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Abstract— State representation learning (SRL) in partially
observable Markov decision processes has been studied to learn
abstract features of data useful for robot control tasks. For SRL,
acquiring domain-agnostic states is essential for achieving effi-
cient imitation learning. Without these states, imitation learning
is hampered by domain-dependent information useless for con-
trol. However, existing methods fail to remove such disturbances
from the states when the data from experts and agents show
large domain shifts. To overcome this issue, we propose a
domain-adversarial and -conditional state space model (DAC-
SSM) that enables control systems to obtain domain-agnostic
and task- and dynamics-aware states. DAC-SSM jointly opti-
mizes the state inference, observation reconstruction, forward
dynamics, and reward models. To remove domain-dependent
information from the states, the model is trained with domain
discriminators in an adversarial manner, and the reconstruction
is conditioned on domain labels. We experimentally evaluated
the model predictive control performance via imitation learning
for continuous control of sparse reward tasks in simulators and
compared it with the performance of the existing SRL method.
The agents from DAC-SSM achieved performance comparable
to experts and more than twice the baselines. We conclude
domain-agnostic states are essential for imitation learning that
has large domain shifts and can be obtained using DAC-SSM.

I. INTRODUCTION

In the context of imitation learning, it is natural to assume
that the data from experts and agents have domain shifts [1].
For achieving efficient imitation learning in partially ob-
servable Markov decision processes (POMDPs), it is es-
sential to acquire domain-agnostic state representation from
observations. Without the domain-agnostic states, imitation
learning is hampered by domain-dependent information, e.g.
appearance of robots, which is useless for control of the
robots. However, current state representation learning (SRL)
methods [2] fail to remove such disturbances from the states.
In imitation learning, a discriminator serves as an imitation
reward function to distinguish the state-action pairs of the
experts from those of the agents [3]. If the obtained states
are NOT domain-agnostic, the discriminator is disturbed by
the domain-dependent information, which is eye-catching but
unrelated to tasks. As a result, the imitation rewards become
unsuitable for the control, and imitation learning will be
disrupted.

Fig. 1 shows examples of domain shifts between the data
from an expert and agent. We define the domain shifts as
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(a) Domain shifts of colors, 

backgrounds and  viewing  angles. 

(b) Domain shifts by changing

objects. (Human and robot fingers)

Expert domain Agent domain Expert domain Agent domain

Fig. 1. Examples of domain shifts between experts and agents. We define
the domain shifts as control-irrelevant changes in data like appearance.
(a) Colors, backgrounds and viewing angles are different between the
two domains. (b) The appearance of objects is different between the two
domains. Human and robot fingers hold connectors in the expert and agent
domain, respectively.

control-irrelevant changes of the data like appearance: e.g.
colors, textures, backgrounds, viewing angles, and objects
that are unrelated to the control. The domain shifts are,
for example, caused by changing camera settings, location
of data collection, appearance of the robot and so on. The
domain shifts are also caused when unseen objects in one
domain appear in the other domain. For example, an operator
will be present in the expert images when she/he makes
demonstrations via the direct teaching mode of a robot like
Fig. 2 (a) and (b). In this case, the existence of the operator
in the images is the cause of the domain shifts.

To overcome these domain shifts, in this paper, we pro-
pose a domain-agnostic and task- and dynamics-aware SRL
model, called a domain-adversarial and -conditional state
space model (DAC-SSM). Fig. 2 shows how our DAC-SSM
achieves the efficient imitation learning compared to the
existing models. We pre-collected the expert and novice data,
optimal and non-optimal trajectories in an expert domain,
like Fig. 2 (c) and (e). The agent data, like Fig. 2 (d)
and (f), are collected during training. Fig. 2 (g) shows
domain-agnostic state space obtained via DAC-SSM. Higher
rewards are provided to the agents for optimal behavior,
even when the agent data have large domain shifts from the
expert data. Unlike DAC-SSM, the agents can not receive
appropriate rewards in domain-aware state space via existing
SRL method, like Fig. 2 (h).

DAC-SSM builds on a recurrent state space model
(RSSM) [4], and is trained with an optimality discriminator
and a domain discriminator. The optimality discriminator
serves as an imitation reward function. To remove the
domain-dependent information from the states, (1) the state
space is trained with the domain discriminator in an adver-
sarial manner, and (2) the encoder and decoder of DAC-SSM
are conditioned on domain labels. The domain discriminator
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Fig. 2. Imitation rewards computed from image observations via domain-agnostic and -aware state space models. (a) and (b) show examples of expert
image observations, and collection method of expert and agent data, respectively. In the expert images, human fingers hold a connector. In the agent
images, robot fingers hold the connector. Therefore, appearance differs between the expert and agent domains. (c) and (d) show optimal trajectories of
a connector insertion task from an expert and agent domain, respectively. (e) and (f) show non-optimal trajectories from the expert and agent domain,
respectively. The middle diagram shows flow of the imitation rewards computation. Latent states are inferred from the image sequences via the state space
models. Then the imitation rewards are calculated by an optimality discriminator DO from the obtained states. (g) and (h) show the imitation rewards
from domain-agnostic and domain-aware states, respectively. In the domain-agnostic state space obtained via our DAC-SSM, the imitation rewards are
high for the optimal trajectories, without relation to the domains. In the domain-aware state space, however, the imitation rewards are low for the optimal
trajectories from the agent domain, because the expert and agent domains are distinguishable for the optimality discriminator.

is trained to identify which domain the acquired states belong
to. The negative loss function of the domain discriminator,
called the domain confusion loss [5], is added to the loss
function of the state space. To reduce the domain confusion
loss, the states are trained to be domain-agnostic. In other
words, due to the domain confusion loss, DAC-SSM is
trained to infer the states that have few clues for the domain
discriminator to distinguish domain of the states. Moreover,
the states are disentangled by conditional domain labels
for the encoder and decoder, like conditional variational
autoencoders (CVAE) [6]. Owing to the disentanglement,
the domain-dependent information is eliminated from the
state representation. Because DAC-SSM jointly optimizes the
state inference, observation reconstruction, forward dynam-
ics, and reward models, the obtained states are also task- and
dynamics-aware as well as domain-agnostic.

The main contribution of this work is a method to
obtain the domain-agnostic states for imitation learning
in POMDPs, using domain confusion loss and domain-
conditional encoder and decoder. We experimentally com-
pared our proposed model, DAC-SSM, to the existing SRL
methods in terms of model predictive control (MPC) perfor-

mance via imitation learning for continuous control sparse
reward tasks of robots in the MuJoCo physics simulator [7].
The agents in DAC-SSM achieved a performance comparable
to the expert and more than twice that of the baselines. We
also demonstrated that DAC-SSM successfully eliminated
domain specific information like appearance from the states.

II. RELATED STUDIES

A. State representation learning

SRL has been studied to obtain compact and expressive
representation of robot control tasks from high-dimensional
sensor data, such as images [2]. Appropriate state repre-
sentation enables agents to achieve high performance for
discrete and continuous control tasks from games [8] to
real robots [9]. Sequential state space models, in which
historical information of a control system is propagated
via contextual states, have been shown to improve the
performance and sample efficiency of robot control tasks.
For example, previous work [4] proposed deep planning
network (PlaNet), a planning methodology in the latent space
obtained via RSSM. In RSSM, the obtained states are task-



and dynamics-aware because the state inference, observa-
tion reconstruction, forward dynamics, and reward models
are jointly optimized. Previous work [10] also proposed a
sequential state space model that is jointly optimized with a
policy. Previous work [11] jointly optimized the optimality
discriminator using policy, forward and inverse dynamics,
and action models to obtain task- and dynamics-aware state
representation. Their state representation, however, is not
domain-agnostic.

B. Domain-agnostic feature representation

There are roughly two types of approaches to obtain
domain-agnostic feature representation: domain-adversarial
training and disentanglement. The domain-adversarial train-
ing is a simple and effective approach to extract feature
representation which is unrelated to domains of data. Pre-
vious work [5], [12] added the domain confusion loss to the
loss function of the feature extractor. The domain adversarial
training is also used for sim-to-real transfer learning [13],
[14]. Similar approach is introducing a gradient reversal
layer [15] which back-propagates a negative gradient of the
domain discriminator loss to the feature extractor.

CVAE [6] is a simple and well-known disentanglement
method. In CVAE, the encoder and decoder are conditioned
on labels to disentangle label-related and -unrelated informa-
tion in the latent spaces. Previous work [16] proposed cross-
domain autoencoders to disentangle shared and exclusive
features between two domains. Previous work [17] used pri-
vate and shared encoders to disentangle domain-specific and
-invariant components of the representation. They applied
domain adversarial loss to train the shared encoder to extract
the domain-invariant features. Thus, this method is combina-
tion of the domain-adversarial training and disentanglement.
They demonstrated that the obtained features were useful for
several downstream tasks like classification.

C. Imitation learning

Imitation learning [18] is a powerful and accepted ap-
proach that makes the agents mimic expert behavior by
using a set of demonstrations of tasks. Previous work [3]
proposed an imitation learning framework called Generative
Adversarial Imitation Learning (GAIL). In GAIL, imitation
rewards are computed by the optimality discriminator, which
distinguishes if a state-action pair is generated by an agent
policy or from the expert demonstrations. They formulated
a joint process of reinforcement learning and inverse rein-
forcement learning as a two-player game of the policy and
discriminator, analogous to Generative Adversarial Nets [19].
GAIL has been shown to solve complex high-dimensional
continuous control tasks [20]–[23].

D. Imitation learning with the domain shifts

Using common measurable features is one of the pop-
ular approaches for the imitation learning with the do-
main shifts. For example, keypoints of objects [24] and
marker positions [25], [26] are tracked as the states. In
these approaches, one can directly apply existing imitation

learning techniques without focusing on the domain shifts.
However, such features are not always available. Previous
work [27] added the domain confusion loss to the optimality
discriminator to make it domain-agnostic. By computing the
imitation reward using the discriminator, they successfully
achieved imitation learning from third-person perspective
images. Their approach, however, does not include SRL,
and suffered from sample inefficient nature of model-free
reinforcement learning.

E. Imitation Learning from Observation

Imitation learning from observation (IfO) assumes that
demonstration data have only states or observations [1]. In
IfO, action information is not observable in the demonstra-
tion data. It is more practical problem setting than imita-
tion learning, but harder to achieve precise tasks. Previous
work [28] achieved IfO from human motion capture data.
They extracted hand-designed features from human and robot
data to absorb difference between their body structures. Their
method, however, heavily depends on the feature design.
Previous work [29] proposed a context translation model to
predict a desired future observation from a pair of target
observations at the first timestep and demonstrated source
observations. The agent was trained to generate observations
that match the predicted desired observations. The context
translation model, however, requires pairs of source and
target trajectories carefully aligned along timesteps. Previous
work [30] trained a feature extractor from images using
contrastive learning. They selected positive images from the
same timestep in different viewpoints, and negative ones
from distant timesteps in the same viewpoint. Thus, they ob-
tained viewpoint-agnostic states. These works enabled their
agents to roughly imitate human demonstration, but they did
not apply their method to more complex and highly accurate
control tasks. Previous work [31] used Cycle-GAN [32] to
generate instruction images in the agent domain from human
demonstration. The generated images were used to calculate
rewards for MPC. Their approach, however, requires a large
amount of human and robot data beforehand.

III. PROPOSED METHOD

In this section, we explain DAC-SSM and planning algo-
rithm. DAC-SSM is a state space model to obtain domain-
agnostic states by introducing combination of simple domain
adversarial training and disentanglement. In Sec. III-A, we
formulate our models of our proposed method. In Sec. III-
B, we describe the domain and optimality discriminators.
In Sec. III-C, we further explain the training architecture
of DAC-SSM. In Sec. III-D, we describe the planning
algorithm.

A. State space model

Fig. 3 shows a graphical model of our DAC-SSM. It is
modeled as POMDPs. In POMDPs, an individual image
does not have all the information about the states. Therefore,
our model builds on RSSM, which has contextual states to



ℎ4ℎ1 ℎ2 ℎ3

𝑠1 𝑠2 𝑠3

𝑎1 𝑎2

𝑜1 𝑜2 𝑜3

𝑦

𝑠4

𝑜4

...

...

...

𝑎3 ...

Fig. 3. Graphical model of our DAC-SSM. A discrete time step: t,
contextual deterministic states: ht, stochastic states: st, image observations:
ot, continuous actions: at, and domain labels: y.

propagate historical information. We use the following nota-
tions: a discrete time step, t, contextual deterministic states,
ht, stochastic states, st, image observations, ot, continuous
actions, at, and domain labels, y. The model follows the
mixed deterministic/stochastic dynamics below:
• Transition model: ht = f(ht−1, st−1, at−1)

• State model: st ∼ p(st|ht)
• Observation model: ot ∼ p(ot|ht, st, y)

Transition model f(ht−1, st−1, at−1) was implemented as a
recurrent neural network. To train the model, we maximized
the probability of a sequence of observations in the entire
generative process:

p(o1:T |a1:T , y) =
∫ ∏

t

[
p(st|ht)p(ot|ht, st, y)

]
ds1:T

where ht =f(ht−1, st−1, at−1)

(1)

Generally this objective is intractable. We utilize the fol-
lowing evidence lower bound (ELBO) on the log-likelihood
by introducing the posterior q(st|o≤t, a<t, y) to infer the
approximate stochastic states.

ln p(o1:T |a1:T , y)

≥
T∑

t=1

Eq(st|o≤t,a<t,y)

[
ln p(ot|ht, st, y)

]
− Eq(st−1|o≤t−1,a<t−1,y)

[
KL[q(st|o≤t, a<t, y)||p(st|ht)]

]
=− LRSSM

(2)

The posterior q(st|o≤t, a<t, y) and the observation model
p(ot|ht, st, y) are implemented as an encoder and decoder,
respectively. They are conditioned on the domain labels, y.
The domain labels help them to change their behavior de-
pending on the domain. The domain-dependent information
is eliminated from the obtained states st and ht, like CVAE.

B. Domain and optimality discriminators

We further introduce the domain and optimality discrim-
inators, Dd and DO. The role of the domain discriminator
is computing the domain confusion losses. The optimality
discriminator serves as an imitation reward function. We
utilized three types of datasets: the expert, novice and agent
data. The expert data are successful trajectories in the expert

domain, whereas the novice data are non-optimal trajectories
in the expert domain. We pre-collected the expert and novice
data. By using both of them, the domain discriminator
becomes agnostic on the optimality because these data are in
the same domain but have different optimality. Similarly, the
optimality discriminator becomes agnostic on the domain,
but aware of the optimality. The agent data are collected
during training. We denote replay buffers for the data from
the agents, experts, and novices as BA, BE , and BN , re-
spectively. The loss function of the domain discriminator is
denoted as follows:

LDd =2× Eht∼BA
[lnDd(ht)]

+ Eht∼BE
[ln(1−Dd(ht))]

+ Eht∼BN
[ln(1−Dd(ht))]

(3)

Here, we introduce a simple abbreviation of the expectation
to avoid complexity:

Eht∼B[·] ≡Eo≤t−1,a≤t−1,y∼B Est−1∼q(st−1|o≤t−1,a<t−1,y)
ht=f(ht−1,st−1,at−1)

[·]

(4)

Similarly, the loss function of the optimality discriminator is
denoted as follows:

LDO =Eht,at∼BA
[lnDO(ht, at)]

+ 2× Eht,at∼BE
[ln(1−DO(ht, at))]

+ Eht,at∼BN
[lnDO(ht, at)]

(5)

It is trained to distinguish if state-action pairs (ht, at) are
from episodes of the experts or not.

C. Training of DAC-SSM

Fig. 4 displays a diagram of training architecture of DAC-
SSM. The dashed lines represent back-propagation paths.
The model is trained by minimizing state space losses with
the domain confusion losses:

LDAC = LRSSM − λLDd (6)

where λ is a hyper-parameter. The reward models, rt ∼
p(rt|ht, st), are trained by the losses:

Lr = −
T∑

t=1

Eq(st|o≤t,a<t,y)

[
ln p(rt|ht, st)

]
(7)

The gradient of the optimality discriminator losses,
∂LDO/∂θDO , is not propagated to DAC-SSM. On the
other hand, the gradient of the domain discriminator losses,
∂LDd/∂θDd, is not directly propagated to DAC-SSM, but
the domain confusion losses, −λLDd, are added to the state
space losses, LRSSM . Thus, the obtained states become
domain-agnostic, and task- and dynamics-aware. Therefore,
the states have considerable information that is useful for
control (task- and dynamics-aware), but few clues regarding
the domain-dependent information (domain-agnostic).
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Fig. 4. Training architecture of DAC-SSM. The dashed lines represent
back-propagation paths. The domain confusion losses −λLDd are added
to the state space losses LRSSM . BA, BE , and BN represent replay buffers
for the data from the agents, experts, and novices. Dd represents the domain
discriminator.

D. Planning algorithm

We used MPC [33]–[35] for planning in the obtained
state space via DAC-SSM. For planning algorithm of MPC,
cross entropy method (CEM) [36] was used to search for
the best action sequences. CEM is a robust population-
based approach to infer an optimal distribution over action
sequences. The action sequences are optimized to maximize
an objective. Modeling the objective as a function of the
states and actions makes computational cost of the planning
much lighter. The planning is executed purely in the low-
dimensional latent space without generating images [4], [37],
[38]. Multiple types of rewards are used for the objec-
tive [39], [40] in the context of control as inference [41].
We define the distribution over the task-optimality, OR

t , as
follows:

p(OR
t = 1|ht, st) = exp (Ep(rt|ht,st)[rt]) (8)

The distribution over the imitation-optimality, OI
t , is calcu-

lated by using the optimality discriminator:

p(OI
t = 1|ht, at) = exp(lnDO(ht, at)) = DO(ht, at) (9)

We use ht to calculate both rewards because contextual in-
formation is essential for the POMDPs. Hence, the objective
of the CEM is to maximize the probability of the task- and
imitation-optimalities, as given below:

ln p(OR
1:H = 1,OI

1:H = 1|ht, st, at)

=

H∑
t=1

[
Ep(rt|ht,st)[rt] + lnDO(ht, at)

] (10)

where H is the planning horizon of CEM.

IV. EXPERIMENTS

A. Environments and hyperparameters

We considered three tasks in MuJoCo physics simulator:
Cup-Catch, Finger-Spin, and Connector-Insertion. Fig. 5
shows the expert and agent domains for each task. For
Finger-Spin, we make two different agent domains. One
agent domain of Finger-Spin has different colors of objects
and floors compared to the expert domain. The other agent

domain of Finger-Spin has a different viewing angle in addi-
tion to the color shifts. It is difficult to train control policies
by using only task rewards because all tasks provide only
sparse rewards. Cup-Catch and Finger-Spin are instances of
the DeepMind Control Suite [42]. We also built a new task,
Connector-Insertion. In this task, an agent attempts to insert a
connector to a socket. Constant rewards were obtained when
the connector was in the socket. The position and angle of
the connector and socket were initialized with random values
at the start of the episodes. In this task, we added a constant
bias to the action for moving the connector upward on the
paper. This is equivalent to introducing domain knowledge
that the socket exists upward on the paper.

The contextual state and stochastic state sizes were 32 and
8 for all experiments. A small latent size is enough for DAC-
SSM because domain-related information is eliminated from
the latent space. The decoder refers to the domain labels to
reconstruct domain-specific observation. The domain labels
y were simply concatenated to ht and st as inputs to the
domain conditional (DC) decoder. We used not only the
DC decoder but also the DC encoder for the Finger-Spin
of the tilted view. We implemented the DC encoder by
training two separate encoders and switching them based on
domain labels y. We use batches of 40 sequence chunks of
40 steps long for training. Except for the above mentioned,
we adopted the same hyperparameters and architectures as
PlaNet for the state space model. We implemented both
the expert and domain discriminator as two layers of fully
connected networks of 64 nodes with ReLU activation func-
tions. The domain confusion loss coefficient λ is 1.0 unless
otherwise noted.

We used CEM for planning algorithm. We adopted a
short planning horizon H = 3, number of optimization
iterations I = 10, number of candidate samples J = 4000,
and the best K = 20 samples for refitting. The action
repeats were 4, 2, and 800 for Cup-Catch, Finger-Spin,
and Connector-Insertion, respectively. The action repeat for
Connector-Insertion was extremely large because we set
simulation timesteps of MuJoCo to a very small value of
5× 10−5; otherwise, objects easily pass through each other
when they come into forceful contact. We evaluate three
types of objectives for the planning: dual, imitation and task
rewards. The dual rewards are weighted sum of task- and
imitation-rewards with ratio of 10:1. The numbers of the
expert and agent trajectories are both 100.

B. Applying state representation to imitation learning with
domain shifts

Fig. 6 and Table I compares DAC-SSM using dual re-
wards (DAC/dual) to a baseline of existing SRL method
(PlaNet/task) and naive implementation of the optimality
discriminator with the baseline (PlaNet+DO). DAC/dual
achieved much higher performance for all tasks than the
two baselines. This is because the domain-aware state
representation of baselines does not help the agents to
achieve higher performance via imitation learning with the
domain shifts. We also compared DAC-SSM, a version



Cup-Catch Finger-Spin Connector-Insertion
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Fig. 5. We consider three tasks: Cup-Catch, Finger-Spin, and Connector-Insertion. Each task has expert and agent domain versions. We make two different
agent domains for Finger-Spin. In one agent domain, color of objects and floors is different from the expert domain. In the other agent domain, viewing
angles are further different. In the Connector-Insertion, human fingers hold the connector in the expert domain, while robot fingers hold it in the agent
domain.
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Fig. 6. Comparison of our proposed method with the baselines. The plots show the test performance over the number of collected trajectories by the
agent. The solid lines show the means, and the colored areas show the percentiles from 5 to 95 over 20 trajectories across 4 seeds. The dashed lines
show the average scores of the expert trajectories. We compare DAC-SSM with three types of reward function: task, imitation and dual. The dual means
weighted sum of the task and imitation rewards. DAC-SSM: with the domain confusion loss and DC decoder. DA-SSM: with the domain confusion loss
without the DC decoder. DC-SSM: without the domain confusion loss with the DC decoder. We used not only a DC decoder but also a DC encoder for
the Finger-Spin of the tilted view. PlaNet+DO : naive implementation of the optimality discriminator with RSSM.

TABLE I
MEAN MPC PERFORMANCE AFTER 1,000 EPISODES. ± REPRESENTS ONE STANDARD DEVIATION. BOLDFACE INDICATES THE BEST RESULTS.

UNDERLINES MEAN THE SECOND-BEST.

Task DAC/dual DAC/imitation DAC/task DA/dual DC/dual PlaNet PlaNet+DO
Cup-Catch 728±223 304±323 375±371 233±350 788±149 470±398 479±359
Finger-Spin 405±42 488±50 130±73 190±108 419±41 157±73 124±91

Finger-Spin (tilted view) 406±45 507±48 167±87 123±80 394±51 162±87 156±89
Connector-Insertion 40.2±29.1 50.5±25.0 0.4±4.0 0.0±0.0 40.9±26.7 0.7±3.4 2.1±8.1

using dual rewards (DAC/dual), a version using imitation
rewards (DAC/imitation), and a version using task rewards
(DAC/task). Except for Cup-Catch, DAC/imitation achieved
the best performance. This is because the planning horizon
length H = 3 is too short for Finger-Spin and Connector-
Insertion. We further trained our proposed model (DAC/dual)
as well as versions with domain adversarial training but
without domain conditional encoders/decoders (DA/dual),
and with domain conditional encoders/decoders but without
domain adversarial training (DC/dual). The performance of
DAC/dual and DC/dual were almost the same, and that of
DA/dual was much lower. In the settings of this experiment,
the domain adversarial training was not effective because the
domain confusion loss coefficient λ = 1 was too small.

Fig. 8 compares DAC/dual with λ from 0.1 to 10.0 and
DC/dual. DAC/dual with λ = 3 achieved higher performance

than DC/dual (λ = 0) for Connector-Insertion. These results
show that the obtained states on DAC-SSM help the agents
to achieve the effective imitation learning with the domain
shifts.

C. Reconstruction from State Representation

Fig. 7 shows the sequence of ground-truth examples and
reconstructed images from the obtained state representation
on DAC-SSM for Finger-Spin. The first 5 columns show
context frames that were reconstructed from posterior sam-
ples, and the remaining images were generated from open-
loop prior samples. The second and third row images were
reconstructed from a sequence of states of ht and st with
domain labels y via the DC decoder p(ot|ht, st, y). Joint
angles of the robotic arm and target object were successfully
reconstructed from the states, whereas domain-dependent
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Fig. 7. Example image sequence (the first row) and corresponding open-loop video predictions (second to the last row) observed for the Finger-Spin task.
Columns 1-5 are context frames and were reconstructed from posterior samples, and the remaining images were generated from open-loop prior samples.
The second and third row was reconstructed with expert and agent domain labels, respectively. The last row was reconstructed from the contextual states,
ht, without domain labels. Another decoder was trained separately for the reconstruction of the images in the last row. The first column of the last row
was reconstructed from ht initialized by zero.
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Fig. 8. Comparison of MPC performance for different domain confusion
loss coefficient λ after 1,000 episodes. (a) and (b) show the performance
for the Finger-Spin and Connector-Insertion task, respectively. The error
bar indicates represents one standard deviation. The dashed lines show the
average scores of the expert trajectories.

information (colors of the floor and object) depended on
the domain labels. The last row images were reconstructed
from the contextual states, ht, without domain labels y using
another decoder that was trained separately from our model.
The joint angles were successfully reconstructed, whereas the
colors appeared to be a mixture of the two domains. These
results show that the obtained states via DAC-SSM have
control-dependent information like the joint-angle, but do not
have domain-dependent information like the colors which is

not related to the control. In other words, we successfully
acquire the domain-agnostic and task- and dynamics-aware
sate representation via DAC-SSM.

V. CONCLUSION AND DISCUSSIONS

We showed domain-agnostic and task- and dynamics-
aware state representation was obtained via DAC-SSM. To
obtain such state representation, we introduced domain ad-
versarial training and domain conditional encoders/decoders
into the recent task- and dynamics-aware sequential state
space model. Moreover, we experimentally evaluated the
MPC performance via imitation learning with the large
domain shifts for continuous control sparse reward tasks in
simulators. The state representation from DAC-SSM helped
the agents to achieve comparable performance to the expert.
The existing SRL failed to remove domain-dependent infor-
mation from the states, and thus the agents could not perform
the effective imitation learning with large domain shifts. We
conclude that the domain-agnostic and control-aware states
are essential for imitation learning with the large domain
shifts, and such states are obtained via DAC-SSM.

A question that remains is if DAC-SSM is applicable to
larger and/or different types of domain shifts, e.g. modality-
variant of data. Since the domain confusion loss coefficient
λ has task dependency as shown in Fig. 8, we can expect
better state representation is obtained by actively varying
λ. Acquiring task-agnostic states to achieve a universal
controller is also appealing future works. Imitation learning
from human demonstration is challenging but interesting
direction. This future work includes obtaining appropriate
state representation from expert data without action data.
Implementation for real robotic tasks is another important
direction for future works. Acquiring fully stochastic state
representation is necessary for the real world tasks because
the control system of the real robot have much larger
uncertainty than simulation.
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