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Optimisation of Body-ground Contact for Augmenting Whole-Body

Loco-manipulation of Quadruped Robots

Wouter J. Wolfslag, Christopher McGreavy, Guiyang Xin, Carlo Tiseo, Sethu Vijayakumar and Zhibin Li

Abstract— Legged robots have great potential to perform
loco-manipulation tasks, yet it is challenging to keep the robot
balanced while it interacts with the environment. In this paper
we study the use of additional contact points for maximising
the robustness of loco-manipulation motions. Specifically, body-
ground contact is studied for enhancing robustness and manip-
ulation capabilities of quadrupedal robots. We propose to equip
the robot with prongs: small legs rigidly attached to the body
which ensure body-ground contact occurs in controllable point-
contacts. The effect of these prongs on robustness is quantified
by computing the Smallest Unrejectable Force (SUF), a measure
of robustness related to Feasible Wrench Polytopes. We apply
the SUF to assess the robustness of the system, and propose
an effective approximation of the SUF that can be computed
at near-real-time speed. We design a hierarchical quadratic
programming based whole-body controller that controls stable
interaction when the prongs are in contact with the ground.
This novel concept of using prongs and the resulting control
framework are all implemented on hardware to validate the
effectiveness of the increased robustness and newly enabled
loco-manipulation tasks, such as obstacle clearance and ma-
nipulation of a large object.

I. INTRODUCTION

Combined locomotion and manipulation tasks are a key

competence for legged robots in applications such as ware-

housing, search and rescue, and offshore inspection and

maintenance. To manipulate objects, a robot must exert

forces onto the environment. To locomote, the robot must

remain balanced and stable under the load of the manipula-

tion. The main challenge of loco-manipulation is performing

these tasks simultaneously by managing the limited resources

required to complete them: motor torques and tangential

contact forces [1], [2]. Better management of these resources

will improve the robot’s workspace, payload, robustness

and stability. This paper investigates how to improve that

management by adding contact points to a quadruped robot.

Previous work has shown that extra contact points reduce

resource consumption and improve stability. Examples are

found in humans or humanoid robots using their arms for

balance and in multi-finger and arm manipulation, [3], and

[4]–[6], and [7] respectively. Accurate force control at multi-

ple contacts increases robustness of quadrupedal locomotion,

especially in rough terrains and with disturbances [8].

Additional contacts, however, also produce challenges in

control, due to the uncertainty in estimating exact contact

locations, and dealing with non-trivial surface geometries
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Fig. 1: Body-ground contact for enabling diverse loco-

manipulation tasks: manoeuvring objects by legs.

of the contacting body. Complex contacts do not fit well

into multi-contact frameworks, which rely on simple contact

geometry, and often on contacts only occurring at the end of

the kinematic chain. This can limit the versatility of using

extra contact points such as knee-ground contact [9], sliding

[10] or rolling interactions in humanoid robots [11]. Recent

machine learning approaches address more complex contact

scenarios, such as in hand-manipulation and Jenga [12], [13]

but also have limited versatility due to challenges of learning.

In contrast, humans and animals use various parts of their

bodies to increase movement stability. We are motivated to

investigate how quadrupedal robot movement might bene-

fit from additional non-conventional body-ground contacts,

which will be evaluated in this paper.

To enable versatile body-ground contact, we equip a

quadruped robot with additional fixed limbs (see Fig. 1),

which we call prongs. These prongs are rigidly attached

to the base of the robot and ensure point-contact at a

known location. Such contact fits into the whole-body force

control pipeline shown to be versatile in other multi-contact

scenarios [14]. Rigidly connecting the prongs to the robot’s

torso means they will reduce actuator loads by supporting

the robot’s weight when they are in contact with the ground,

thereby allowing the robot to perform additional tasks. Note

the contrast between prong-ground and belly-ground contact:

by using prongs, we know the exact contact locations,

which would be difficult to estimate when using the belly.

Furthermore, the height of the prongs allows the body to

be mobile while maintaining contact with the ground, which

would be more difficult with belly-ground contact.

Prong-like concepts are seen in wheeled platforms. Using

outriggers, a wheeled robot can resist more disturbance force

[15] [16], with an estimate of the benefits found in [17].



Legged robots can be augmented with wheels or skates at

the feet to speed up locomotion in easy terrain [18], [19], or

with a tail to counteract inertial shifts during fast locomotion

[20]. Augmentations proposed in this paper can be used in

parallel with those mentioned above.

While the prongs provide controllable ground contact,

three open questions remain: how to design prongs so

they provide maximal benefit, how to deal with the control

challenges posed by body-ground even with the simplified

point contacts, and how to plan motions while deciding if

and how to make contact with the prongs. The focus of this

paper is proof-of-concept and analysis of enabling body-

ground contact, therefor it considers neither planning, nor

further mechanical enhancement such as retractable prongs.

We first deal with prong design, which must consider

placement, ground-clearance (length), manipulability and

disturbance rejection capabilities. We define the Smallest

Unrejectable Force (SUF) as a metric to quantify disturbance

rejection ability in loco-manipulation tasks under actuation

limits and interaction constraints, and provide a fast-to-

compute approximation, which are used optimise the design

of the prongs. Our approach extends previous work showing

the importance of optimizing posture for robustness [2], [21].

To control the robot with prongs, we use the established

framework for modern quadruped robots: Quadratic Pro-

gramming (QP) based inverse dynamic controllers [8], [14],

[22], [23]. However, these controllers were designed for

contacts at the ends of the kinematic chain, not at the torso.

The control of non-end-effector limb contact has been stud-

ied in manipulation [24] considering contacts with moving

obstacles which do not kinematically constrain the contact

limbs. When using prongs, the torso will be constrained, and

the above controllers might become unstable. We propose

a hierarchical QP controller that uses body-ground contact

constraints to minimise motor torques.

A. Contributions

Our paper studies the design of prongs for body-ground

contact in quadrupedal robots. We validate their performance

in three hardware experiments: push-rejection, obstacle clear-

ance and object manipulation. The last two experiments use

two conventional legs freed for manipulations by the support

of the prongs. This provides the following contributions:

1) A proof-of-concept prong design for the ANYmal robot

which enables effective body-ground contact (Sec. III).

2) A novel method to quickly compute an approximation

of the Smallest Unrejectable Force, a measure for the

robustness of the robot (Sec. IV).

3) Metrics for benchmarking the robustness and stability

of a robot with and without prongs (Sec. VII).

4) A hierarchical QP controller that enables the robot to

be operated with prongs by including contact constraints

on base movement (Sec. VI).

Section II explains our notation for robot dynamics. Sec-

tion III discusses the optimal design of the prongs. Our

robustness measure, the SUF, and novel approximations of

it are explained in Section IV. Section V shows results from

simulations and optimisations. Section VI explains our con-

troller for the hardware experiments. Hardware experiments

highlighting the efficacy of the prongs are shown in Sect.

VII. Finally, discussion and conclusion are in Secs. VIII and

IX.

II. PRELIMINARIES/ROBOT DYNAMICS

The dynamics of a quadrupedal robot with a manipulator,

and prongs attached, as shown in Figure 2, are given by:

M(q)q̈+h(q, q̇)=d(q̈, q̇, q)=Bτ+J⊤
f λf+J⊤

p λp+J⊤
e F, (1)

where q are the generalised coordinates of the robot describ-

ing the position and orientation of the body, and the position

of each joint, M(q) is a positive definite mass matrix, h(q, q̇)
is the dynamic bias containing of centrifugal, Coriolis and

gravitational effects, τ are the joint torques, B is a selection

matrix, Jf, Jp and Je are the Jacobians of the feet, prongs

and end-effector of the arm respectively, and λf, λp and F

are external (reaction) forces at those points.

These equation of motions are subject to further con-

straints to ensure physically feasible ground interaction and

joint/motor torques. Ground interaction constraints ensure

the robot does not slip or penetrate the ground, and are

only considered when the associated body part is in ground

contact. For computational efficiency, these conditions are

approximated as linear constraints for each contact point i:
[

0 0− 1
]

λi ≤ 0 (2)
[

1 0 − 1

2

√
2µ

]

abs(λi) ≤ 0 (3)
[

0 1 − 1

2

√
2µ

]

abs(λi) ≤ 0 (4)

Jiq̈ + J̇iq̇ = 0 (5)

where µ is a friction coefficient, and the abs-operator returns

the piece-wise absolute value. Additionally, the motor capa-

bilities are reflected in bounds on the joint torque for each

joint index i and torque limit τ̄i:

−τ̄i ≤ τi ≤ τ̄i. (6)

III. OPTIMAL PRONG DESIGN

The prongs enlarge the buffer between the motor torque

limits and the torques required to stand, which can then

be used to reject disturbances or perform secondary tasks.

However, the magnitude of the benefits depend on how the

prongs are placed and sized. To investigate the effects of the

prong design we focus on a scenario in which a force is

applied at the end-effector of an arm attached to the torso of

a robot (Fig. 1). We find the effect of prong placement on the

size of the disturbance the end-effector can sustain without

moving the robot. We then optimise the prong placement and

the robot configuration for this robustness measure.

By using a two prong configuration, the robot can either

fix torso pitch (by grounding both prongs) or allow pitching

(by grounding one prong) depending on task requirements.

To ensure symmetry both prongs have equal length, and are

placed on the x-axis of the robot frame. Furthermore, we

enforce a symmetric position of the feet. In this configura-

tion, maximum robustness is achieved when the prongs are
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furthest apart, so prongs are placed as far apart as possible

without interfering with the leg motion. As a result, the

optimisation only requires three parameters:

max
{xf ,yf ,bz}

FSUF(xf , yf , bz), (7)

where the SUF is a measure for the robustness (defined in the

next section) and xf , yf and bz are the feet x and y position

and torso z position. These decision variables are shown in

Figure 2. When optimizing prong position, the prong length

matches the height of the torso. To solve the inverse kinemat-

ics, we use a standard iterative procedure with the transpose

Jacobian, which requires no further regularization.

IV. SMALLEST UNREJECTABLE FORCE

A key element of he robustness of a robot is the amount of

external force it can withstand while tracking a target motion.

Computing such forces and associated robustness metrics

can be done via Feasible Wrench Polytopes, as discussed

for legged robots in [25], and for manipulation in [26].

The FWP is the set of wrenches applied to the robot, such

that the ground reaction forces and joint torques required to

execute the desired motion stay within the friction cone and

motor limits respectively. Here, we are interested in a slight

variation: the Rejectable Force Polytope (RFP), the set of

forces that can be applied to the robot at the end-effector,

such that it is able to perform the desired accelerations while

satisfying the constraints in Eqs. 1-6.

FRFP(q, q̇, q̈d) = {F ∈ R3|Eqs. 1-6 hold for some values

of(λf , λp and τ), q̈ = q̈d}, (8)

where q̈d is the desired acceleration. The RFP is a polytope,

as the constraints are linear in the free variables.

In practice, it is desirable to summarise the RFP into a

single robustness metric. For this we propose the Smallest

Unrejectable Force: the smallest disturbance force the robot

cannot withstand while performing its desired motion. This

is the same as finding the the Chebyshev radius of the RFP,

but with the centre of the circle fixed to the origin.

The scheme from [27] can compute the exact RFP, but

its computation time does not scale well with the number of

contacts and joints, as it requires a transition between vertex-

representation of the FWP to its half-space-representation.

Computing the SUF from the RFP is also computationally

expensive, so a simplified metric that finds the Smallest

Unrejectable Force in a single predetermined direction was

proposed in [25]. Here we propose and investigate three

approximations of the SUF: Fibonacci, affine, and quadratic.

The Fibonacci approximation is based on an inner (con-

servative) approximation for the RFP. Points on the boundary

of the RFP are found by solving the optimisation problem:

max
f,λf ,λp,τ

f s.t. Eqs. 1-6, F = fF̂

where the resulting f is the maximum feasible scaling

factor for force in the direction F̂ , considering the dynamic

equations and leg joint torque limits τ̄ .

Fig. 2: Rejectable Force Polytope and maximal rejectable

force for optimised robot configuration with prong (bottom)

and without prongs(top). The end-effector is set to a world

frame position: {0.8m, 0.2m, 0.4m}.

The approximation of the RFP is the polytope spanned

by vertices found by solving the above optimisation for a

set of approximately uniformly distributed force directions

according to the Fibonacci-sphere.

To determine the size, ρ of the Smallest Unrejectable

Force, we check for each halfspace that determines the

polytope to check if the worst case force direction would

violate the associated constraint at that value of ρ. Given

half-space representations aiF ≤ bi, where i indices the

halfspaces of the RFP, we know the worst case force is in

the direction of ai (see [28]). Hence we solve the following

optimisation problem using enumeration:

max
ρ

ρ s.t. ρ||ai|| ≤ bi ∀i = max
i

(bi||ai||−1) (9)

The Fibonnacci approximation still requires a conversion

from vertex to halfspace representation. The computation

time depends on the number of vertices sampled. We use

1024 samples for a high quality approximation.

The affine and quadratic approximations of the SUF do not

compute the RFP explicitly. Instead, they find the worst case

disturbance force (similar as above), while simultaneously

solving for an optimal control law determining how the

joint-torques and ground reaction forces change with the

disturbance force. As the true (nonlinear) optimal control

law cannot be computed efficiently, the two approximations

assume an affine and quadratic control law respectively [29].
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The optimisation problems deviate slightly from those in

[29] to simplify handling of the equality constraints for this

specific scenario, and to search for the largest sphere centred

around the origin, rather than around an arbitrary point.

First reparametrise the control equations:

[

F τ λ
]⊤

=

[

I 0
−W+J⊤

e N

] [

F

δQ

]

+

[

0
W+d

]

where δQ are combinations of joint-torques and ground

reaction forces in the null-space of the dynamics equation,

which are solved using the matrix W =
[

B J⊤
f J⊤

p

]

, the

matrix N is a basis for the nullspace of W and the Moore-

Penrose pseudo-inverse is indicated by a +.

The affine approximation optimises an affine control law

from disturbance to reaction forces and torques:

δQ = δQ0 + V F (10)

where δQ0 are nominal joint torques and ground reaction

forces, and V is a gain matrix. These parameters are opti-

mised along with the size of the SUF (ρ), via the conical

quadratic program:

max
ρ,δQ0,V

ρ s.t.
[

0 δQ0

]

ai +
∣

∣

[

ρI V ⊤
]

ai
∣

∣ ≤ bi ∀i (11)

the constraint coefficients in ai and bi are taken from Eqs.

3-6. The quadratic approximation uses a quadratic control

law. The resulting semi-definite program is included in the

Appendix.

V. SIMULATION EXPERIMENTS

This section first compares the proposed approximations

on computational efficiency and accuracy. Then the prong

optimisation problem from Section III is solved using the

affine approximation of the SUF.

A. Comparing Approximation Methods

This section compares the computation time and accuracy

of all computation methods: exact, single direction [25],

Fibonacci, affine and quadratic. The simulations were im-

plemented with Julia’s libraries for rigid body dynamics

[30] and optimisation [31], [32]. The code ran on a PC with

Intel Core i7-7830x processor and 32Gb of memory.
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To compare the approximations the SUF was computed for

random robot configurations from two scenarios: 1) tele-op-

eration scenario, similar to [27], in which there is no arm

attached to the robot, three legs are on the ground, and the

remaining leg is used as end-effector 2) a scenario with an

arm attached to the robot functioning as end-effector, and all

four legs of the robot in contact with the ground (see Fig 2).

The results, shown in Table I, affirm the slow computation

of the exact method. The affine and quadratic approxima-

tions are faster than the Fibonacci approach. The quadratic

approximation scales less well to the arm-attached scenario,

due to the number of parameters in the quadratic term of the

control law. The single direction approach is clearly fastest.

Figure 4 conveys the quality of the approximations, by

comparing the sizes of their SUFs relative to exact compu-

tation. Only the arm-attached scenario is shown to highlight

the potential differences in quality, as those are larger in

that scenario. The quadratic and Fibonacci approximations

are very close to exact, with the affine approach resulting

in slight underapproximations. The affine approximation

failed to converge once due to numerical issues. Note these

three approximations are conservative. The single-direction

approximation is shown to have poor accuracy. Furthermore,

this approach overestimates of the SUF, which is undesirable

for robustness analysis. Due to the favourable trade-off

between conservativity, accuracy and computation time, the

affine approximation is used in the remainder of this paper.

B. Optimizing Robust Body-Ground Contact

We optimised the prong length and placement, in order to

maximise the SUF for a fixed end-effector position, see Eq.

7. The results of this optimisation are shown for scenarios

with and without prong in Figure 2. Shown are the optimal

configuration of the robot, the resulting rejectable force

polytope, and a sphere with the SUF as radius. The forces are

scaled using a ‘stiffness’ of 1000Nm−1. The polytopes and
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TABLE I: Computation time of SUF-approximations in ms

Task Exact Fibonacci Affine Quadratic Single

teleoperation 4301 588.8 13.8 84.169 4.65
manipulation 37747 727.0 17.49 709.1 4.93

Fig. 5: The push recovery experimental setup. The robot is

pushed using a stick with a force/torque sensor.

spheres are translated, such that their origin (0 disturbance

force) is at the end-effector. The minimal non-rejectable

forces are 88N and 96N respectively.

To show the efficacy of prongs, we also found the SUF

given a body height, optimising only the foot locations, see

Figure 3. Slight noise is caused by approximations in the IK

algorithm. When the prongs are attached, the SUF is pointed

upwards, and is limited by the unilaterality conditions. The

prong’s length has little effect in this direction, so does not

effect the SUF. Therefore, the prong length can be decided

by other considerations: ground clearance and a minimum

height from the base. The prongs also have little effect on the

SUF when the torso height is larger, as the robot legs are then

close to their singular position, which limits joint torques.

However, as this singularity comes with mobility and control

issues, such heights are undesirable. For more practical torso

heights we see that the prongs provide a benefit of up to 35%.

VI. CONTROLLER DESIGN

The whole-body-control of ANYmal uses the well es-

tablished hierarchical QP paradigm [33]. To ensure the

robustness of this control paradigm, some additions have

been proposed recently. For example, the techniques from

[22] aim to improve robustness against joint tracking errors.

In this paper, we follow the hierarchical QP framework by

combining the foot contact constraints and the prong contact

constraints into a single augmented contact Jacobian. As

such, the prong and foot contacts are considered in the same

way and their forces are optimised simultaneously.

At each time-step, as part of the QP, the controller min-

imises an error between the desired and actual task-space

accelerations space: ||ẍ−ẍd||2w, with the desired accelerations

based on the error e in the task space position. If for

ẍ = ẍd the kinematic constraints do not hold, i.e. the system

is overconstrained with respect to its desired movement,

minimising the acceleration error might lead to unstable

behaviour. To ensure a solution that stabilises the robot, we

use a whole-body controller consisting of the following five
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Fig. 6: Comparison of torso displacement, maximum push

force and required motor torque (left front knee) when

pushing the robot with (red) and without (blue) prongs.

hierarchical layers, each solving a QP. Each layer ensures that

the optimality conditions of the previous layers are satisfied,

i.e., it optimises in the nullspace of the previous layers.

1) Dynamic feasibility: finds any feasible solution for the

dynamic constraints, Eqs. 1-6.

2) Torso angular acceleration tracking: minimises the error

between the desired angular acceleration and the exe-

cuted angular acceleration.

3) Torso translational acceleration tracking: when the

prongs contact the ground, this layer has no effect on

the outcome, as translational acceleration is not in the

available nullspace. This prevents unstable behaviour.

4) Swing foot acceleration tracking

5) Torque minimisation: minimises the sum of squared

motor torques, in order to reduce energy consumption.

The implementation also reduces computational load via the

trick from [34] to avoid directly computing the torques.

VII. HARDWARE EXPERIMENTS

To validate the use of prongs, we perform three exper-

iments. 1) Pushing the robot to assess the joint-torques.

2) Clearing out an obstacle with the robots’ conventional

legs, freed for this task by the prongs. 3) Lifting a box with

two side legs, to establish the versatility of the controller.

A. Push Recovery

To verify that our controller is able to use the prongs to

enhance the robustness of the robot, we push the robot with

a rod equipped with a force-torque sensor. The experiment

is shown in Figure 5. In the experiment, we push the robot

horizontally on the middle of the base. The robot is in the

same configuration for both experiments, which is the default

standing configuration of the robot-platform with the torso

5



Fig. 7: The robot leaning on both prongs to push a box away. From top left: From a standing position (1), the robot lowers

itself onto the prongs (2), which enables the front legs to be lifted from the ground. These front legs are used to push the

box (3), which is pushed out of the way (4-6), clearing space for the robot to move into.

Fig. 8: The robot leaning on both prongs to push a box away. From top left: From a standing position (1), the robot lowers

itself onto the prongs (2), which enables the front legs to be lifted from the ground. These front legs are used to push the

box (3), which is pushed out of the way (4-6), clearing space for the robot to move into.

Fig. 9: The support provided by the prongs is used to free two of the legs for a manipulation task (i.e., lifting a box)

Fig. 10: Motion stills of a second box lifting experiment, using a differently sized box.

height lowered to the height of the prongs. The force is

gradually increased up to approximately 30 N. After holding

this force for 5 seconds, the force is reduced to 0.

Figure 6 shows the base displacement, disturbance force

and motor torque during the experiment. The key result

is found by comparing the effective compliance and the

amplification factor between disturbance force and motor

torque during the period of maximum push force. The motor

torque is significantly lower with prong, despite a slightly

stiffer torso behaviour. These reduced knee-joint torques

result in a capacity to reject larger disturbance forces.

B. Obstacle Clearance

The second experiment shows robot’s ability to perform

basic manipulation using the prongs. Standard quadrupeds

would be unable to perform manipulation with more than

one leg, as they are required for standing. The prongs take

over responsibility for standing, freeing the legs for manipu-

lation. Using the free-gait motion description library [35], we

generate a sequence of body and end-effector targets, such

that the robots pushes an obstacle away.

The resulting motion can be seen in Figures 7 and 8.
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Note that, by necessity, the legs of a quadruped are equipped

with relatively strong motors, which makes them well suited

for obstacle clearing tasks such as this. Performing such a

task is only possible when relying on body-ground contact.

Enhancing the capabilities of the robot to allow obstacle

clearing makes them more versatile in rough terrain.

C. Lifting Box

Experiment three shows controlled torso mobility while

the prongs contact the ground, and further manipulation with

the legs. The robot lowers on its prongs, and leans to its right

side, freeing the left side legs for manipulation. The legs are

controlled in task-space with low-gains, allowing basic dual

arm manipulation: picking up a box. Figures 9 and 10 shows

snapshots of this motion, lifting two different boxes. This and

the previous experiment are captured in the accompanying

video.

When lifting the left-side legs, the desired ground-contact

force changes quickly, which can result in jerky motions. To

counteract such motions, we enforce a smooth contact force.

Future work on control should focus on the capability of the

robot to track more rapid transitions.

VIII. DISCUSSION

The improvement in robustness and manipulation capa-

bilities introduced by the body-ground contact opens several

applications, improving the intervention capabilities in robots

deployed for exploration and monitoring. However, body-

ground contact needs further research before quadrupeds are

ready for such applications.

There are three main areas of improvement for future

work. First is extending the affine and quadratic approxi-

mations of the SUF. Knowledge about the distribution of

contact forces can be used to bias the robustness measure

towards more likely disturbances. With further improvements

to the computational efficiency, these approximations could

be incorporated in real-time planning and control. Second

is incorporating body-ground contact in motion planning.

Making decisions about when to use the prongs (for robust-

ness) and when not (for speed), maximising the utility of the

prongs is a challenging problem due to the intermittent nature

of the contact. Third is applying prongs to body-environment

contact with other robot morphologies. Two examples are: a

quadruped increasing its robustness by leaning sideways on

a wall with its body, and a robot arm increasing its accuracy

by contacting a table with a prong on its elbow.

IX. CONCLUSION

This paper studied the use of prongs to enable body-

ground contact in quadrupedal robots. We showed that using

prongs increases the robustness of the robot, as measured

by its ability to reject forces applied to the end-effector, by

up to 35 %, largely independent on prong length.

We applied an optimisation-based whole-body controller

that handles the constrained body motion resulting from

body-ground contact. On the hardware, we verified the

increased robustness in the form of push resistance with

limited motor torques. We also showed obstacle clearance

and basic object manipulation, two capacities added by the

prongs freeing the legs from their body-support task.

APPENDIX

To compute the SUF, it is also possible to use a quadratic

inverse dynamics law. Optimising this law for maximal force

rejection, is a semi-definite program. The program is detailed

below, adapted from [29].

max
ρ,δQ0,V,W,ζ,ξ

ρ s.t. ζ ≤ b (12)

ξ ≥ 0 (13)






ζi − ξi − a
⊤

i

(

0

δQ0

)

−

1

2
a
⊤

i

(

ρI
V

)

−

1

2

(

ρI
V

)

⊤

ai ξi −
∑n2

j
aij+n1

Wj






� 0 ∀ i (14)

Here the quadratic term of the inverse dynamics law is W ,

and we introduced two helper variables ξ and ζ.
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