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Deep Depth Estimation from Visual-Inertial SLAM

Kourosh Sartipi, Tien Do, Tong Ke, Khiem Vuong, and Stergios 1. Roumeliotis’

Abstract—This paper addresses the problem of learning
to complete a scene’s depth from sparse depth points and
images of indoor scenes. Specifically, we study the case in
which the sparse depth is computed from a visual-inertial
simultaneous localization and mapping (VI-SLAM) system. The
resulting point cloud has low density, it is noisy, and has non-
uniform spatial distribution, as compared to the input from
active depth sensors, e.g., LIDAR or Kinect. Since the VI-
SLAM produces point clouds only over textured areas, we
compensate for the missing depth of the low-texture surfaces
by leveraging their planar structures and their surface normals
which is an important intermediate representation. The pre-
trained surface normal network, however, suffers from large
performance degradation when there is a significant difference
in the viewing direction (especially the roll angle) of the
test image as compared to the trained ones. To address this
limitation, we use the available gravity estimate from the VI-
SLAM to warp the input image to the orientation prevailing in
the training dataset. This results in a significant performance
gain for the surface normal estimate, and thus the dense
depth estimates. Finally, we show that our method outperforms
other state-of-the-art approaches both on training (ScanNet [1]
and NYUv2 [2]) and testing (collected with Azure Kinect [3])
datasets.

I. INTRODUCTION

Determining the dense depth of a scene has important
applications in augmented reality, motion planning, and 3D
mapping. This is often achieved by employing depth sensors
such as Kinect and LiDAR. Besides the high-cost, size, and
power requirements of depth sensors, their measurements are
either sparse (LiDAR) or unreliable at glossy, reflective, and
far-distance surfaces (Kinect). Recent research has shown
that some of the limitations of depth sensors can be overcome
by employing RGB images along with the strong contextual
priors learned from large-scale datasets (~ 200K images), us-
ing a deep convolutional neural network (CNN). Specifically,
to produce dense depth estimates, recent approaches have
employed CNNs with three types of inputs: (a) a single RGB
image (e.g., [4], [5], [6], [7], [8]); (b) poses (position and
orientation) and optical flow from multiple images (e.g., [9],
[10], [11]); (c) a single RGB image and sparse depth [12],
[13], [14], [15], [16], [17], [18], [19], [20], [21].

In our work, which falls under (c) and is inspired by [16],
we seek to estimate dense depth by fusing RGB images,
learned surface normals, and sparse depth information. In
contrast to [16] that uses LiDAR, we obtain the sparse
points from a real-time visual-inertial SLAM (VI-SLAM)
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system [22]. There are thee key differences between the
point clouds directly measured by a Kinect or a LiDAR
and those estimated by VI-SLAM: Density, accuracy, and
spatial distribution. In particular, the VI-SLAM point cloud
comprises sparse points (~ 0.5% of an images pixels) that
are extracted and tracked across images and triangulated
using the camera’s estimated poses. For this reason, the
accuracy of these points varies widely, depending on the local
geometry and the camera’s motion. Moreover, the VI-SLAM
points are not uniformly distributed across an image. They
are usually found on high-texture surfaces, while textureless
areas such as walls, floors, and ceilings that are ubiquitous
in man-made environments often contain significantly fewer
points. Due to this large domain gap, networks trained using
Kinect or LiDAR data suffer from a significant perfor-
mance degradation when given 3D points triangulated by VI-
SLAM as sparse depth information [18], [19]. Furthermore,
in large-scale indoor datasets (ScanNet [1], NYUv2 [2],
Matterport3D [23]), the images are usually aligned with
gravity [24]. During inference time, this bias results in
further performance degradation of the depth completion
networks [14], as well as optical-flow to depth networks
trained on these data [9].

A straightforward approach to address the domain gap
and the lack of images from various vantage points is to
collect and process more data and re-train the network. This,
however, is both labor and time intensive. Alternatively, 3D
mesh reconstructions from RGB-D sequences (e.g., Bundle-
Fusion [25], BAD-SLAM [26], etc.) can be employed to
synthesize novel views of RGB images. The accuracy of
the 3D mesh, however, is usually not sufficient and the
quality of the resulting data depends on many factors, e.g.,
the overlap between frames, the sparse points tracking error,
etc. For this reason, in our work, we employ the VI-SLAM
point cloud when training the depth estimation network while
incorporating the VI-SLAM estimate of gravity direction to
reduce the effect of “unseen orientation.” Specifically, to
address the domain gap issue in the point cloud, we first
train a network using sparse depth input from the point
cloud generated by VI-SLAM, instead of randomly sampling
from the ground-truth depth (e.g., [14]). Furthermore, to
increase the density of the point cloud, we leverage the planar
structures commonly found indoors. Secondly, to solve the
domain gap in viewing directions, we align each input image
taken with “unseen orientation” to a rectified orientation
that the pre-trained network is more familiar with, using the
gravity direction estimated from VI-SLAM. We show that
this approach not only improves the performance on images
taken with familiar orientations, but also achieves satisfactory



generalization on the unfamiliar ones. In summary, our main
contributions are:

o We introduce an efficient approach to improve the
generalization of the VI-SLAM depth completion that
leverages (i) the planar geometry of the scene and (ii)
the camera’s orientation with respect to gravity.

o We implement a full pipeline from VI-SLAM to dense
depth estimation for evaluation on Azure Kinect [3] and
perform extensive experiments that demonstrate the ad-
vantages of our method over state-of-the-art approaches
on dense-depth estimation [9], [14].

II. RELATED WORK

Single-view depth estimation. Depth estimation from a
single image has been studied by early works such as [27]
which is based on handcrafted features. More recently,
numerous deep learning-based approaches have appeared
(e.g., [5], [4], [6], [7]) for estimating dense depth. Note,
however, that given a single image, the pixels’ depths cannot
be determined only from local features; hence data-driven
approaches have to rely on the global context of the image,
which is learned from the training data. Therefore, despite
the surprisingly good performance when trained and tested
with images from the same dataset, they exhibit poor gener-
alization on cross-dataset experiments [8].

Multi-view depth estimation. One way to overcome the
single-view depth estimation challenges is to consider mul-
tiple camera poses and optical flow. Specifically, the scene
depth can be recovered up to scale, given information from
multiple views, or with metric scale if the poses are estimated
with the aid of other sensors (e.g., IMU). In particular, [10]
takes two images as input, estimates the optical flow as
an intermediate result, and refines the depths as well as
the poses iteratively. On the other hand, [11] computes the
photometric errors by warping adjacent images to the current
one, and inputs them along with the current image to neural
network. Lastly, [9] estimates a probability distribution for
the depth, instead of a single depth, and refines the initial
depth estimates from a neural network by warping the depth
distribution of adjacent images and fusing them in a Bayesian
fashion. These methods implicitly estimate depth from poses
and optical flow using exclusively neural networks, instead
of computing the depths of at least some points directly from
geometry. As shown in [20], employing these sparse or semi-
dense depths as the input of neural network results in higher
performance as compared to relying on the optical flow.

Depth completion from RGB and sparse depth. A key
difference between the methods described hereafter and the
previous two families of approaches is that the domains of
their inputs are significantly different. Specifically, the RGB
image has a well-defined range of values for all pixels,
while the sparse depth image has only few valid values
where the majority of the pixels’ depths are unknown. To
address this domain difference, many approaches such as
[28], [29] propose normalized convolution and upsampling
layers so that the missing pixels will not be processed in
the convolution kernels. On the other hand, methods such as

[30], [31], [15], [32], [33] do not treat the sparse normal input
differently, which indicates with proper training applying
standard convolution can achieve comparable results.

A different approach proposed by [16] showed that em-
ploying a network to compute the surface normals based on
the RGB image and using the normals as an additional input
to the later layers can improve the network’s performance.
Moreover, it was proposed to concatenate color/normal chan-
nels and sum the depth channels for the skip-connections
between the encoder and decoder. As we show in our ablation
study, while this design choice results in improvement on
the same scenes, it reduces the generalizability to, e.g., data
collected from different devices.

In [14], Cheng et al. introduced the convolutional spatial
propagation network (CSPN), where the initial depth image
and an affinity matrix are first produced by a CNN and
then the depth is iteratively refined through a diffusion
process involving the affinity matrix and the current depth
estimate. Furthermore, for the case of depth completion,
CSPN employs validity masks to retain the depth of the
sparse input, and hence does not allow the network to correct
potentially noisy measurements. As we will show in our
experimental results, this policy will lead to loss in accuracy
when the input depth is noisy.

Closely related to our work are those of [18] and [34]. In
[18], a system to compute dense depth from either LiDAR
or SLAM point-cloud on-board MAVs is described using
the confidence propagation network similar to [28]. Since,
however, their focus is on real-time performance on devices
with limited resources, their accuracy is lower than the state
of the art. As in our work, [34] also employs a VI-SLAM
system to generate the sparse input. Moreover, it uses a
two-step process to first extend the depth data from the
sparse 3D point cloud and then combine them with the
RGB image as the input to a network that produces the final
dense-depth image. In particular, [34] first employs Delaunay
triangulation [35] to fit a triangular mesh on the sparse points
of the image and then computes the depth of all the pixels
falling within each triangle using its plane equation. Note
that the accuracy of this approach depends heavily on the
assumption that the triangles match with the planar surfaces
of the image’s scene, which, in general, is not true

III. TECHNICAL APPROACH

In this paper, we propose a method to accurately predict
dense depths using only sensors available on most mobile
devices, i.e., a camera and an IMU. Fig. depicts an
overview of our system, where the depth completion network
(DCN) estimates the dense depth from the following inputs:
(i) the RGB image, (ii) a sparse depth image based on
the 3D points triangulated by the VI-SLAM, and (iii) the

! Another contribution of [34] is creating visual-inertial datasets for depth
estimation. However, it does not have ground-truth surface normal, which
our networks relies on. Therefore, we instead employ Scannet [1], with
surface normal readily available from 3D mesh, to train our network. As
for evaluating generalization capability, we collected our own dataset with
sufficient roll and pitch variation (which is not the case for the dataset
of [34]) to highlight the effect of incorporating gravity.
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Overview of the system. At each keyframe, the VI-SLAM (Sec. @ processes images and IMU measurements to compute (i) the gravity
direction which is provided to the surface-normal network (Sec. [lI-B), and (ii) the sparse depth image. The sparse depth enrichment module (Sec. [[lT-D
increases the density of the sparse-depth image using information about planes in the image. This is provided by the plane detection network (Sec. [III-C

that classifies image pixels as belonging to a particular plane and the surface normal network that estimates the normal of each pixel. The depth completion
network (DCN) (Sec. @) employs the RGB image, the pixel normals, and the enriched sparse-depth image to produce a dense depth image.

surface normal map predicted by another CNN. As shown
experimentally by [16] and evident in our ablation studies,
(iii) improves the accuracy of depth estimation.

Specifically, we employ VI-SLAM [22] (see Sec. [[II-A)),
which takes as input images and IMU measurements, to
compute the sparse 3D point cloud observed by the camera.
Then, the sparse depth image is obtained by projecting
the point cloud to the camera frame. Additionally, a CNN
predicts the surface normal of every pixel in the RGB
image (see Sec. [[II-B) while leveraging the gravity direction
estimated by the VI-SLAM to improve its accuracy. Note
that although the sparse depth image from the VI-SLAM
can be used directly as input to the DCN, we seek to first
increase its density by performing a sparse-depth enrichment
step. To do so, we extract the planar patches of the image
using a CNN (see Sec. [[lI-C)), and use the estimated normals
along with any 3D points that fall inside a plane, to compute
a denser depth representation of the scene (see Sec. |[lII-D).
Finally, the DCN (see Sec. [[II-E) computes the dense depth
estimate based on the RGB image, the enriched sparse depth
image, and the surface normals.

A. VI-SLAM: Sparse Depth Image Generation

In this work, we employ the inverse square-root sliding
window filter (SR-ISWF) [22] to estimate in real-time cam-
era poses and 3D feature positions. Specifically, at each time
step the SR-ISWF extracts FAST [36] corners in the current
image, and tracks them by matching their corresponding
ORB descriptors [37] to the previous images. The SR-ISWF
then fuses the IMU measurements and the 2D-to-2D feature
tracks across the sliding window to estimate the camera’s
motion along with the features’ positions.

Every time the SR-ISWF processes an image, we project
all visible 3D features on the image and use their depth (i.e.,
their Z component) to create the sparse depth image. The SR-
ISWF also computes the gravity direction which is passed
to the surface normal network.

B. Surface Normal Network
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Fig. 2. Top row: Input image from Azure Kinect along with the gravity
aligned image; the performance of FrameNet is satisfactory. Bottom row:
Input image with significant roll component, resulting in poor performance.
Warping the input based on the gravity direction before passing it through
the CNN improves the performance in both cases.

As it will become evident from our experimental vali-
dation, the performance of the DCN depends on the ac-
curacy of the surface normals prediction. In particular,
training state-of-the-art surface-normal-estimation networks
such as the FrameNet [38] on large-scale indoor datasets
(e.g., ScanNet [1], NYUv2 [2], Matterport3D [23]) does
not yield satisfactory results. This is due to the fact that
the FrameNet’s surface-normal estimator’s performance de-
grades significantly when tested on images whose roll angles
deviate substantially from the vertically-aligned images used
during training (see Fig. [2).

To address this issue, we follow the approach of [39] to
warp the input image so that the gravity, which is estimated
from IMU, is aligned with the image’s vertical axis. Note
that, in this paper, we are interested in how the accuracy
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threshold, which produces a set of sparse, yet accurate, points. (c) Using the point set, we incrementally grow the planar region based on the surface
normal from FrameNet. (d-e) This refinement allows us to precisely label the plane instances.

of surface normal prediction affects the depth completion
performance, rather than solely focusing on the surface
normal performance as in [39].

The idea of using gravity from VI-SLAM has been
proposed in [40] as a regularization for a depth-prediction
network during fraining time. In contrast, in our work we
employ the online estimated gravity to improve the gener-
alization during inference time. Recently, [24] proposed to
remove the roll angle from an image by using the orientation
estimated from monocular SLAM [41]. This method, though,
lacks global information hence it relies on the assumption
that the first camera’s view is aligned with gravity. In
contrast, and due to the observability of gravity in VI-SLAM
system [42], our method makes no assumptions about the
camera’s motion.

C. Plane Detection

A key idea behind our approach is to take advantage of
planar surfaces present in the scene to enrich the sparse depth
image (see Sec. [[lI-D). To do so, we predict plane masks on
the image using a CNN. Specifically, we leverage the ground-
truth plane masks from Plane-RCNN [43] which employs the
3D mesh reconstruction created from ScanNet [1] for the
multi-plane instance proposals. Unfortunately, the resulting
plane annotations are misaligned as shown in Fig. 3] Hence,
to obtain reliable training data, Plane-RCNN proposed a
heuristic method to detect this misalignment based on the
discrepancies between the projected 3D mesh reconstruction
on each image and their corresponding depth, and then
drop any frames with large discrepancies during training.
While effective, this method discards a large set of planes
annotations during training, which can potentially degrade
the plane detector’s performance.

To address this problem, we employ RANSAC-based [44]
plane fitting and region growing to refine the plane anno-
tations. Specifically, for each annotated plane from Plane-
RCNN, we employ 3pt RANSAC, using the corresponding
depth from ScanNet and a strict inlier threshold (2 cm) to
fit a plane. This yields only a small set of inliers due to the
imprecise depth measurements. Given the initial inliers, we
grow the coplanar region through neighboring pixels based
on two criteria: (i) the distance of each 3D point to the
plane is less than 20 cm and (ii) the corresponding surface
normal from FrameNet [38] is close (less than 30°) to the
plane’s normal. If the plane computed through this process
is substantially smaller than the annotation, we discard the

annotation. By applying this method to all the annotated
planes we are able to accurately compute the plane instances
(see Fig. B) and ensure that the planes are well-aligned
with the RGB images. Lastly, we employ the improved
annotations as ground-truth to train a Mask R-CNN [45]
network for plane detection.

D. Sparse Depth Enrichment

In this module, we enrich the sparse depth image by
increasing the number of points it contains. We focus on
the parts of the scene where 3D point features project on a
detected plane (see Sect. [[lI-C). This process comprises the
following two steps for estimating each plane’s parameters:

1) Plane Normal estimation: We randomly select a few
pixels as plane-normal hypotheses and compare their
directions to the rest of the plane’s pixels to find the
largest set of normal directions aligned within 10 de-
grees. We then assign as the plane’s normal the average
of the normal vectors of the largest set.

2) Plane Distance estimation: Given the plane’s normal n,
each 3D point p; expressed in the camera’s coordinate
frame is a candidate for computing the plane’s distance
hypothesis d; = —n”p;. As before, the one with the
largest set of inliers is accepted, and the plane’s distance
d is set to be the average distance of inliers.

Next, we employ n and d to compute the depth z; = —ﬁ

of each pixel, where b; is its normalized homogeneous
coordinate. Hereafter, we refer to the depth image resulting
from this process as the “incomplete depth image” (see
Fig. [T).

Once the incomplete depth image is generated, we select
only a subset of the points from it to form the enriched
depth image provided to the DCN (see Fig. [I). The reason
behind this choice is that often the 3D points triangulated by
VI-SLAM may contain errors. In this case, using the entire
incomplete depth image as the input to the DCN will bias
its output by implicitly forcing it to trust the depth values
of many densely distributed pixels with erroneous estimates.
On the other hand, our experiments (see Sect. and
those of [18] show that the DCN performs significantly better
when the sparse depth image is uniformly distributed over
the RGB image. This requirement, however, is not typically
satisfied by indoor areas containing large textureless surfaces.
Instead, 3D points often cluster in few parts of an image
where high texture is observed. By employing the proposed
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enrichment procedure, however, we are able to reduce the gap
between the initial distribution of sparse depth and a uniform
distribution. As shown in Sect. sampling between 100-
200 points from the incomplete depth image produces the
best results.

E. Depth Completion Network

Our DCN is inspired by the Panoptic FPN [46]. Specifi-
cally, each of the RGB, normal, and the sparse depth images
are processed through separate encoders, which compute four
feature tensors per input corresponding to different layers
of the ResNet. Before being processed by the decoder, we
concatenate the features of the RGB, normal, and sparse
depth images at each scale and apply convolution and upsam-
pling, resulting in four feature tensors of size 128 x 60 x 80.
These are then summed together and passed through a final
convolution and upsampling layer resulting in the dense-
depth image (see Fig. [).

IV. EXPERIMENTAL RESULTS

In what follows, we experimentally verify the performance
of our method, and compare it to state-of-the-art approaches.
Although our target application is for VI-SLAM systems,
the lack of visual-inertial training data has led us to employ
RGB-D datasets (i.e., ScanNet [1] and NYUv2 [2]) to train
our networks. To assess the performance on visual-inertial
data and verify the generalization capability of our approach,
we have also collected data using Azure Kinect [3]. In
terms of depth error metrics, we report root mean square
error (RMSE) in meters, and E(D,§), which specifies the
percentage of the estimated depths D for which max (5, %) <
0, where D is the ground-truth depth. For surface normal
error metrics, we report mean absolute of the error (MAD),
median of absolute error (Median), and the percentage of
pixels with angular error below a threshold & with & =
11.25°, 22.5°, 30.0°.

Experiment Setup: All the networks in this paper have
been implemented in PyTorch [47], and the original authors’
code and provided network weights have been used for
comparisons against other methods. To train the DCN, we
employ L; loss and the Adam optimizer [48] with a learning
rate of 10~*. We train the model for 20 epochs and report
the best epoch on the corresponding dataset’s validation set.
The training was done on an NVIDIA Tesla V100 GPU with
32GB of memory with a batch size of 16. Since the aspect
ratio of the Azure Kinect dataset images is significantly
different than those of ScanNet and NYUv2, we first crop
them and then resize to 320 x 240. For the ScanNet and
NYUv2 we only apply resizing. Our neural network code
is available at https://github.com/MARSLab-UMN/
vi_depth_completion|along with our datasets.

A. Comparison on ScanNet Datasets

We train and evaluate different configurations of our
approach on the ScanNet indoor datasets and compare our
performance with NeuralRGBD [9]. Although ScanNet does
not contain inertial data, we leverage other available annota-
tions to estimate (i) the gravity direction, and (ii) a 3D point
cloud, required for our training and testing. Specifically, we
obtain the gravity direction from the normal direction of
pixels labeled as the ground (by FrameNet [38]). To compute
the 3D point cloud, we first extract FAST corners [36], track
them via KLT [49], and remove outliers by employing the
S5pt-RANSAC [50]. The inlier tracks are then triangulated
using the provided camera poses to generate the sparse 3D
point cloud (on average, for each image we compute 58
sparse depth values from the point cloud which corresponds
to 0.07% of pixels). Lastly, we generate plane masks for
the entire dataset and compute the incomplete depth images
through the process described in Sect.

In Table |I, we evaluate the accuracy of the reconstructed
sparse and incomplete depth inputs as well as the final depth
output using the following configurations:

o Triangulation: The sparse depth resulting from project-

ing the 3D point cloud on the image.

o Incomplete Depth: The incomplete depth images gener-
ated through the process described in Sect.

e NeuralRGBD [9]: State-of-the-art in depth estimation
from a sequence of images.

e Ours-SD: DCN results trained and tested using the
sparse depth as input.

e Ours-ID: DCN results trained and tested using the
incomplete depth as input.

e Ours-Enriched 100, 200: Using Ours-SD trained net-
work with selecting 100, or 200 additional points from
the incomplete depth to generate the enriched depth (see
Sect. and Fig. [I).

As evident from Table I} the error E(D,§) of the triangu-
lated points and incomplete depths show that the inputs are
relatively accurate. Furthermore, using the enriched depth
with 100 points as input has slightly higher accuracy in the
stricter metrics (6 = 1.05,1.10). On the other hand, a denser
enriched depth image comprising 200 points decreases the


https://github.com/MARSLab-UMN/vi_depth_completion
https://github.com/MARSLab-UMN/vi_depth_completion

TABLE I
PERFORMANCE OF DEPTH COMPLETION ON SCANNET TEST SET

E(D,d)
RMSE | | 1051 L10t 1.257 12571 1251 |
Triangulation 0.153 7589  92.19 98.51 99.64 99.89
Incomplete Depth 0.201 66.39  85.30 96.64 99.05 99.60
NeuralRGBD [9] 0.294 4635 7299 93.00 98.30 99.43
Ours-SD 0.266 54.09  78.41 94.68 98.91 99.71
Ours-ID 0.265 54.65 78.71 94.72 98.85 99.67
Ours-Enriched 100 0.271 54.85 7854 94.55 98.76 99.66
Ours-Enriched 200 0.271 54.37  78.11 94.46 98.73 99.63
TABLE II

PERFORMANCE OF DEPTH COMPLETION ON NYUV2 TEST SET

E(D,5) |

RMSE | [ 1051 1107 1257 1251 12571 |
CSPN[14] (Feature) 0.46 69.31 78.39 86.47 91.65 94.57
Ours-SD (Feature) 0.20 80.38  91.27 97.53 99.50 99.89
CSPN[14] (Uniform) 0.18 87.56  94.17 98.24 99.59 99.88
Ours-SD (Uniform) 0.18 88.86  94.82 98.46 99.66 99.91

accuracy for the reasons explained in Sect. Although
the network trained and tested using incomplete depth per-
forms slightly better than both sparse and enriched depths
for the ScanNet dataset, its performance degrades drastically
on cross-dataset (see Sect. . Finally, these results show
that our approach outperforms NeuralRGBD on all metrics,
especially the stricter ones.

B. Comparison on NYUv2 Depth Dataset

To compare against the CSPN [14], we also test our
approach on the NYUv2 datasets, comprised of color and
depth images from 464 different indoor scenes acquired by
a Microsoft Kinect sensor. In our evaluation, we used the
official 249 training scenes and sub-sampled 25,000 color-
depth image pairs for the network to train, while tested on the
standard 654-image test set. Since NYUv2 does not provide
camera poses, to generate the sparse depth, we first extract
2D-to-2D correspondences (see Sect. [[V-A), and then sample
from the ground-truth depth instead of projecting a 3D point-
cloud as input to the DCN.

Table [II} shows the performance of the proposed approach
compared to CSPN using their pre-trained model. Note that
the CSPN model has been trained on sparse depth generated
by randomly sampling from the ground-truth depth. In our
tests, we compare the computed depth when the sparse depth
is from 2D-to-2D tracks (denoted as “Feature” in Table [II}),
and by randomly sampling 200 points from the ground-
truth (“Uniform”). These results show that our approach
outperforms CSPN in all metrics. Additionally, the gap in
performance when employing features is much larger than
using random samples. This is due to the distribution of
FAST corners on the images, where more points are located
on the textured areas as compared to the textureless ones.

C. Generalization Capability on Azure Kinect Datasets

In order to evaluate our DCN on datasets with visual-
inertial data, and to better compare the generalization capa-
bility of our approach against the alternative ones, we col-
lected 24 datasets in indoor areas using the Azure Kinect [3].
Each dataset comprises color and depth images at 30 Hz, as
well as IMU measurements at 1.6 KHz. The depth images

are employed as the ground-truth, while the color images
and the IMU measurements are processed by the VI-SLAM
to compute the camera’s poses and the triangulated feature
positions. These datasets produce a total of ~8K keyframes
which we use for evaluation. Unless otherwise specified,
all networks considered in this section are trained only on
ScanNet dataset.

First, we present the performance and the effectiveness
of our gravity alignment for the surface normal estimation
(Sec. on Azure Kinect datasets. Table [[TI] compares
the proposed gravity alignment (see Sect. against the
following alternatives: (i) Vanilla - training with standard
ground-truth surface normal and (ii) Warping augmentation
- improving generalization by warping the input image with
random rotation during training; on two categories of images
(1) gravity aligned and (2) gravity non-aligned. The network
used in all cases is DORN [5], and is trained with the
truncated angular loss [39]. In these tests, we achieve sat-
isfactory performance when evaluating DORN on the scenes
with gravity aligned images (see Table Gravity-aligned
frames). Its performance, however, reduces drastically when
the images have large pitch/roll rotations (see Table
Gravity-nonaligned frames). We attribute this degradation
to the lack of training images with large pitch/roll angles.
To assess the accuracy of our approach, we also compare
against a naive data augmentation scheme that randomly
warps each input image to provide the network with more
diverse viewing-directions. Finally, Table shows that by
warping in a direction aligned with the gravity obtained from
VI-SLAM, our method outperforms both the baseline DORN
and training with data augmentation (i.e., randomly warping
images) in terms of generalization performance without re-
quiring data augmentation, hence resulting in shorter training
time.

TABLE III
PERFORMANCE OF SURFACE NORMAL ESTIMATION ON AZURE KINECT
DATASET
Gravity-aligned frames MADJ]  Median] RMSE| 11.25°% 22.5°t  30.0°t
Vanilla 9.15 4.89 15.91 80.83 90.83 93.41
Warping Augmentation 9.31 4.61 17.23 81.88 90.59 92.95
Gravity Alignment 8.62 4.26 15.57 82.03 91.17 93.68
Gravity-nonaligned frames | MAD] Median] RMSE| 11.25°% 22.5°7  30.0°1
Vanilla 14.40 6.86 23.32 65.55 81.56 85.77
‘Warping Augmentation 11.87 5.63 20.87 74.91 86.48 89.67
Gravity Alignment 11.46 5.22 19.88 74.24 86.29 89.75
All frames MAD| Median] RMSE] 11.25°F 22.5°%  30.0°%"
Vanilla 11.37 5.41 19.31 7435 86.48 89.95
‘Warping Augmentation 10.62 5.09 19.19 78.31 88.48 91.27
Gravity Alignment 10.03 4.65 17.84 78.33 88.73 91.74
TABLE IV
PERFORMANCE OF DEPTH COMPLETION ON AZURE KINECT DATASET
\ E(D,3)
RMSE | ‘ 1.05 1+ 1.101 1.257 12571 1.25%% ‘
CSPN-NOISY 1.461 5.10 9.03 17.02 29.52 4325
CSPN-GT 1.465 8.10 11.20 17.93 29.49 42.69
Ours-SDY 0913 11.70  22.55 47.96 74.85 88.03
Ours-Enriched 1007 0.814 15.09 28.74 57.93 82.23 91.48
NeuralRGBD 0.717 20.03 36.25 65.25 86.28 94.59
Ours-ID 0.534 18.64  35.54 71.00 93.84 98.20
Ours-SD 0.524 1996  37.55 73.78 94.24 98.52
Ours-Enriched 100 0.496 24.21 44.34 79.07 95.32 98.71
Ours-Enriched 100+g 0.490 2426 4431 79.23 95.65 98.95

Table presents the depth completion performance of
our method, as compared to the NeuralRGBD and CSPN,
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on the Azure Kinect dataset. To properly compare with the
pretrained NeuralRGBD and CSPN, we separately train our
DCN network on ScanNet and NYUv2 (denoted with T).
Since CSPN is trained using points sampled from the ground-
truth depth, besides evaluating its performance on the tri-
angulated point cloud (CSPN-NOISY), we also assess its
performance when the sparse depth of the same locations
is extracted from the ground-truth depth (CSPN-GT). In
addition to the previous results, we also include our depth

Enriched
Depth

Incomplete Ground Truth

Depth

Completed
Depth

Qualitative results on some Azure Kinect scenes.

enrichment method with the surface normal computed using
our proposed gravity-aware network (Ours-Enriched 100+g).
Table [IV] shows that our algorithm significantly outper-
forms the alternative methods in all metrics for cross-dataset
evaluation, thus confirming the generalization capability of
depth enrichment approach for the network trained on either
NYUvV2 or ScanNet. In addition, it shows that the impact
of the depth enrichment method is more significant than the
accuracy of the surface normal prediction. Finally, Fig. 3]



qualitatively illustrates our method for both gravity-aligned
and gravity-nonaligned scenes on Azure Kinect dataset.

D. Ablation Studies

In this section, we study the effect of different inputs on
the performance of the network. Our main findings are:
Surface normal input improves the depth prediction.
Table[V]verifies the effectiveness of the surface normal image
as an additional input to the DCN, where we trained and
tested a network using only the RGB and sparse depth images
on the ScanNet dataset. This is also in line with the findings
of [16].

TABLE V
EFFECT OF THE SURFACE NORMAL INPUT (SCANNET)
E(D,9d)
RMSE | [ 1.051 1.101 1.25¢ 12571 1.25%%
w/o Normal 0.342 45.65 69.38 90.14 97.57 99.38
w/ Normal 0.266 54.09 7841 94.68 98.91 99.71

Higher accuracy normals result in more precise depth.
We examine the performance of our DCN network using
surface-normal input with and without the gravity align-
ment, denoted as Ours-SD+g and Ours-SD in Table
respectively. In order to highlight the impact of the surface-
normal accuracy, we evaluate the networks on the gravity-
non-aligned subset of the Azure Kinect dataset, which is
shown to have a significant improvement on surface-normal
accuracy with the gravity alignment (see Sect. [V-C)). Ta-
ble illustrates that with gravity alignment, the depth
accuracy increases more as compared to ones evaluated on
the entire Azure Kinect dataset (see Sect. [[V-C). However,
due to the high error in some VI-SLAM point estimates, we
notice the depth enrichment with gravity does not outperform
other baselines such as the one without enrichment and the
one without gravity on RMSE and & = 1.25°, respectively.

TABLE VI
BETTER NORMAL RESULTS IN BETTER DEPTH
(GRAVITY-NONALIGNED AZURE)

\ E(D,5)
RMSE | | 1.051 1.10f 1.257 12571 1251 |
Ours-SD 0.540 1558 3133 7081 93.86 98.11
Ours-SD+g 0.514 1594 3255  71.94 95.06 98.66
Ours-Enriched 100 0.510 2077  39.64 7634 94.34 98.19
Ours-Enriched 100+g 0.517 2205 4152 7811 95.41 98.65

Training with depth enrichment inputs degrades cross-
dataset performance. So far, we have employed the depth
enrichment method on the networks trained with VI-SLAM’s
sparse depth input. In Table we examine the perfor-
mance of our DCN that is trained with depth enrichment
input, denoted as Train w/ Enriched X, where X is the
number of enriched samples. Note that, during the inference
time, we use the same amount of enriched samples as in the
training for those images that depths can be reconstructed
from detected planar surface, otherwise, we use the sparse
depth. Due to this unavailability of plane mask in many
images, there is large performance gap between networks
trained with input as enriched depth and as sparse depth,
suggesting that one should apply the depth enrichment tech-
nique only on a pre-trained sparse depth network.

TABLE VII
TRAINING WITH DEPTH ENRICHMENT INPUT (AZURE)

\ E(D,5)
RMSE | | 1.051 1.10T 1.251 12577 12571 |
Train w/ Enriched 50 0.563 17.11  32.49 65.37 92.64 98.10
Train w/ Enriched 100 0.562 17.67  33.56 68.13 93.57 98.13
Train w/ Enriched 200 0.537 18.94 3578 70.63 92.90 97.94
Ours-Enriched 100 0.516 19.43  38.18 75.85 94.81 98.48

V. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced straightforward yet highly ef-
fective techniques to improve the generalization performance
of sparse-to-dense depth completion by (i) transforming the
data to a form that the network is familiar with to produce
better surface normal estimates, and (ii) generating an en-
riched sparse depth image that significantly improves the
performance both on similar scenes to the training ones and
the generalization datasets collected by different devices. We
thoroughly evaluate multiple configurations of our approach
and show the superior performance and generalization ability
comparing to other state-of-the-art depth completion meth-
ods. As part of the future work, we plan to incorporate the
uncertainty of depth inputs to the network. Specifically, we
will investigate alternative methods for enriching the sparse
depth based on uncertainty instead of random sampling.
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