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Abstract— Accurate volume segmentation from the Com-
puted Tomography (CT) scan is a common prerequisite for pre-
operative planning, intra-operative guidance and quantitative
assessment of therapeutic outcomes in robot-assisted Mini-
mally Invasive Surgery (MIS). 3D Deep Convolutional Neural
Network (DCNN) is a viable solution for this task, but is
memory intensive. Small isotropic patches are cropped from
the original and large CT volume to mitigate this issue in
practice, but it may cause discontinuities between the adjacent
patches and severe class-imbalances within individual sub-
volumes. This paper presents a new 3D DCNN framework,
namely Z-Net, to tackle the discontinuity and class-imbalance
issue by preserving a full field-of-view of the objects in the
XY planes using anisotropic spatial separable convolutions. The
proposed Z-Net can be seamlessly integrated into existing 3D
DCNNs with isotropic convolutions such as 3D U-Net and V-Net,
with improved volume segmentation Intersection over Union
(IoU) - up to 12.6%. Detailed validation of Z-Net is provided
for CT aortic, liver and lung segmentation, demonstrating the
effectiveness and practical value of Z-Net for intra-operative
3D navigation in robot-assisted MIS.

I. INTRODUCTION

Medical volume segmentation, which labels the class of
each voxel in a 3D volume, including the anatomy, prosthesis
and lesion, is an important task in medical image anal-
ysis. Common 3D medical volume acquisition techniques
include Computed Tomography (CT), Magnetic Resonance
Imaging (MRI), 3D ultrasound and so on. MRI can achieve
good image quality without radiation, but at the cost of
longer imaging time. 3D ultrasound can achieve real-time
3D imaging, but with less-than-optimal image quality. CT
is able to retrieve detailed and high-resolution volumetric
representations of human structures and records them as
voxel values, at the cost of radiation. It is widely used for
pre-operative diagnosis, intra-operative navigation and post-
operative assessment. In this paper, we mainly focus on
medical CT volume segmentation. An illustration of a 3D
CT volume and the definition of the three dimensions used
in this paper is shown in Fig. 1(a).

Traditionally, in open surgeries operated through a large
incision larger than 10cm, CT volume segmentation was
mostly used for pre-operative diagnosis and post-operative
assessment. For example, the liver and tumour were seg-
mented by Hybrid Densely Connected UNet (H-DenseUNet)
from CT volumes to diagnose the hepatocellular carcinoma
[1]. The abdominal aortic thrombus was segmented from
CT volumes to assess the Endovascular Aneurysm Repair
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Fig. 1. Illustrations of (a) CT volume data and the definition of X, Y
and Z axes; (b) Patch-128 which crops the original CT volume of size
512 × 512 × L to multiple small patches of size 128 × 128 × 64; (c)
comparison between image segmentation and volume segmentation.

(EVAR) operation outcomes for treating Abdominal Aortic
Aneurysm (AAA) [2].

Recently, due to the emerging of robot-assisted Minimally
Invasive Surgeries (MISs) where intelligent robotic surgical
tools are inserted through a small incision less than 2cm
[3], i.e. Laparo-Endo-Scopic Single-site (LESS) surgery, or a
natural orifice, i.e. Natural Orifice Transluminal Endoscopic
Surgery (NOTES) [4], CT volume segmentation of organs
and prostheses is becoming increasingly helpful in intra-
operative surgical robotic navigation. For example, the 3D
Right Ventricle (RV) mesh that is segmented from pre-
operative CT volume was an essential input for the map-
ping vertex determination and hence efficient robotic path
planning in robot-assisted Radio-frequency Cardiac Ablation
(RFCA) [5]. The 3D model of the aorta segmented from
the pre-operative CT volume was essential to instantiate a
safe robotic path for navigating Fenestrated Endovascular
Aneurysm Repair (FEVAR) [6]. The 3D liver segmentation
was used to instantiate the intra-operative and instantaneous
3D liver shapes for navigating robot-assisted liver surgeries
[7]. Apart from organ segmentation, prosthesis segmentation
is also very useful in robot-assisted MISs. For example,
the 3D stent graft and 3D marker shape segmented from
the pre-operative CT volume were used to instantiate the
intra-operative 3D shape of a fully-compressed [8], partially-
deployed [9] and fully-deployed [10] fenestrated stent graft,
improving the navigation for FEVAR from 2D to 3D.

Volume segmentation can be realized by either stacking
the results of multiple 2D image segmentation, which labels
the class that each pixel in a 2D image belongs to, or
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by direct volume segmentation, which considers the inter-
slice connection and information between voxels in 3D. An
illustration of the difference between image and volume
segmentation is shown in Fig. 1(c). Since the success of
AlexNet [11], Deep Convolutional Neural Network (DCNN)
has been widely used to replace traditional hand-crafted
feature extractors, i.e. edge detector with filters, as it can
achieve automatic feature extraction and pixel probability
regression with an end-to-end training manner. 3D DCNN
has also been a popular technique for direct 3D volume seg-
mentation. In image segmentation, all operations including
convolutional layers, max-pooling layers and transposed con-
volutional layers are in 2D, while in volume segmentation,
all these operations are in 3D.

For example, 3D U-Net was first proposed with a contract-
ing encoder part, an expanding decoder part and long skip
connections for kidney volume segmentation [12]. Similar to
3D U-Net architecture, V-Net was introduced with a larger
5 × 5 × 5 convolutional kernel and residual learning for
prostate volume segmentation [13]. 3D Deeply Supervised
Network (DSN) was proposed to demonstrate the effect of
both supervising the lower and upper DCNN layers for liver
and cardiac volume segmentation [14]. Multi-scale DCNN
and Conditional Random Field (CRF) were combined for
brain lesion volume segmentation [15]. Holistic Decomposi-
tion Convolution (HDC) was proposed to use a larger size
of input through decomposed convolutions, resulting in an
improved accuracy for medical volume segmentation [16].

In most previous works, features and convolutional kernels
in 3D DCNNs are usually symmetric in all dimensions,
where the calculation along the Z axis is similar to or the
same as that along the XY axes. Compared to 2D DCNN, this
additional calculation along the Z axis increases the memory
usage on the Graphics Processing Unit (GPU). Due to the
memory limitation of current GPU capacity, it is usually
impossible to hold an entire CT volume of a patient, typically
with a size of 512 × 512 × L, L > 400, as a training
volume input to a 3D DCNN. A popular solution is by patch
division, which refers to cropping the original medical CT
volume into small patches either randomly or selectively. For
example, 3D U-Net [12] cropped the original and large CT
volume into 132× 132× 116 patches as the network input.
V-Net [13] cropped with a size of 128 × 128 × 64. A size
of 160 × 160 × 72 was used in DSN [14] while sizes of
25×25×25 and 19×19×19 were used in multi-scale DCNN
[15]. An illustration of cropping the sub-volume patches from
the original CT volume is shown in Fig. 1(b). In addition to
solve the GPU memory limitation, patch division also helps
with the limitation of training data. Smaller patches allow the
augmentation of one training volume into multiple training
patches, current public dataset is usually of less than 100
training volumes and this number is insufficient for training
3D DCNNs. However, deficiencies exist for current patch
division methods with small and nearly-isotropic patch sizes:
1) class-imbalance: some patches might contain very few or
no foreground, while some others may have the entire sub-
volume as foreground; 2) limited field-of-view: each patch

can only perceive a small portion of the entire volume of
a patient, and thus is not able to extract a global context.
3) discontinuous segmentation results: the segmentation of
the entire CT volume is stacked together from the results of
sub-volume patches, which may introduce discontinuities at
the boundaries.

In this paper, in order to deal with the three deficiencies
in 3D DCNN with isotropic convolutions, we propose a
novel 3D DCNN framework - Z-Net, which processes the
features in the XY-plane and the features in the Z-plane
separately with anisotropic spatial separable convolutions.
The motivation of Z-Net is that inter-slice information is
helpful for 3D segmentation, but it may not need a large
amount of slices in the Z axis, i.e. 116 in 3D U-Net and
64 in V-Net. With an independent calculation along the Z
axis separated from the calculation along the XY axes using
isotropic spatial separable convolution, four advantages can
be introduced:

• A full field-of-view along the axial slices (XY-plane) is
maintained

• Segmentation results are continuous in the axial slices
(XY-plane)

• Less class-imbalance exists as the axial slices (XY-
plane) contain both the foreground and background

• Sufficient training data can be augmented as only 8
rather than L slices are needed in one patch

• Inter-slice information across up to 8 slices can be
extracted;

• Reduced trainable parameters, calculation amount and
training time

The spatial separable convolution technique is adopted in
Z-Net to divide a high dimensional kernel into several lower
dimensional kernels to reduce the amount of computation.
For example, a 3×3 kernel can be divided into a 3×1 kernel
and a 1× 3 kernel. Therefore, the number of multiplications
is reduced from 9 to 6. Early separable convolution can be
traced back to 2012 when Mamalet et al. proposed several
methods to simplify the filters in convolutional networks
[17]. Sironi et al. further analyzed the separable convolution
mathematically, and proposed to use tensor decomposition
to get a basis of separable filters for approximation of the
high-rank kernels [18]. It was demonstrated that the decom-
posed convolutions derived from low-rank approximation
can reduce the computational complexity without significant
changes in the accuracy. Peng et al. adopted the separable
convolutions in their network design for semantic segmen-
tation [19]. It argued that contrary to image classification
tasks where smaller kernels and deeper networks might be
ideal, segmentation accuracy may benefit from larger kernels.
A global convolutional network with massive convolutional
kernels was proposed, and spatial separable filters were used
to reduce the computational cost.

The proposed Z-Net is a framework that processes the
features in XY-planes and the features in Z-plane sepa-
rately. It can be seamlessly integrated to the current popular
medical volume segmentation DCNNs, i.e. 3D U-Net or V-



Net, resulting in ZU-Net and ZV-net respectively. The main
contributions of this paper are:
• A new 3D DCNN framework - Z-Net is proposed for

medical volume segmentation. It involves separating tra-
ditional 3D convolutional kernels into combinations of
2D and 1D convolutional kernels. It can be seamlessly
integrated to current and popular 3D DCNNs for CT
volume segmentation. In addition, the proposed Z-Net
decreases the trainable parameters and training time
significantly.

• Z-Net addresses the problems of the class-imbalance,
limited field-of-view and discontinuous segmentation
results in the existing 3D DCNN with isotropic shapes
of features and kernels.

• Aortic, liver and lung CT volumes are used as the
validation with detailed ablation analysis. The proposed
Z-Net can achieve an improvement in segmentation
accuracy of up to 12.6% compared to 3D U-Net, in
terms of the Intersection over Union (IoU).

The proposed Z-Net and experimental setup are introduced
in Sec. II. Detailed validations comparing the proposed Z-
Net to baselines, also segmentation examples and the training
loss curve are stated in Sec. III. Discussion and conclusion
are shown in Sec. IV and Sec. V respectively.

II. METHODOLOGY

A. Z-Net

Z-Net is a framework that can be seamlessly integrated
to existing 3D DCNNs with isotropic shapes of features and
kernels. In this paper, we will firstly introduce two typical
examples - 3D U-Net and V-Net, and then provide detailed
information about the proposed Z-Net framework.

1) Traditional 3D U-Net and V-Net: The input fea-
ture map for a 3D DCNN can be represented as F ∈
RN×H×W×D×Cin , where N is the batch size, H is the height,
W is the width, D is the depth and Cin is the number of
channels. Unlike natural RGB images with three channels,
CT scan is with a single channel, hence Cin = 1 when this
feature map represents the input patch.

3D convolution uses a trainable 3D convolutional kernel
T ∈ RHT×WT×DT which slides through the height, width
and depth of the input with a stride of S to calculate the
convolution. This operation can be represented as:

F̂ = φ(F ∗T+ b) (1)

where F̂ ∈ RN×H′×W′×D′×Cout represents the output feature
map, b is the bias, φ(·) represents the activation function to
add non-linearity to the networks, typically Sigmoid function
or Rectified Linear Unit (ReLU) function. Cout is the number
of output feature channels, H′ = H//S, W′ = W//S,
D′ = D//S where // represents the floor division. When
S = 1, the operation is equivalent to a normal convolution,
resulting in feature maps with the same dimensional size
of the input feature map, provided that a proper padding
method has been adopted. When S > 1, the convolutional
operation generates a down-sampled feature map. When S <

Fig. 2. The detailed network architecture of 3D U-Net

1, the convolutional operation generates an up-sampled fea-
ture map, which is named transposed convolution. Another
commonly used down-sampling operation is max-pooling,
where the maximum values within the HT×WT×DT region
are extracted to represent the area. After the convolutional
operation, F̂ is then passed into the normalization layer,
where the mean and variance are calculated as:

µn,c =
1

H×W ×D

H∑
h=1

D∑
d=1

W∑
w=1

f̂n,h,w,d,c (2)

δ2n,c =
1

H×W ×D

H∑
h=1

W∑
w=1

D∑
d=1

(f̂n,h,w,d,c − µn,c)
2 (3)

where f̂n,h,w,d,c represents each individual voxel value inside
the F̂. All data inside the feature map is normalized to a
mean of 0 and a variance of 1 to facilitate the training, then
is re-scaled by γn,c and re-translated by βn,c to maintain the
DCNN representation ability:

f̂ ′n,h,w,d,c =
f̂n,h,w,d,c − µn,c√

δ2n,c + ε
× γn,c + βn,c (4)

Most 3D DCNNs consist of several convolutional, max-
pooling, transposed convolutional, normalization and ReLU
layers. Typical examples are 3D U-Net [12] and V-Net [13].
In 3D U-Net, as illustrated in Fig. 2, the contracting encoder
part, which contains 3D convolutional layers and 3D max-
pooling layers, is used to down-sample the input patch to
feature maps in different resolutions, while the expanding
decoder part with 3D convolutional layers and 3D transposed
convolutional layers is used to recover the feature maps until
they reach the original resolution. Skip connections are used
to concatenate feature maps from the contracting path to
the expanding path to facilitate information propagation. All
convolutional layers are with a kernel size of 3 and max-
pooling layers are with a kernel size/stride of 2. Two 3D
convolutional layers are used before each 3D max-pooling
or 3D transposed convolutional layers.

The network architecture of V-Net, which is shown in
Fig. 3, is similar to 3D U-Net. Residual connections are
used to add feature maps from shallow layers to feature
maps from deep layers to facilitate the training, similar



Fig. 3. The detailed network architecture of V-Net

Fig. 4. In anisotropic spatial separable convolutions, a 3 × 3 × 3
convolutional filter can be decomposed into a 2D 3 × 3 × 1 filter and
a 1D 3× 3× 1 filter.

to residual learning [20]. Kernel size of 5 is used for all
convolutional layers. Convolutional layers with a stride of 2
and transposed convolutional layers are used as the down-
sampling and up-sampling layers respectively. The number of
convolutional layers before down-sampling and up-sampling
layers increases in the contracting path, but it decreases in
the expanding path.

2) Z-Net: The proposed Z-Net is a framework for de-
signing or modifying a 3D DCNN architecture for CT
volume segmentation, where traditional 3D convolutional
operations are decomposed into 2D convolutions along XY-
plane and a 1D convolution along Z axis. For example, a 3D
convolutional kernel of size 3× 3× 3 is separated into a 2D
convolutional kernel of size 3×3×1 and a 1D convolutional
kernel of size 1× 1×D, where D is the depth of the input
feature map. The kernel size of 1D convolutional kernel is
set to 1×1×D rather than 1×1×3 to fully extract the inter-
slice context among all slices without significantly increase
the computational cost. Such decomposition is illustrated in
Fig. 4.

The 2D convolution applies a trainable 2D convolutional
kernel T2 ∈ RHT×WT×1 that sums the multiplications along
the height, width, and depth of the input volume:

F̂ = φ(F ∗T2 + b) (5)

The 1D convolution uses a 1D convolutional kernel T1 ∈
R1×1×DT that moves along the height, width, and depth of
the input:

F̂ = φ(F ∗T1 + b) (6)

In Z-Net, except the down-sampling and up-sampling
layers, all 3D convolutional layers are replaced with spatial
separable convolutions. It is easy to integrate the proposed
Z-Net to traditional 3D DCNNs. In this paper, we take two
typical examples - 3D U-Net and V-Net architectures for
illustration. Two versions of the modified DCNN architec-
tures for each network are explored: 1) mode 1: replace all

Fig. 5. The detailed network architecture of ZU-Net v1 (top) and ZV-Net
v1 (bottom) under mode 1.

3D convolutional layers in 3D U-Net and V-Net with 2D
convolutional layers followed by 1D convolutional layers.
These changes are reflected by ZU-Net v1 and ZV-Net v1,
as shown in Fig. 5; 2) mode 2: replace all 3D convolutional
layers in 3D U-Net and V-Net with 2D convolutional layers,
and only add a single 1D convolutional layer before each
down-sampling or up-sampling layer, which means all in-
termediate 1D convolutions in ZU-Net v1 and ZV-Net v1
are removed. The network architectures, namely ZU-Net v2
and ZV-Net v2, are shown in Fig. 6. Given that Instance
Normalization (IN) outperforms other normalization methods
including Batch Normalization (BN), Layer Normalization
(LN), Group Normalization (GN) as proved in [21], 3D
IN was used in this paper for all DCNNs as the default
normalization method.

A typical volume size for CT scan is 512×512×L, where
L is the number of slices along the Z axis which is varied for
different subjects, typically larger than 400. In traditional 3D
DCNNs, Patch-128 and Patch-64 are common methods for
cropping the original CT volume, which represents the patch
size of 128× 128× 64 and 64× 64× 64 respectively. With
the proposed Z-Net, the original CT volume is cropped into
sub-volumes of size of 512 × 512 × 8 (named Patch-512),
and the stride between the successive crops is 1, which leads
to (L − 1) augmented training patches from each patient’s
CT volume.

Z-Net maintains a full field-of-view in the XY slices
while it becomes smaller along the Z axis to feed into a
single GPU. As sub-volume divisions will limit the effective
field-of-view for the network to perceive the entire volume
of a subject, it is of utter importance to keep the spatial
integrity of the features as much as possible. Cropping
may introduce discontinuities along edges and misalignment
between adjacent patches, and this is harmful for the dense
volume segmentation task. Therefore, Z-Net chooses to only
crop along the Z axis, instead of cropping along all three



Fig. 6. The detailed network architecture of ZU-Net v2 (top) and ZV-Net
v2 (bottom) under mode 2.

dimensions like Patch-64 and Patch-128 for traditional 3D
DCNNs.

Z-Net also helps mitigating the class-imbalance problems,
which is common in Patch-128 and Patch-64, especially
for segmentation of small organs. Take aortic CT data as
an example, in which only voxels around the center are
labelled as the foreground. Patch-64 and Patch-128 cropped
successively from the original volume will result in a large
portion of sub-volumes cropped from the border regions
having no foreground at all. If the patches are sampled
selectively, the model might produce more false positives
along the border regions. Z-Net ensures the presence of both
foreground and background in all sub-volumes.

B. Experimental Setup

1) Data collection: 20 aortic CT volumes from VIS-
CERAL dataset [22] are used in our experiment. All 20
volumes were randomly shuffled and divided into two groups
for 2-fold cross validation. Each group contains 10 volumes
for training, 2 volumes for evaluation and 8 volumes for
testing. For the evaluation of the proposed Z-Net, Patch-
512 of size 512 × 512 × 8 was sampled, with a stride of
1 along the Z axis for training and a stride of 8 for the
evaluation and testing. In order to compare with the baseline
models, including 3D U-Net and V-Net, Patch-128 of size
128 × 128 × 64 was generated, with strides of 128, 128,
8 along the X-, Y- and Z- axes for training and a stride of
128, 128, 64 for the evaluation and testing. In order to obtain
enough training samples, 90°, 180°and 270°rotations about
Z axis was applied for data augmentation. The maximum
intensity value of the CT volume for each patient was used
to normalize the CT volume intensity within [0, 1].

20 liver CT volumes from the SLiver07 [23] dataset were
also used for the validation. All pre-processing procedures

are the same as that for the VISCERAL dataset.
60 lung CT volumes from the Lung CT Segmentation

Challenge 2017 [24] were used for the validation as well.
We followed the instructions from the organizer and divided
the 60 CT volumes into 36 and 24 volumes for the training
and testing respectively. Hence 2-fold cross validation was
not used for this dataset. A single 180°rotation was used for
data augmentation. All other pre-processing procedures were
the same as that for the VISCERAL dataset.

2) Training configurations: For all the training processes,
Stochastic Gradient Descent (SGD) with a momentum of 0.9
was used as the default optimizer. The activation function
for all 3D DCNNs was set as ReLU for consistency, even
though originally Parametric ReLU was used in V-Net [13].
Weights were initialized with a truncated normal distribution,
and biases were initialized as 0.1. Four initial learning rates
(0.1, 0.05, 0.01, 0.005) were tested, and the one that achieved
the highest segmentation accuracy was selected as the final
result. The learning rate was dropped by half after the first
epoch, and was further divided by 10 if the training process
was longer than 4 epochs. 6 epochs were trained for the aortic
data, while 4 epochs were trained for the liver and lung data.
IoU, also known as the Jaccard Index, served as the metric
for evaluating the performance of the segmentation:

IoU =
|Y ∩ P |
|Y ∪ P |

(7)

where Y is the ground truth and P is the binarized prediction
result. Foreground IoU was used to evaluate the segmentation
accuracy. The prediction from the network was encoded in
the one-hot fashion and cross-entropy loss was used, which
can be calculated as:

ξ(y, p) = −(y log(p) + (1− y) log(1− p)) (8)

for binary-classification tasks, where y is the ground truth
value and p is the prediction value for the segmentation given
by the softmax function. All networks were trained using a
CPU of Intel Xeon® E5-1650 v4@3.60GHz×12 and a GPU
of Nvidia Titan Xp. The implementations of all the networks
were based on TensorFlow.

III. RESULT

In order to compare the proposed Z-Net framework with
traditional 3D DCNNs, the vanilla version of 3D U-Net and
V-Net were trained using the training data generated with
Patch-128 data generation, which served as the baseline.
Patch-64 was not compared in our experiment due to the
convergence difficulty with the aortic dataset, which was as
expected. Even multiple pre-processing methods have been
used to optimize the data, a heavy class-imbalance was
still presented using Patch-64 data generation. The failure
of training 3D DCNNs on Patch-64 data also supports our
statement of the three deficiencies in Sec. I, which is also
the motivation for proposing Z-Net. ZU-Net v1, ZV-Net v1,
ZU-Net v2 and ZV-Net v2 were trained on the training data
generated with Patch-512 data generation. Detailed results
are stated in Sec. III-A.



TABLE I
THE IOU RESULTS FOR 3D U-NET (VANILLA) AND V-NET (VANILLA) ON THE TRAINING DATA GENERATED BY PATCH-128 DATA GENERATION,

COMPARED WITH THE RESULTS FOR ZU-NET V1, ZU-NET V2, ZV-NET V1, ZV-NET V2 ON THE TRAINING DATA GENERATED BY PATCH-512 DATA

GENERATION. THE HIGHEST VALUES ARE HIGHLIGHTED IN BOLD. THE ACCURACY IMPROVEMENT IS CALCULATED IN (+ )

DCNN Patch Dataset Aorta Liver Lung
Cross Validation Fold 1 Fold 2 Fold 1 Fold 2 -

U-Net
Patch-128 3D U-Net (Vanilla) 0.514 0.583 0.752 0.598 0.865

Patch-512 ZU-Net v1 0.630(+0.116) 0.652(+0.069) 0.791(+0.039) 0.630(+0.032) 0.868(+0.003)
ZU-Net v2 0.640(+0.126) 0.655(+0.072) 0.783(+0.031) 0.652(+0.054) 0.869(+0.004)

V-Net
Patch-128 V-Net (Vanilla) 0.555 0.584 0.790 0.728 0.871

Patch-512 ZV-Net v1 0.674(+0.119) 0.650(+0.066) 0.852(+0.062) 0.756(+0.028) 0.877(+0.006)
ZV-Net v2 0.674(+0.119) 0.660(+0.076) 0.851(+0.061) 0.770(+0.042) 0.876(+0.005)

TABLE II
COMPARISON BETWEEN THE 3D U-NET (VANILLA), V-NET (THREE DOWN-SAMPLING LAYERS), ZU-NET V1, ZV-NET V1, ZU-NET V2 AND ZV-NET

V2 ON THE AORTA, LIVER AND LUNG TRAINING DATA GENERATED BY PATCH-512 METHOD. THE HIGHEST VALUES ARE HIGHLIGHTED IN BOLD.

Dataset Aorta Liver Lung Parameters Training Time
(per 100 iterations)Cross Validation Fold 1 Fold 2 Fold 1 Fold 2 -

3D U-Net (Vanilla) 0.616 0.614 0.764 0.613 0.866 1.40× 105 70.36s
ZU-Net v1 0.630 0.652 0.791 0.630 0.868 6.19× 104 67.97s
ZU-Net v2 0.640 0.655 0.783 0.652 0.869 5.73× 104 67.02s
V-Net (three down-sampling layers) 0.632 0.625 0.827 0.736 0.873 1.54× 107 157.4s
ZV-Net v1 0.674 0.650 0.852 0.756 0.877 3.51× 106 82.08s
ZV-Net v2 0.674 0.660 0.851 0.770 0.876 3.33× 106 80.11s

Fig. 7. One 2D slice from the CT volume of a randomly selected patient is shown with the ground truth, the segmentation result of training 3D U-Net
(Vanilla) and V-Net (Vanilla) on patch-128 data and of training ZU-Net v2 and ZV-Net v2 on Patch-512 data. The regions in the red circles show the
misalignment in prediction results in traditional 3D DCNNs.

In order to do ablation analysis and figure out where the
accuracy improvement of the proposed Z-Net comes from,
we further test 3D U-Net and V-Net on the same Patch-512
data used in Z-Net. As the training patches generated from
Patch-512 are only with a size of 8 in the Z axis, hence 3D U-
Net and V-Net with three down-sampling layers are trained.
Detailed results are illustrated in Sec. III-B. CT volumes
and 2D slices of patients are randomly selected to show the
detailed segmentation difference between different methods
in Sec. III-C while the training loss curves for different
methods are shown in Sec. III-D.

A. Z-Net

The mean segmentation IoUs of training vanilla 3D U-Net
and V-Net on the aorta, liver and lung training data generated
from Patch-128 data generation, and the mean segmentation
IoUs of training ZU-Net v1, ZU-Net v2, ZV-Net v1 and ZV-
Net v2 on the aorta, liver and lung training data generated
by Patch-512 data generation are shown in Tab. I. It can be
observed that the proposed Z-Net achieves 6.6% − 12.6%,
2.8%−6.2%, and 0.3%−0.6% mean IoU improvements on
the aorta, liver and lung data respectively, over the 3D U-Net
and V-Net.

One observation is that the order of IoU improvement is



aorta > liver > lung, which is in the reverse order of their
physical size. This result indicates that large organs such as
lung and liver appear to be less affected by the shortages
of existing 3D DCNNs, whereas small organs such as aorta
gain more improvement from the proposed Z-Net. An up to
12.6% IoU improvement proves the severe issue of class-
imbalance presented by traditional 3D DCNNs.

B. Ablation analysis

The mean segmentation IoUs of 3D U-Net and V-Net with
three down-sampling layers, as well as ZU-Net v1, ZU-
Net v2, ZV-Net v1 and ZV-Net v2 on the aorta, liver and
lung Patch-512 training data are shown in Tab. II. It can be
observed that for the aorta and liver segmentation, the ZU-
Net and ZV-Net in both modes outperform the 3D U-Net and
V-Net by around 3%. On the other hand, the segmentation
IoU improvement for the lung segmentation is smaller, being
0.1% and 0.3%. It can be concluded that the proposed Z-Net
out-performs all baselines in all validations, even training
all baselines on the same Patch-512 data. It can also be
concluded that mode 2 outperforms mode 1 in most tests,
except cross validation 1 for the liver segmentation. These
conclusions prove the motivation of Z-Net stated in Sec. I,
where traditional 3D DCNNs crop the original and large CT
volume into small and isotropic patches is less optimal for
medical volume segmentation.

The number of trainable parameters and the training time
for 3D U-Net (Vanilla), V-Net with three down-sampling
layers, ZU-Net v1, ZU-Net v2, ZV-Net v1 and ZV-Net v2 are
also shown in Tab. II. It can be seen that the proposed Z-Net
variants possess significantly less trainable parameters. The
modified versions of ZU-Net contain less than a half number
of trainable parameters than the 3D U-Net (Vanilla), and the
number of parameters for ZV-Net is only around 1

5 of the V-
Net with three down-sampling layers. The table also shows
faster training speed after the modifications of the networks
resulting from fewer trainable parameters, especially for V-
Net. The training speed is measured as the average amount
of time in seconds for the networks to train 100 iterations.

C. Segmentation examples

One patient was selected to show the detailed 3D seg-
mentation result of the aorta, liver and lung, with the 3D
U-Net (Vanilla) and V-Net (Vanilla) training on Patch-128
data, and with the proposed ZU-Net and ZV-Net under mode
2 training on Patch-512 data, as shown in Fig. 8. We can see
that the proposed method in this paper achieved noticeable
better segmentation result with much less false positives and
noises.

For better visualization, we also show some detailed
2D slice segmentation results of the aorta, liver and lung
with different methods in Fig. 7. It is also obvious that
the proposed method in this paper achieved visually better
segmentation results without misalignment between patches
along the X and Y axes.

Fig. 8. One patient is randomly selected for visualizing the detailed volume
segmentation result of vanilla 3D U-Net and vanilla V-Net on the aorta, liver
and lung Patch-128 training data and with training ZU-Net v2 and ZV-Net
v2 on the aorta, liver and lung Patch-512 training data.

D. Convergence

The loss during the training of vanilla 3D U-Net, vanilla
V-Net, ZU-Net v2 and ZV-Net v2 for the aorta, liver and
lung segmentation are shown in Fig. 9, which illustrates
that the proposed Z-Net achieved lower losses for the three
datasets than the vanilla 3D U-Net and vanilla V-Net, but the
convergence speed is similar.

IV. DISCUSSION

The proposed Z-Net maintains a full field-of-view in the
XY slices while maintains as many slices as possible in
the Z axis according to the GPU memory. The effect of
cropping along all X, Y and Z axis and then assembling
the prediction result back can be seen clearly in Fig. 7,
where discontinuities between adjacent predictions result in
the large gaps and holes. Z-Net retains the spatial integrity
of features along the XY plane, giving a better result
observed from 2D slices. Furthermore, the Z-Net not only
compensates the class-imbalance issue caused by Patch-128
and Patch-64 in traditional 3D DCNNs, but also augments
the number of training data and keeps the GPU memory
under an affordable value. Promising improvements on the
segmentation accuracy, especially for small targets like the
aorta, can be observed from the results, demonstrating the
effectiveness of the proposed Z-Net method.

Two modes of Z-Net were also explored, either with
or without the intermediate 1D convolutions between 2D
convolutions. According to the validation results, mode 2
slightly out-performed mode 1, and the number of parameters
and training time are also reduced. This indicates that a single
1D convolution before each down-sampling or up-sampling
layer is sufficient for inter-slice context extraction.

Overall, the total improvements in IoU of up to 12.6%,
6.2% and 0.6% were achieved for the aortic, liver and lung
CT volume segmentation respectively with the proposed Z-
Net framework, compared to the original 3D U-Net and V-
Net. The segmented 3D shape in this paper is very useful
for many advanced medical tasks, i.e. 3D shape instantiation
and registration for 3D navigation in robot-assisted MIS.



Fig. 9. The loss plots for training vanilla U-Net, vanilla V-Net and ZU-Net
v2, ZV-Net v2 on the aorta, liver and lung dataset.

V. CONCLUSION

To summarize, Z-Net is proposed to extract the infor-
mation in the XY-planes and Z-axis separately for training
with 512 × 512 × 8 patches. It can alleviate the issues for
traditional 3D DCNNs, including class-imbalance, discontin-
ued segmentation results and limited field-of-view for each
individual volume, hence the current volume segmentation
accuracy and speed can be increased noticeably. The medical
CT volume segmentation in this paper both automates and
supplies an essential pre-operative knowledge for achieving
intra-operative 3D navigation for robot-assisted MISs. In the
future, we will work on deeper network designs and better
kernel decomposition methods for medical volume segmen-
tation to further improve the segmentation performance.
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