arXiv:1911.03799v1 [cs.RO] 9 Nov 2019

Hierarchical Reinforcement Learning Method for Autonomous Vehicle
Behavior Planning”

Zhigian Qiao', Zachariah Tyree?, Priyantha Mudalige?, Jeff Schneider’ and John M. Dolan?

Abstract— In this work, we propose a hierarchical reinforce-
ment learning (HRL) structure which is capable of performing
autonomous vehicle planning tasks in simulated environments
with multiple sub-goals. In this hierarchical structure, the net-
work is capable of 1) learning one task with multiple sub-goals
simultaneously; 2) extracting attentions of states according to
changing sub-goals during the learning process; 3) reusing
the well-trained network of sub-goals for other similar tasks
with the same sub-goals. The states are defined as processed
observations which are transmitted from the perception system
of the autonomous vehicle. A hybrid reward mechanism is
designed for different hierarchical layers in the proposed HRL
structure. Compared to traditional RL methods, our algorithm
is more sample-efficient since its modular design allows reusing
the policies of sub-goals across similar tasks. The results show
that the proposed method converges to an optimal policy faster
than traditional RL methods.

I. INTRODUCTION

In a traditional autonomous vehicle (AV) system, after
receiving the processed observations coming from the per-
ception system, the ego vehicle performs behavior planning
to deal with different scenarios or environments. At the
behavior planning level, algorithms generate high-level deci-
sions such as Go, Stop, Follow front vehicle, etc. After that,
a lower-level trajectory planning system maps those high-
level decisions to trajectories according to map and dynamic
object information. Then a lower-level controller outputs the
detailed pedal or brake inputs to allow the vehicle to follow
these trajectories.

At first glance, among algorithms generating behavior
decisions, rule-based algorithms [1][2] appear to describe
human-like decision processes well. However, estimating
other vehicles’ behaviors accurately and adjusting the corre-
sponding decisions to account for changes in the environment
is difficult if the decisions of the ego car are completely
hand-engineered. This is because the environment can vary
across many different dimensions, all relevant to the task of
driving, and the number of rules necessary for planning in
this nuanced setting can be untenable.

An alternative method is reinforcement learning [3][4][5].
In recent works, RL has been used to solve some particular
problems by designing states, actions and reward functions
in a simulated environment. For example, the related ap-
plications within the autonomous vehicle domain include

*This work is supported by General Motors

1Zhigian Qiao is Ph.D. student of Electrical and Computer Engi-
neering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, USA
zhigiang@andrew.cmu.edu

2 Research & Development, General Motors

3 Faculties of The Robotics Institute, Carnegie Mellon University

|
A i i -
pproaching stop-sign N
intersection scenario (WA RN
—— _. __________ _:/T_I : 7_: —
| /_4;3 |
|
Option
- StopFor StopFor L, StopFor StopFor
i LeadVeh StopSign | LeadVeh StopSign
| R =2 :
i v E Action
*| Accelerate Decelerate [« Accelerate Decelerate

Fig. 1: Heuristic-based structure vs. HRL-based structure

learning an output controller for lane-following, merging into
a roundabout, traversing an intersection and lane changing.
However, low stability and large computational requirements
make RL difficult to use widely for more general tasks
with multiple sub-goals. Obviously, applying RL to learn the
behavior planning system from scratch not only increases
the difficulties of adding or deleting sub-functions within
the existing behavior planning system, but also makes it
harder to debug problems. A hierarchical structure which is
structurally similar to the heuristic-based algorithms is more
feasible and can save computation time by learning different
functions or tasks separately.

Reinforcement learning (RL) has proven the capability of
solving for the optimal policy, which can map various ob-
servations to corresponding actions in complicated scenarios.
In traditional RL approaches it is often necessary to train a
unique policy for each task the agent may be faced with. In
order to solve a new task the entire policy must be relearned
regardless of how similar the two tasks may be. Our goal in
this work is to construct a single planning algorithm based
on hierarchical deep reinforcement learning (HRL) which
can accomplish behavior planning in an environment where
the agent must pursue multiple sub-goals and to do so in
a way in which any sub-goal policies can be reused for
subsequent tasks in a modular fashion (see Figure 1). The
main contributions of the work are:

« A state attention model-based HRL structure.

e A hybrid reward function mechanism which can ef-
ficiently evaluate the performance among actions of
different hierarchical levels.

« A hierarchical prioritized experience replay designed for
HRL.

II. RELATED WORK

This section introduces previous work related to this paper,
which can be categorized as follows: 1) papers that address
reinforcement learning (RL) and hierarchical reinforcement
learning algorithms; 2) papers that propose self-driving be-
havior planning algorithms.

A. Reinforcement Learning

Based on the context of reinforcement learning, algorithms
with extended functions based on RL and HRL have been
proposed. [6] proposed the idea of a meta controller, which is
used to define a policy governing when the lower-level action
policy is initialized and terminated. [7] introduced the con-
cept of hierarchical Q learning called MAXQ, which proved
the convergence of MAXQ mathematically and could be
computed faster than the original Q learning experimentally.
[8] proposed an improved MAXQ method by combining the
R-MAX [9] algorithm with MAXQ. It has both the efficient
model-based exploration of R-MAX and the opportunities
for abstraction provided by the MAXQ framework. [10]
used the idea of the hierarchical model and transferred it
into parameterized action representations. They use a DRL
algorithm to train high-level parameterized actions and low-
level actions together in order to get more stable results than
by getting the continuous actions directly.

B. Behavior Planning of Autonomous Vehicles

Previous work applied heuristic-based and learning-based
algorithms to the behavior planning of autonomous vehicles
based on different scenarios. For example, [11] proposed a
slot-based approach to check if a situation is safe to merge
into lanes or across an intersection with moving traffic.
This method is based on information on slots available for
merging behavior, which may include the size of the slot in
the target lane, and the distance between the ego-vehicle and
front vehicle. Time-to-collision (TTC) [2] is a heuristic-based
algorithm which has normally been applied in intersection
scenarios as a baseline algorithm. Fuzzy logic is also a
very popular heuristic-based approach to model the decision
making and behavior planning for autonomous vehicles. In
contrast to the vanilla heuristic-based algorithm, fuzzy logic
allows adding the uncertainty of the results into the decision
process. [12] used a fuzzy logic method to control the traffic
flow in urban intersection scenarios, where the vehicles have
access to the environment information via the vehicle to
vehicle (V2V) system. However, the V2V system has only
been applied to a small number of public roads and few
vehicle manufacturers have added V2V function into their
vehicles. In [13], the researchers developed a fuzzy logic
method for the application of steering control in roundabout
scenarios.

The heuristic-based algorithms need much work from
human beings to design various rules in order to deal
with different scenarios in urban environments. As a result,

learning-based algorithms, especially reinforcement learning,
has been applied to transfer multiple rules into a mapping
function or one neural network. [14] formulated the decision-
making problem for autonomous vehicles under uncertain en-
vironments as a POMDP and trained out a Bayesian Network
representation to deal with a T-shape intersection merging
problem. [15] modeled the interaction between autonomous
vehicles and human drivers by the method of Inverse Rein-
forcement Learning (IRL) [16] in a simulated environment.
The work simulated autonomous vehicles to motivate human
drivers’ reactions and acquired reward functions in order to
plan better decisions while controlling autonomous vehicles.
[17] dealt with the traversing problem via Deep Q-Networks
combined with a long-term memory component. They trained
a state-action function Q to allow an autonomous vehicle to
traverse intersections with moving traffic. [18] used Deep
Recurrent Q-network (DRQN) with states from a bird’s-eye
view of the intersection to learn a policy for traversing the
intersection. [19] proposed an efficient strategy to navigate
through intersections with occlusion by using the DRL
method. Their results showed better performance compared
to some heuristic methods.

In our work, the main idea is to combine the heuristic-
based decision-making structured with the HRL-based ap-
proaches in order to integrate the advantages coming from
both methods. We built the HRL-structure according to the
heuristic method (see Figure 1) so that the system is easier
for validating different functions in the system instead of a
whole neural-network black-box.

III. PRELIMINARIES

In this section, the preliminary background of the problem
is described. The fundamental algorithms including Deep Q-
Learing [3], Double Deep Q-Learning [20] and Hierarchical
Deep Reinforcement Learning [6] (HRL) are introduced in
this part.

1) Deep Q-learning and Double Deep Q-learning: Since
proposed, Deep Q-Networks and Double Deep Q-Networks
have been widely applied in reinforcement learning prob-
lems. In Q-learning, an action-value function Qr(s,a) is
learned to get the optimal policy & which can maximize
the action-value function Q*(s,a). Hence, a parameterized
action-value function Q(s,a|0) is used with a discount factor
7. as in Equation 1.

Q*(Saa) = mgle(s,a\G)

=r+ ymng(s/7a’\6) M

2) Double Deep Q-learning: For the setting of Deep Q-
learning, the network parameter 0 is optimized by minimiz-
ing the loss function L(0), which is defined as the difference
between the predicted action-value Q and the target action-
value Y2. 6 can be updated with a learning rate «, as shown

in Equation 2.

Y2 =R+ ymaxQ(Si+1,a/6)

2
L(8) = (YIQ—Q(SZ,A,IGt)) 2)
JdL(6
041 = GtJra%

For the Double Deep Q-learning setting, the target action-
value Y€ is revised according to another target Q-network
.
Q with parameter 6’:

Y2 =R+ YQ(Srs1,argmax Q(Sy41,al6)|6) (3)

During the training procedure, technologies such as &-
greedy approach [21] and the prioritized experience replay
approach [22] can be applied to improve the training perfor-
mance.

3) Hierarchical Reinforcement Learning: For the HRL
model [6] with sequential sub-goals, a meta controller Q'
generates the sub-goal g for the following steps and a
controller Q”outputs the actions based on this sub-goal until
the next sub-goal is generated by the meta controller.

0! t+14+N 1
Y2 = Y Ry+ymaxQ(Si14n.8/6;')
t'=t+1 &

“4)
YQ2 =R, +ymaxQ(S, a 92
t +1 1Y Q(t+1, ‘ tag)

IV. METHODOLOGY

In this section we present our proposed model, which is
a hierarchical RL network with an explicit attention model,
hybrid reward mechanism and a hierarchical prioritized ex-
perience replay training schema. We will refer to this model
as Hybrid HRL throughout the paper.

A. Hierarchical RL with Attention

Hierarchical structures based on RL can be applied to learn
a task with multiple sub-goals. For a hierarchical structure
with two levels, an option set O is assigned to the first level,
whose object is to select among sub-goals. The weight 6/ is
updated according to Equation 5.

Oryy = argmax Q°(S;+1,0(67)
Y[Q :R;)+1+YQO(St+17O;F+1|9t0) (5)
" 2
L(e()) — (Y[Q _ QO(ShOtleto))

After selecting an option o, the corresponding action set
A represents the action candidates that can be executed on
the second level of the hierarchical structure with respect
to the selected option o. Some previous work proposed the
Hierarchical Markov Decision Process (MDP), which shares
the state set S among different hierarchical levels during the
MDP or designs different states for changing sub-goals and
applies initial and terminating condition sets to transfer from
one state set to another.

In many situations, the portion of the state set and the
amount of abstraction needed to choose actions at different
levels of this hierarchy can vary widely. In order to avoid

Action-Value Network

.......................... FC xn,

Option-Value :: P Tl (g,
Network il I . :
H . | i

I Attention . A::]Z”JLT"

. Softmax layer | :

L. " % -

Linear X1 Linear X1

Fig. 2: Hierarchical RL Option and Action Q-Network. FC
stands for a fully connected layer. Within all the FC layers,
Linear activation functions are used to generate last layers in
both Option-Value and Action-Value networks. For the rest
of the layers, ReLu activation functions are applied.

designing a myriad of state representations corresponding
to each hierarchy level and sub-goal, we share one state
set S for the whole hierarchical structure. Meanwhile, an
attention model is applied to define the importance of each
state element I(s,0) with respect to each hierarchical level
and sub-goal and then use these weights to reconstruct the
state s. The weight 8¢ is updated according to Equation 6.

A;FH = argmng“(S{H,0;‘+17a|9,“)
Y% =Re . +v0“(SL 1, OF 1 A 1167) ©6)
a 2
L(6°) = (&'~ 0°(s], 0r,4116))

When implementing the attention-based HRL, we con-
struct the option network and the action network (Figure 2),
which includes the attention mechanism as a softmax layer
in the action-value network Q%

B. Hybrid Reward Mechanism

For a sequential sub-goals HRL model [6], the reward
function is designed separately for the sub-goals and main
task. The extrinsic meta reward is responsible for the option-
level task, and meanwhile the intrinsic reward is responsible
for the action-level sub-goals. For HRL with parameterized
actions [23], an integrated reward is designed to evaluate
both option-level and action-level together.

In our work, instead of generating one reward function
which is applied to evaluate the final outputs coming from
both options and actions in one step together, we designed
a reward mechanism which can evaluate the goodness of
option and action separately during the learning procedure.
As a result, a hybrid reward mechanism is introduced so
that: 1) the algorithm gets the information of which reward
function should be triggered to get rewards or penalties;

i

Task level
reward r°

Sub-goal
reward 14

Fig. 3: Hybrid Reward Mechanism

2) meanwhile, a positive reward which benefits both option
reward and action reward occurs if and only if the whole task
and the sub-goals in the hierarchical structure have all been
completed. Figure 3 demonstrates the idea for the hybrid
reward mechanism.

C. Hierarchical Prioritized Experience Replay

In [22] the authors propose a framework for more effi-
ciently replaying experience during the training process in
DQN so that the stored transitions {s,a,r,s'} with higher
TD-error in the previous training iteration result in a higher
probability of being selected in the mini-batch for training
during the current iteration. However, in the HRL structure,
the rewards received from the whole system not only rely
on the current level, but also are affected by the interactions
among different hierarchical levels.

For the transitions {s,0,a,r°,r%,s'} stored during the HRL
process, the central observation is that if the output of the
option-value network o is chosen wrongly due to high error
between predicted option-value Q° and the targeted option-
value r° + yQ°(s’,0’), then the success or failure of the
corresponding action-value network is inconsequential to the
current transition. As a result, we propose a hierarchical pri-
oritized experience replay (HPER) in which the priorities in
the option-level are based on error directly and the priorities
in the lower level are based on the difference between errors
coming from two levels. Higher priority is assigned to the
action-level experience replay if the corresponding option-
level has lower priority. According to Equations 5 and 6, the
transition priorities for option and action level are given in
Equation 7.

P’ =¥~ (s, 0l6")

[0 I @)
Yt - Qa(St’OZ’Al|9ta)

Pl = -p°

Based on the aforementioned approaches, the Hybrid HRL
is shown in Algorithm 1, 2 and 3.

V. EXPERIMENT

In this section, we apply the proposed algorithm to the be-
havior planning of a self-driving car and make comparisons
with competing methods.

Algorithm 1 Hierarchical RL with Attention State

1: procedure HRL-AHR()
2: Initialize option and action network Q”, Q" with weights 9"/, 04 ,amd
the target option and action network Q¢ , Q% with weights 67, 6¢.

3: Construct an empty replay buffer B with max memory length /p.

4: for ¢ < 0 to E training epochs do

5: Get initial states sq.

6: while s is not the terminal state do

7: Select option O; = argmax, Q°(S;,0) based on g-greedy. O,
is the selected sub-goal that the lower-level action will execute.

8: Apply attention model to state S; based on the selected option
0,: St =1(5,,0,).

9: Select action A, = argmax, Q°(S!, 0;,a) based on &-greedy.

10: Execute A; in simulation to get S;1i.

11: R |,R}, | = HybridReward(S;,0;,4;).

12: Store transition 7 into B: T = {S,,O,,A,,Rf+1,Rf+1,S1+1 }

13: Train the buffer ReplayBuf fer(e).

14: if ¢ mod n == 0 then

15: Test without action exploration with the weights from train-

ing results for n epochs and save the average rewards.

Algorithm 2 Hybrid Reward Mechanism

1: procedure HYBRIDREWARD()

2 Penalize RY and R{ for regular step penalties (e.x.: time penalty).
3 for § in sub-goals candidates do

4 if 6 fails then

5 if option o; == 6 then

6: Penalize option reward R
7: else

8 Penalize action reward R{
9

0

if task success (all & success) then
Reward both R and Ry

—_

Algorithm 3 Hierarchical Prioritized Experience Replay

1: procedure REPLAYBUFFER(e)

2: mini-batch size k, training size N, exponents & and f3.
3: Sample k transitions for option and action mini-batch:
3 . pg Pt {0,a}
MB® ~ P8 = gE€0,a
I k) bl
Ly 7
4: Compute importance-sampling weights:
[N-Pe]P
wd="1—-—— €{o,a
max? 0 8 {o,a}
S: Update transition priorities:

0

p =

v - g(s.0.67)|

P =|r2 -0 (sl 01,A/101) | — p

6: Adjust the transition priorities to be greater than 0: p* = p® —
min(p®).
. : g _ ng JL(68) .
7: Perform gradient descent to update 6, = 6] + 0t =55~ according to
sample weights wé, g € {0,a}.
8: Update target networks weights 88 = 08, g € {0,a}.

A. Scenario

We tested our algorithm in MSC’s VIRES VTD, which is a
complete simulation tool-chain for driving applications [24].
We designed a task in which an autonomous vehicle (green
box with A) intends to stop at the stop-line behind a random
number of front vehicles (pink boxed with F)) which have
random initial positions and behavior profiles (see Figure 4).
The two sub-goals in this scenario are designed as STOP AT

TABLE I: Results comparisons among different behavior policies

Rewards Ste Step Penalty Performance Rate
Option Reward r Action Reward ¢ P "Unsmoothness Unsafe | Collision Not Stop Timeout Success
Rule 1 -36.82 -9.11 112 0.38 8.05 18% 82% 0% 0%
Rule 2 -28.69 0.33 53 0.32 6.41 89% 0% 0% 11%
Rule 3 26.42 13.62 128 0.54 13.39 31% 0% 0% 69%
Rule 4 40.02 17.20 149 0.58 16.50 14% 0% 0% 86%
Hybrid HRL 43.52 28.87 178 5.32 1.23 0% 7% 0% 93%
| .
I__h__ | 3) Reward Functions: Assume that for one step, the
M selected option is denoted as o, o € {d,f}. The reward
< dy . —I-\’/ | \7£| function is given by:
s AW S For each step:
e
d—v i . o | o Time penalty: —o.
— T N /T-/+ = « Unsmoothness penalty if jerk is too large: —I;,~1 0.
< = — > [« i |®1 I . dge df {4
dfchase dfsafe ddchase ddsafe i » Unsafe pel.lalt?,' Hddcéo.exp(ddx)]Idfc<0 exp(dfx).
Stop-line For the termination conditions:

Fig. 4: Autonomous vehicle (green box with A) approaching
stop-sign intersection

STOP-LINE (SSL) and FOLLOW FRONT VEHICLE (FFV).

B. Transitions

1) State: The state which is used to formulate the hierar-
chical deep reinforcement learning includes the information
of the ego car, which is useful for both sub-goals, and the
related information that is needed for each sub-goal.

dae

di) @

S = ve,ae,je,df,vf,af,dfc, Z];C;ddaddm
N

Equation 8 describes our state space where v,, a, and j,

are respectively the velocity, acceleration and jerk of the ego

car, while dy and d; denote the distance from the ego car

to the nearest front vehicle and the stop-line, respectively. A

safety distance parameter is introduced as a nominal distance

behind the target object which can improve safety due to
different sub-goals.

V2 — V2-
de:maX< ;a f,do), dfc:df_dfs
max
9
>)
dijs = ~——, dgc = dq—dqs
2amax

Here a4, and dy denote the ego car’s maximum deceler-
ation and minimum allowable distance to the front vehicle,
respectively, and dy. and dy. are the distances that can be
chased by the ego car (distances to the front vehicle minus
safety distance of the target). The initial positions of front
vehicles and ego car are randomly selected.

2) Option and Action: The option network in the scenario
outputs the selected sub-goal: SSL or FFV. Then, according
to the option result, the action network generates the throttle
or brake choices.

« Collision penalty: f]ldfzo,cy

« Not stop at stop-line penalty: —I, d=0~"3~

o Timeout: —Limeoud?-

o Success reward: I;,—.,,—004
where o are constants. I, are indicator functions. I. =1 if
and only if ¢ is satisfied, otherwise I, = 0.

Assume that for one step, the selected option is denoted
as 0, 0 € {d, f} and the unselected option is 0—, 0~ € {f,d}:

2
Sr = —01 — Htimeoutdd + Hdd:O.,vg:064

‘ d,-
poption _ o]Ido—c<0 exp(— 0 C) _]Ido_ :O.Vg
0" s
‘ d
paction _ .. Ij,>1.02 — Ly, <o exp(—f) —1Iz,—0.03 (10)
os
dye dfC
rmSk:SV_]Id 0€x & _]Id <0CXp(———
<0 exp(dds) <0 Xl dfs)

2
—Iji>1.00 = 1g,20.03 — Lg,=0.v¢
where sr represents the portion of the reward common to
yoption action and rlask'

For comparison, we also formulate the problem without
considering a hierarchical model via Double DQN. Then r*#*
denotes the reward for achieving the task in this flattened
action space.

C. Results

We compare the proposed algorithm with four rule-based
algorithms and some traditional RL algorithms mentioned
before. Table I shows the quantitative results for testing the
average performance of each algorithm over 100 cases.

The competing methods include:

« Rule 1: stick to the option Follow Front Vehicle (FFV).

o Rule 2: stick to the option Stop at Stop-line (SSL).

« Rule 3:if dy > (dy+car_length), select FFV, w/o SSL.

e Rule 4: if df > dy., select FFV, w/o SSL.

o Table II shows the explanations of different HRL-based

algorithms whose results are shown in Figure 5.

Figure 5 compares the Hybrid HRL method with different

setup of HRL algorithms. The results show that the hybrid

—ai— hybrid hrl
—— hrl?
——
——

task rewards

hril
hrl?
hrl?

epochs

=i
5 hybrid hrl
2 —— hrl°
—— hrl?
—s— hrl?
hrl3
' ' epochs ' '
20
0 -
B
% -20 A
5 _40- hybrid hrl
G —— hrl?
—60 —— hrl!
[—e hrl2
—80 —N hri?
0 1000 2000 3000 4000 5000
epochs
Fig. 5: Training results
TABLE II: Different HRL-based policies
Hybrid Reward Hierarchical PER Attention Model
HRL? x X X
HRL! Vv x X
HRL? v Vv X
HRL? Vi x v
Hybrid HRL 4 4 4

reward mechanism can perform better with the help of
hierarchical PER approach.

Figure 6 depicts a typical case of the relative speed and
position of the ego vehicle with respect to the nearest front
vehicle as they both approach the stop-line. In the bottom
graph we see the ego vehicle will tend to close the distance
to the front vehicle until a certain threshold (about 5 meters)
before lowering its speed relative to the front vehicle to
allow a certain buffer between them. In the top graph we
see that during this time the front vehicle begins to slow
rapidly for the stop-line at around 25 meters out before taxing

gl * ego vehicle follow front

+ ego vehicle stop at stop sign
front vehicle

—— stop-line position

Velocity (m/s)

301 distance to front vehicle
254 — stop-line position

20
15 4

10 4
54

Distance to front vehicle (m)

v T r v T -
-30 -25 —20 -15 -10 -5 0
Distance to stop-line

Fig. 6: Velocities of ego car and front vehicles

w
<
L

distance to front vehicle
40 1 —— stop-line position

w
(=]
L

~
o
L

=
(=}
L

o
L

Distance to front vehicle (m)

0.8 Ao "“‘ ‘J
. ry AL
. o v . dee ce
0.6 2 LR P i
.« dr R A S
04d o : A P
b e
- e
2] _’__..—.-.-—J""’"’ -+
0.0 T T T T T
=20 -15 -10 =5 [4]

Distance to the stop-line (m)

Fig. 7: Attention value extracted from the attention layer in
dge . .

the model. dr and fr are %‘ and # in the introduced state,

respectively.

to a stop. Simultaneously, the ego vehicle opts to focus on
stopping for the stop-line until it’s within a certain threshold
of the front vehicle, at which point it will attend to the
front vehicle instead. Finally, after a pause the front vehicle
accelerates through the stop-line and at this point the ego
vehicle immediately begins focusing on the stop sign once
again as desired.

Figure 7 shows the results extracted from the attention
softmax layer. Only the two state elements with the highest
attentions have been visualized. The upper sub-figure shows
the relationship between the distance to the nearest front
vehicle (y-axis) and the distance to the stop-line (x-axis). The
lower sub-figure is the attention value. When the ego car is
approaching the front vehicle, the attention is mainly focused
on d—f; When the front vehicle leaves without stopping at the
stop-line, the ego car transfers more and more attentions to
%; during the process of approaching the stop-line.

1.0
0.8 1 /\
fl\ train_success
0.6 —— test_success
i —— train_timeout
E — test_timeout
0.4 train_crash
test_crash
0.2 1
0.0 ™
T T T T T T T
0 100 200 300 400 500 600
epochs

Fig. 8: Performance rate of only training to Follow Front
Vehicles during the training process. Results from training
include random actions taken according to explorations.
Results from testing show average performance by testing
200 cases based on the trained network after that training
epoch.

1.0 ﬂ
0.8
train_success
0.6 —— test_success
f —— ftrain_nostop
E — test_nostop
0.4 train_crash
test_crash
0.2 4 L\
0.0 H e S| H_,._n.nu!&l
T T T T T T
0 1000 2000 3000 4000 5000
epochs

Fig. 9: Performance rate of only training to choose the
options between FFV or SSL based on the designed rule-
based or trained action-level policies. Results from Test
shows average performance by testing 100 cases based on
the trained network after that training epoch.

For the scenario of approaching the intersection with front
vehicles, one of the methods is to manually design all the
rules. Another possibility is to design a rule-based policy
of stopping at the stop-line which is relative easy to model.
Then we train a DDQN model (see Figure 8 for training
process) to be the policy of following front vehicles. Based
on these two action-level models, we train another DDQN
model (see Figure 9 for training process) to be the policy
governing which option is needed for approaching the stop-
line with front vehicles. During the training process, after
every training epoch, the simulation will test 500 epochs

train_success
—— test_success
0.8 { — train_timeout
— test_timeout
train_notstop
—— test_nostop
0.6
F
&
o
= 0.4
0.21
0.01
T T T T T T T
0 1000 2000 3000 4000 5000 6000
epochs

Fig. 10: Performance rate of Hybrid HRL training process.
Results from testing show average performance by testing
500 cases based on the trained network after that training
epoch.

without action exploration based on the trained-out network.
By applying the proposed hybrid HRL, all the option-level
and action-level policies can be trained together (see Figure
10 for training process) and the trained out policy can
be separated if the target task only need to achieve one
of the sub-goals. For example, the action-value network
of Following Front Vehicle can be used alone with the
corresponding option input to the network. Then, the ego car
can follow the front vehicle without stopping at the stop-line.

VI. CONCLUSIONS

In this paper, we proposed three extensions to hierarchical
deep reinforcement learning aimed at improving convergence
speed, sample efficiency and scalability over traditional RL
approaches. Preliminary results suggest our algorithm is a
promising candidate for future research as it is able to
outperform a suite of hand-engineered rules on a simulated
autonomous driving task in which the agent must pursue
multiple sub-goals in order to succeed.

ACKNOWLEDGMENTS

The authors would like to thank S. Bilal Mehdi of Gen-
eral Motors Research & Development for his assistance in
implementing the VTD simulation environment used in our
experiments.

REFERENCES

[1] S. Jin, Z.-y. Huang, P-f. Tao, and D.-h. Wang, “Car-following theory
of steady-state traffic flow using time-to-collision,” Journal of Zhejiang
University-SCIENCE A, vol. 12, no. 8, pp. 645-654, 2011.

[2] D.N. Lee, “A theory of visual control of braking based on information
about time-to-collision,” Perception, vol. 5, no. 4, pp. 437459, 1976.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, 1. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” arXiv preprint arXiv:1312.5602, 2013.

[4] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[5]

[6]

[7]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural
networks and tree search,” nature, vol. 529, no. 7587, pp. 484-489,
2016.

T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum, “Hier-
archical deep reinforcement learning: Integrating temporal abstraction
and intrinsic motivation,” in Advances in neural information process-
ing systems, 2016, pp. 3675-3683.

T. G. Dietterich, “The maxq method for hierarchical reinforcement
learning.” in /ICML, vol. 98. Citeseer, 1998, pp. 118-126.

N. K. Jong and P. Stone, “Hierarchical model-based reinforcement
learning: R-max+ maxq,” in Proceedings of the 25th international
conference on Machine learning. ACM, 2008, pp. 432-439.

R. I. Brafman and M. Tennenholtz, “R-max-a general polynomial
time algorithm for near-optimal reinforcement learning,” Journal of
Machine Learning Research, vol. 3, no. Oct, pp. 213-231, 2002.

W. Masson, P. Ranchod, and G. Konidaris, “Reinforcement learning
with parameterized actions,” in AAAI, 2016, pp. 1934-1940.

C. R. Baker and J. M. Dolan, “Traffic interaction in the urban
challenge: Putting boss on its best behavior,” in 2008 IEEE/RSJ
International Conference on Intelligent Robots and Systems. 1EEE,
2008, pp. 1752-1758.

V. Milanés, J. Pérez, E. Onieva, and C. Gonzilez, “Controller for urban
intersections based on wireless communications and fuzzy logic,”
IEEE Transactions on Intelligent Transportation Systems, vol. 11,
no. 1, pp. 243-248, 2009.

J. P. Rastelli and M. S. Pefias, “Fuzzy logic steering control of
autonomous vehicles inside roundabouts,” Applied Soft Computing,
vol. 35, pp. 662-669, 2015.

S. Brechtel, T. Gindele, and R. Dillmann, ‘“Probabilistic decision-
making under uncertainty for autonomous driving using continuous
pomdps,” in 17th International IEEE Conference on Intelligent Trans-
portation Systems (ITSC). 1EEE, 2014, pp. 392-399.

D. Sadigh, S. Sastry, S. A. Seshia, and A. D. Dragan, “Planning for
autonomous cars that leverage effects on human actions.” in Robotics:
Science and Systems, vol. 2. Ann Arbor, MI, USA, 2016.

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

A. Y. Ng, S. J. Russell et al., “Algorithms for inverse reinforcement
learning.” in Icml, vol. 1, 2000, p. 2.

D. Isele, A. Cosgun, and K. Fujimura, “Analyzing knowledge transfer
in deep g-networks for autonomously handling multiple intersections,”
arXiv preprint arXiv:1705.01197, 2017.

D. Isele, A. Cosgun, K. Subramanian, and K. Fujimura, “Navigating
intersections with autonomous vehicles using deep reinforcement
learning,” arXiv preprint arXiv:1705.01196, 2017.

D. Isele, R. Rahimi, A. Cosgun, K. Subramanian, and K. Fujimura,
“Navigating occluded intersections with autonomous vehicles using
deep reinforcement learning,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA). 1EEE, 2018, pp. 2034-2039.
H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double g-learning,” in Thirtieth AAAI conference on artificial
intelligence, 2016.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experi-
ence replay,” arXiv preprint arXiv:1511.05952, 2015.

M. Hausknecht and P. Stone, “Deep reinforcement learning in param-
eterized action space,” arXiv preprint arXiv:1511.04143, 2015.
“VTD homepage.” 2019. [Online]. Available: https://vires.com/
vtd-vires-virtual-test-drive

https://vires.com/vtd-vires-virtual-test-drive
https://vires.com/vtd-vires-virtual-test-drive

	I INTRODUCTION
	II Related Work
	II-A Reinforcement Learning
	II-B Behavior Planning of Autonomous Vehicles

	III Preliminaries
	III-.1 Deep Q-learning and Double Deep Q-learning
	III-.2 Double Deep Q-learning
	III-.3 Hierarchical Reinforcement Learning

	IV Methodology
	IV-A Hierarchical RL with Attention
	IV-B Hybrid Reward Mechanism
	IV-C Hierarchical Prioritized Experience Replay

	V Experiment
	V-A Scenario
	V-B Transitions
	V-B.1 State
	V-B.2 Option and Action
	V-B.3 Reward Functions

	V-C Results

	VI CONCLUSIONS
	References

