE RUNTIME

OVER ALL EVALUATED DATASETS ON A SINGLE SESSION MAP, WHILE

MAP TRACKING SHOWS AVERAGE RUNTIME FOR RUNNING ON A SINGLE

SESSION MAP AND ON THE LARGEST MULTI-SESSION MAP.

F. Case Study

We provide further insights into our pipeline by show-
ing specific failure examples for each component. Sample

Fig. 4. On the left, a sample image of a trajectory segment that fails
to localize due to occlusion. A lack of keypoints renders it unfeasible to
match a sufficient number of map landmarks. On the middle, the projected
curbstone information is depicted in the camera frame in red - enabling
a continued localization although visual localization failed. On the right,
a sample image is depicted where our curbstone and vision pipeline fail.
In this case curbstones are actually detected but alignment fails due to our
constraints.

images of a section where the visual localization fails on
the evaluated datasets are depicted in Figure 4. Due to
occlusion and the absence of surrounding building structures,
barely any stable visual cues are found in this section,
preventing the visual localization system from matching a
sufficient amount of landmarks from the map. This example
demonstrates the current limitations of VIZARD, while our
MOZARD pipeline is able to handle these sparse keypoint-
based scenarios. Unfortunately there are also scenarios where
a lack of keypoints and curbstones exists or our curbstone
alignment fails - hence conditions where both pipeline are
likely to fail as depicted in the right image of Figure 4. A
further extension of our current framework to other geometric
shapes such as poles, road markings could provide additional
useful information that would allow us to further increase our
localization performance. Note that we used a single session
map for the evaluation of this case study and VIZARD is
able to bridge some of these scenarios if enough datasets are
provided during the mapping process.

V. CONCLUSIONS

We presented MOZARD, a geometric extension to our
visual localization system for urban outdoor environments.
Through our evaluation on 8 datasets, including several
kilometers of real-world driving conditions, we demonstrated
the benefits of using curbstone information for localization
and mapping. Our datasets used in the experiments contain
challenging appearance conditions such as seasonal changes,
wet road surfaces and sun reflections. A comparison with
our prior work demonstrated that we can achieve a higher



recall performance while using less datasets during the
mapping process, as the pipeline would fail due to sparse
keypoint scenarios. Our run-time analysis shows that our
approach demonstrates real time capabilities. Although the
curbstone detection stack of MOZARD takes in average more
computing time than VIZARD, it is to note that an object
segmentation/detection algorithm on a self-driving car has
to be deployed for environmental perception independent
of whether a localization takes place or not. Even taking
in account the total computational time, our approach still
runs at 10Hz while needing up to four times less data
while achieving the same localization performance. We also
showed specific cases where both of our pipelines would
fail due to occlusions and/or curbstone misalignment giving
suggestions for future work such as the extension of our
approach to poles and road markings. Our findings showed
that by extending a keypoint based visual localization ap-
proach with geometric features - curbstones in our case, an
improvement in robustness with consistent high accuracy in
localization is obtained.
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