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Transferring Experience from Simulation to the Real World for Precise
Pick-And-Place Tasks in Highly Cluttered Scenes

Kilian Kleebergerl, Markus Vélkl, Marius Moosmannl, Erik Thiessenhusenl, Florian Rothl, Richard Bormannl, Marco F. Huber?3

Abstract— In this paper, we introduce a novel learning-based
approach for grasping known rigid objects in highly cluttered
scenes and precisely placing them based on depth images. Our
Placement Quality Network (PQ-Net) estimates the object pose
and the quality for each automatically generated grasp pose for
multiple objects simultaneously at 92 fps in a single forward
pass of a neural network. All grasping and placement trials
are executed in a physics simulation and the gained experience
is transferred to the real world using domain randomization.
We demonstrate that our policy successfully transfers to the
real world. PQ-Net outperforms other model-free approaches in
terms of grasping success rate and automatically scales to new
objects of arbitrary symmetry without any human intervention.

I. INTRODUCTION

For robots to work safely and effectively, they must
be aware of their environment. One aspect of this is the
estimation of the pose of the objects in the scene to be
able to avoid collisions and allow robust grasping and
manipulation of the components. 6D object pose estimation
(OPE) and grasp planning in highly cluttered scenes based on
a single depth image is challenging because of sensor noise,
incomplete information, and uncertainties about the state of
the environment. Furthermore, the robot has to reason on
how to manipulate the objects because selecting the wrong
object and grasp pose can result in failed grasps.

Works such as [1], [2], [3], [4] focus on robotic grasping
and manipulation tasks in scenarios with limited clutter
which do not require a defined picking order of the objects.
Simply selecting collision-free and kinematically feasible
grasps in highly cluttered scenes [5], [6], might lead to a
movement of the object relative to the gripper which prevents
a precise placement without additional in-hand localization
and entanglements with other objects for complex object ge-
ometries as visualized in Fig. 2. In this paper, we tackle these
challenges by providing a novel learning-based approach for
grasp pose evaluation in scenes of many parts in bulk.

Approaches to robotic grasping and manipulation usually
rely on datasets consisting of human-labeled grasps [2], [3],
[7], which are tedious to get, or on physical grasp outcomes
where data collection can take several months [8], [9], [10],
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Fig. 1. Estimated object poses of our approach on real-world data after
ICP refinement. The greener the object, the more certain the model is that
the object can be grasped safely. The gripper (blue) indicates the top ranked
grasp based on our policy.

[11]. In this work, we execute each predefined grasp pose
in a physics simulation and transfer the gained experience
to the real world using domain randomization [12] to in-
crease generalization. Our approach directly transfers from
simulation to the real world (see Fig. 1).

Learning-based approaches to robotic grasping [13], [14],
[15], [8], [9], [11] usually rely on top-down grasps and
cannot be used for bin-picking due to collisions when
attempting to grasp objects close to the border of the bin.
Analytical approaches for pick-and-place tasks in cluttered
scenes require an object-specific configuration and tuning
until a satisfactory system performance is reached, which
limits the scalability [5], [16], [17], [18], [19], [20]. PQ-Net
configures automatically based on a given object model and
does not require any human intervention.

Inspired by the success of single shot approaches [21],
[22], [23], [24], we go further and extend OP-Net [25], a
single shot approach for OPE outperforming the winner of
the “Object Pose Estimation Challenge for Bin-Picking” at
IROS 2019' on the Siléane dataset [26]. To the best of our
knowledge, we are the first extending a single shot approach
for OPE to grasp success prediction in a joint framework.

Based on a single depth image, PQ-Net predicts the
object pose P € SE(3) relative to the camera coordinate
system and outputs a success estimate for a set of predefined
grasps G defined relative to the object coordinate system.

Ihttp://www.bin-picking.ai/en/competition.html
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Fig. 2. Failure cases for picking tasks in cluttered scenes: (left) The robot
picks an object (IPABar) which moves relative to the gripper during lifting
due to overlaps with other objects. The object cannot be placed precisely
anymore. The objects in the bin have to be picked in a defined order.
(right) The robot picks an object (IPAUBolt) which is entangled with another
object. Therefore, a goal is to select objects which do do not entangle with
other objects.

Furthermore, we introduce graspability metrics which allow
a gentle component removal and avoid entanglements.

In summary, the main contributions of this work are:

o Extension of a single shot approach for object pose
estimation to grasp pose success prediction suitable for
precise object placement

o Novel metrics for the assessment of the graspability of
objects in highly cluttered scenes

o Scalable system, which enables a robot to learn how to
place objects precisely on the basis of an object model
of arbitrary symmetry (automatic configuration)

o Extension of the Fraunhofer IPA [27] and Siléane [26]
datasets with grasp annotations and provide data
for two new objects. All datasets are publicly
available at http://www.bin-picking.ai/en/
dataset.html.

The paper is structured as follows. The next section
reviews related work. In Section III the proposed approach
is described. Experimental evaluations are provided in Sec-
tion IV. Pros and cons of our approach are discussed in
Section V. The paper closes with a conclusion.

II. RELATED WORK

Methods for robotic grasping can roughly be categorized
in analytical and data-driven methods [28], [29], [17].

A. Analytical Approaches

Analytical approaches (model-based approaches) use an
object model with predefined grasps. First off, they localize
the object in the scene [30]. Based on this, they try to find
a collision-free and kinematically feasible path for grasping
and placing [5], [6]. Especially for highly cluttered scenes,
they require significant effort for manually tuning suitable
grasp poses and grasp priorities to reach a satisfactory system
performance, limiting the scalability to new objects [5], [16],

[17], [18], [19], [20]. Usually, the grasp poses are prioritized
independent of the object pose. Furthermore, zones on the
object can be specified where no measurement point of the
3D point cloud should be contained in order to pick the
candidate next. This can be used to specify a picking order
of the localized objects in the scene.

B. Learning-based Approaches

Approaches to Robotic Grasp Detection estimate oriented
rectangles in the input image which represent a grasp config-
uration for parallel jaw grippers [31]. Public datasets are the
Cornell Grasping Dataset [2] providing 1,035 manually an-
notated samples of 280 objects and the Jacquard Dataset [4]
with over 50,000 synthetic samples on a large diversity of
objects (11,000), each with multiple labeled grasps.

MultiGrasp [3] uses the Cornell dataset to train a neural
network to predict oriented rectangles (bounding boxes) in an
image together with a confidence and makes local predictions
based on global information by discretizing the output in
S x S grid cells. This work led to the YOLO [21], [22]
approach for object detection. With a two-stage system that
first samples grasp candidates and ranks them using neural
networks, Lenz et al. [2] demonstrated that this parameteriza-
tion (oriented rectangles) can be used for real-world robotic
grasping tasks.

GG-CNN [7], [32] predicts a quality and configuration of
grasps at every pixel of the input image using a lightweight
convolutional neural network trained on the Cornell and
Jacquard dataset [4]. The generated antipodal grasps that are
executed closed-loop and allow grasping in cluttered scenes
and non-static environments.

Dex-Net makes use of large scale synthetic data collection
for learning grasping policies for parallel jaw [13], [14] and
suction grippers [15] using analytic metrics. The sampled
grasps are ranked using a neural network which gets a
cropped depth image and grasp candidate as input. Dex-Net
observes a local image patch, and is not designed to execute
grasps in a defined order or avoid entangled objects due to
missing global scene information.

Levine et al. [8], [9] parallelizes the real-word data col-
lection to up to 14 robot and collect 800,000 samples in two
months for robust grasping. QT-Opt [11] makes use of rein-
forcement learning to train robotic grasping and manipulation
policies based on self-supervision on real-world systems.
Because of the time-consuming and hardware demanding
data collection procedure, works such as GraspGAN [33] or
RCAN [34] focus on reducing the need of real-world data
collection.

While all these aforementioned model-free approaches to
robotic grasping show promising results, they do not provide
a solution for a precise placement of the objects and only
consider pick-and-drop tasks using top-down grasps (4D).
Using grasps in this grasp representation has limitations,
e.g., for bin-picking due to collisions with the bin when
attempting to grasp objects at the border. Therefore, works
such as [8], [9], [13], [14], [11], [35], [36] use bins with
slanted or no high bin walls to ensure that the top-down
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grasps work. Furthermore, it is not possible to blindly move
into the bin for data collection due to damaging the gripper
because of unknown fill levels of the bins. Picking multiple
objects is often also considered as a successful grasp [8], [9],
[11].

III. PLACEMENT QUALITY NETWORK

In this section, we describe the routine for automatically
generating grasp poses for object models, the process of data
generation for training our neural network using a physics
simulation, the proposed definitions for the graspability of
objects, the parameterization of the network’s output, the loss
function, the network architecture, and the training procedure
together with the technique for a robust transfer of the model
from simulation to the real world. Fig. 4 shows an overview
of our approach.

A. Automatic Grasp Pose Generation

To avoid the need for manually defining grasp poses
G € SE(3) on the object model, we provide a method that
automatically generates a set of grasp poses G for common
gripper types such as parallel jaw, suction, and magnetic
grippers based on a given 3D object model. Each grasp
G € G is represented by (R;t) € SE(3) where R € SO(3)
and t € R? are the rotation and translation of grasp G.

As a first step of our technique, points are sampled on the
surface of the object. For parallel jaw grippers, we check the
distance between all pairs of points to verify whether it is
smaller than the opening distance of the gripper, filter the
candidates using the normal information of the 3D points,
discretize the rotation around the straight line between any
two points in 20° steps, and finally filter the candidates with
a collision check using the gripper model. For suction and
magnetic grippers, we sample grasp poses by evaluating the
flatness of the object locally. Depending on the shape of the
gripper, we define cylinder or cuboid elements, which should
and should not contain points of the object model while also
taking surface normals into account.

The proposed procedure results in a high number of grasp
poses. We make use of unsupervised learning to reduce the
amount of data while keeping a high diversity in terms of po-
sition and orientation. We apply partitioning around medoids
(PAM) [37] clustering to reduce the number of grasps to
approximately 500. Fig. 3 exemplary shows automatically
generated grasp poses using our technique.

B. Physics Simulation for Data Generation

1) Scene Generation: We use the physics simulation
V-REP / CoppeliaSim [38] to create scenes with a high
amount of clutter. These scenarios are challenging because
the robot has to avoid collisions with other objects in the
scene and carefully select which object to pick next. Anal-
ogous to the Siléane [26] and Fraunhofer IPA [27] datasets,
we drop objects in a random position and orientation above
a bin to generate chaotic scenes typical for bin-picking. We
save the RGB image, depth image, and segmentation masks
together with the visibility v € [0, 1] and pose P € SE(3)
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Fig. 3. Automatically generated grasp poses exemplary visualized for the
IPARingScrew (left) and IPAGearShaft (right) for a parallel jaw gripper.
Objects are taken from the Fraunhofer IPA dataset [27].

for each object in the scene. The number of objects that are
dropped is increased iteratively until a predefined drop limit
is reached, resulting in a uniform distribution over different
fill levels of the bin (see also [27]).

2) Grasping: Using the filled bins, we loop over each
(automatically generated) grasp pose for all objects in the
scene. First off, we check the collision of the gripper at every
grasp pose with the environment (other objects and the bin).
In case no collision occurs, we try to find a kinematically
feasible robot configuration and plan a collision-free path to
the grasp pose using the OMPL [39] module integrated in
V-REP / CoppeliaSim [38].

In case a suitable path was found, we execute the grasp and
place the object at the defined target pose. We log whether
an object is in the gripper after lifting and after placement
of the object. Furthermore, we log the pose difference after
grasping and lifting the object (chosen grasp pose relative
to the gripper TCP) and placement (current object pose
relative to defined placement pose). We consider an object
as successfully lifted / grasped or placed precisely enough if
the distance between the pose representatives based on [40]
is less than 0.1 times the diameter of the smallest bounding
sphere of the object. This is analogous to the metric used
for object pose estimation in computer vision proposed by
Brégier et al. [40], [26] and allows to properly consider all
possible kinds of object symmetry. Furthermore, we log for
each grasp pose whether an entanglement with other objects
in the scene occurred.

Since the grasp poses are defined relative to the object co-
ordinate system, pose ambiguities due to object symmetries
result in convergence issues during neural notwork training.
To avoid this, we introduce a unique object pose definition.
For discrete symmetries, we ensure to pick the pose where
the z-component of a non-symmetry axis (z- or y-axis) is
maximal (assuming the axis of symmetry is the z-axis). For
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Fig. 4. Overview of our approach: (a) 3D object model with automatically generated grasp poses (b) Physics simulation for scene generation (c) Physics
simulation for grasp execution with a robot (d) We train a deep neural network for 6D object pose estimation and grasp pose success estimation to transfer
the knowledge gained in simulation to the real world using domain randomization [12]. The output of our network is a 3D tensor comprising estimates of
the probability p, visibility 0, positions &, ¢, £, Euler angles @1, @2, ¢3, graspabilies ga, Gu. Je, and success §; for each grasp pose G; € G.

continuous symmetries, we maximize the z-component of a
non-symmetry axis by rotating around the axis of symmetry.

C. Graspability Metrics

Using the results from all executed grasps, we define
instance based metrics to assess the graspability of each
object in the scene. The graspability of an object based on
the accessibility of the grasp poses g, € [0, 1] is defined as
the ratio between the number of collision-free grasps and the
number of total grasps J. Fig. 5 (a) shows the ground truth
labels g, for the IPARingScrew. Some fully visible objects
(which are easy to localize) cannot be grasped because other
objects are in the way, demonstrating that visibility and
graspability of objects are not fully correlated.

For a removal that is gentle on the components and
to avoid movements of the grasped object relative to the
gripper due to overlapping objects, entanglements, or jams
preventing a precise object placement, we log the movement
in terms of position x € R3 of all other objects in the scene
before grasping (o) and after lifting (¢1). This information
is used to define the graspability of object k based on the
unrest caused in the bin during grasping (“mikado metric”)

N
> ||xn,to—xn,t1||,1> (1)

Gu,k = 1 — min (
n=1,n#k

with ||.|| being the L? norm and N being the number
of objects in the scene without the picked object £ [41].
Fig. 5 (b) shows exemplary ground truth g, € [0, 1] labels
for the IPABar object. It can be seen that the objects at the
top of the bin have a high graspability value regarding the
unrest.

The graspability of object k£ based on the entanglement
with other objects is

_J 0, if an entanglement occurred for any grasp pose
Jek = 1, otherwise.

)
Fig. 5 (c) shows the ground truth g, labels for the IPAUBolt.
A goal for the robot is to avoid picking objects which can
potentially entangle.

D. Parameterization of the Output

Similar to [25], we introduce a spatial discretization of
the 3D scene into S x S volume elements (see white grid
in Fig. 5) and solve a regression problem locally, i.e.,
individually for each volume element. Each volume element
comprises an (11 + J)-dimensional vector containing the
probability p, visibility v, positions z, y, z, Euler angles
p1, P2, @3, graspabilities g,, gu, ge Of the object, and a
J-dimensional vector with a success label s € {0,1} for
each grasp pose G for the considered task (grasping, precise
placement). For the ground truth generation, the objects are
assigned to the volume element which contains the origin
of the object coordinate system. In case multiple objects fall
into the same volume element, we assign the object with the
highest visibility v as ground truth. All volume elements not
containing an object are filled with a zero vector. The output
of the network is a S x S x (11 4 J) tensor as depicted in
Fig. 4 (d).

E. Loss Function
To train the network, the multi-task loss function
S2
£=% (Alzp ALy AsLpose + A5 + ALy | pi>
i=1

3)
is optimized. The A-factors are manually tuned weights for
the different loss terms. While A1 = 0.1, Ay = 0.1, \y = 1,
As = 1, and \¢ = 1/J are constant, A3 = (ga + gu + go)®
is a function of the ground truth graspabilities g,, gy, ge tO
make the network focus on the relevant objects for grasping.

For the loss of the pose

['pose = Lpos + /\4[’0ri (4)
we use
Lpos = ||x — x| )
with x = [x,y, 2] T and
Lori = |lp — 95”2 (6)

with ¢ = [p1,02,03]" and @1,92 € [0,27) and 3 €
[0,27/k), where k € N represents the order of the cyclic

symmetry.
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Fig. 5. Exemplary ground truth samples: (a) Graspability g. € [0, 1] of the IPARingScrew based on the accessibility of the grasp poses (each collision-free
grasp pose is indicated by a small coordinate system). (b) Graspability gu € [0, 1] of the IPABar based on the unrest caused in the bin during grasping.
(c) Graspability ge € {0, 1} of the IPAUBoIt based on entanglements with other objects after grasping. Objects shown in green have a high rating for
tangibility. The more difficult an object is to grasp, the more the colour changes from green to yellow to red with increasing transparency.

To stabilize the training, the position x € R? of the
object is estimated relative to the volume element, i.e.,
z,y,z € (0,1), while z is the position between the near
and far clipping plane of the 3D sensor, and the angles are
bounded, i.e., ¢1, 2,3 are mapped to [0,1). For objects
with a revolution symmetry, we omit the respective output
feature-map.

We use the binary cross-entropy loss for the probability
channel, the visibility channel, the three graspability chan-
nels, and the grasp pose result channels to compute £, L.,
Ly, and Ly, respectively, while only backpropagating the
loss for the elements that contain ground truth by multiplying
each channel element-wise with the ground truth probability
channel.

F. Network Architecture

The input of our model is a single normalized depth image
which is processed with a fully convolutional architecture
and mapped to a 3D output tensor as shown in Fig. 4 (d).
In the experiments, we use an input resolution of 128 x 128
pixel, a DenseNet-BC [42] with 40 layers and a growth rate
of 50, which represents the number of feature-maps being
added per layer, and S = 16. We choose a DenseNet-BC be-
cause it promotes gradient propagation by introducing direct
connections between any two layers with the same feature-
map size and has a high parameter efficiency. The network
architecture consists of four dense blocks and downsampling
is performed three times via 2 x 2 average pooling to reduce
the size of the feature-maps from 128 x 128 to 16 x 16 and
preserve the spatial information. ReLU activation functions
are employed in the dense blocks and sigmoid functions for
the 3D output tensor. With this architecture, forward passes
are performed with a frame rate of 92 fps on a Nvidia Tesla
V100.

G. Training

During training, the error of the entire probability channel
and the error of the remaining elements from the 3D output
tensor that contain ground truth are backpropagated. Since
annotating the grasps is time-consuming, we do not annotate
the whole training dataset and only backpropagate £, and
Ly, for the samples, where ground truth annotations are
available. In our experiments, we only annotate 100 out of
750 cycles from the Fraunhofer IPA [27] and our newly pro-
vided dataset, resulting in 100 uniformly distributed samples
over different fill levels of the bin.

We augment the training data by rotating around the z-axis
of the camera coordinate system and mirroring the images
if the object is symmetric with respect to a plane while
adjusting the ground truth pose annotations accordingly. To
not lose the information of the robot placement relative to
the bin, we only backpropagate L., for the non-augmented
samples.

For a robust Sim-to-Real Transfer, we use domain ran-
domization [12]. To allow the model generalizing on real-
world data, we apply different augmentations with varying
intensity to the rendered training images, e.g., adding noise,
blurring, elastic transformations, dropout, etc. This allows
PQ-Net generalizing to different 3D sensor technologies.

We use the Adam optimizer with an initial learning rate of
0.01, monitor the validation loss, reduce the learning rate by
a factor of 10 if the loss did not improve for three epochs,
and train the network for about 50 epochs on the synthetic
data.

H. Policy

Based on a single depth image I with global scene
information, the neural network f with weights 6 outputs
a 3D tensor 7. Our policy 7 uses the network output to



select the highest quality grasp weighted with p, 0, ga, Gu,

and g, from all S? volume elements for execution
m(fo(I)) = argmax(5;i - Pi - i - Gai - Gui * Jei) (1)

0]

with i = 1,...,8%, j = 1,...,J with J being the number of

predefined grasp poses, and 3;; being the success estimate

of grasp pose G; at volume element ¢ for the considered task

(grasping, precise placement).

IV. EXPERIMENTAL EVALUATION

In this paper, we focus on parallel jaw grippers using a
RG2 gripper [43]. Given a proper physics simulation, our
approach can easily be transferred to other gripper types.

A. Sim-to-Real Transfer

For demonstrating a robust transfer of PQ-Net to the real
world, we extend the Siléane [26] and Fraunhofer IPA [27]
datasets with annotations for the collision-free reachability of
approximately 500 densely sampled grasp poses (examples
see Fig. 3). In Table I we report the success rate of our
grasping policy and the precision and recall over all grasp
poses in the scene. Applying randomizations on the synthetic
images during training (see Section III-G) allows PQ-Net
providing robust pose estimates and very high success rates
of the policy on real-world data recorded with different 3D
Sensors.

Table I gives the average precision (AP) results for the
object pose estimation based on the metric provided by
Brégier et al. [40], [26] from OP-Net [25] with exactly
the same depth image resolution, network architecture, and
output discretization as used for PQ-Net. Even with a success
estimate for approximately 500 grasp poses together with the
graspability g,, PQ-Net only loses very few points in terms
of AP. In addition to the datasets, videos of real-world ex-
periments are available at http://www.bin-picking.
ai/en/dataset.html.

B. Benchmarking in Simulation

For evaluation, we compare the performance of three
approaches in simulation on two very challenging objects.
Each approach gets to observe the same 250 scenes for both
the IPABar (see Fig. 2 left) and IPAUBolt (see Fig. 2 right),
respectively, and executes one grasp per scene to ensure a
comparison under the same conditions (the approaches face
the exactly same scenarios). Table II reports the success rates
for each method.

A robust picking of the IPABar objects from a cluttered bin
is challenging because they require a defined picking order.
If an occluded object is chosen for grasping, the grasp trial
might fail completely or the object might move relative to
the gripper which hinders a precise placement of the object.
Therefore, the right object and grasp pose has to be chosen
from the highly cluttered scene. This is especially important
for friction grasps (force closure) because for a form closure
it is unlikely that object moves relative to the gripper.

The IPAUBolt is challenging because it can potentially
entangle with other objects in the bin. In case a wrong

object and grasp pose for picking is chosen, the robot might
lift multiple objects resulting in failed grasp because no
collision-free placement of the object is possible.

GG-CNN [7], [32] and other model-free approaches [13],
[14], [15], [3], [2], [8], [9], [35], [11] focus on generalization
performance, use top-down grasps for pick-and-drop of the
objects, and cannot solve precise pick-and-place tasks. To
compare our approach with these methods, we use the logged
grasping success labels for training. Table II reports the
success rates for each approach. Our approach outperforms
GG-CNN because of operating in 6D and being specifically
configured to the object. Furthermore, GG-CNN collides
with the bin when attempting to grasp object close to the
border due to the limited flexibility in the gripper orientation.

The analytical approach considers the collision-free reach-
ability and kinematical feasibility of the grasp pose and the
path only and does not give an estimate on the actual physical
outcome of the grasp, e.g., whether the object might move
relative to the gripper in the given scenario, jamming, or
entanglements with other objects in the bin.

With our simulation-driven and learning-based approach,
we let our system autonomously learn how to localize
and grasp the objects and transfer the automatically gained
experience from the simulation to the real world without any
time-consuming object-specific manual tuning.

V. DISCUSSION

In the following, we summarize strengths and discuss
limitations of our approach.

A. Strengths

PQ-Net gets to observe the whole depth image and selects
highly robust grasps on a global level because of not looking
at local patches of the image only. Our approach can operate
in a closed-loop fashion with 92 fps for the forward pass
(for OPE and grasp planning) and is therefore suitable for
grasping in non-static environments. Our graspability metrics
allow a gentle removal of the components and avoiding to
grasp entangling objects. Furthermore, our approach can be
extended to prioritizing grasp poses which allow a precise
placement without re-grasping (e.g., important for objects
without symmetries) which allows to reduce cycle times.
PQ-Net provides robust estimates on real-world data inde-
pendent of the actual 3D technology being used and does
not require any human labeled data or grasping trials on
the real-world system, facilitating scalability. Furthermore,
it automatically configures for new object geometries using
simulation and machine learning for precise pick-and-place
tasks in highly cluttered scenes by providing an object model
only. Our approach properly considers all possible kinds
of object symmetries during data generation in the physics
simulation and in the loss function for the regression of the
angles. Furthermore, our provided simulated scenes can be
used to benchmark further approaches.

B. Limitations

PQ-Net is a model-based approach and, therefore, does
not generalize to unseen objects. Instead, it configures for
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TABLE I
PREDICTION OF COLLISION-FREE REACHABILITY OF GRASP POSES OF OUR APPROACH ON REAL-WORLD / NOISY DATA FOR DIFFERENT OBJECTS

WITH DIFFERENT KINDS OF OBJECT SYMMETRY FORM THE SILEANE [26] AND FRAUNHOFER IPA [27] DATASETS.

object Sil SileaneCandlestick

SileanePepper SileaneGear SileaneTLess20 TPARingScrew TPAGearShaft

object symmetry based on [40], [26] no proper revolution

symmetry

revolution revolution cyclic revolution

(order 2)

cyclic
(order 2)

PQ-Net success rate of policy 0.98 0.97

0.98 0.99 0.98 0.98 0.99

PQ-Net precision (all grasp poses) 0.57 0.70

0.71 0.73 0.77 0.75 0.83

PQ-Net recall (all grasp poses) 052 0.67

0.66 0.64 0.65 0.45 0.65

PQ-Net success rate OPE for chosen object 0.89 0.92

0.95 0.98 0.98 0.98 0.99

PQ-Net success rate OPE for chosen object with ICP 0.91 0.93

0.95 0.99 0.99 0.99 0.99

PQ-Net AP (OPE) whole scene 0.86 0.88

0.92 0.74 0.82 0.86 0.98

OP-Net [25] AP (OPE) whole scene 0.92 0.95

0.98 0.82 0.85 0.88 0.99

TABLE I
COMPARISON OF THE PERFORMANCE OF PQ-NET WITH OTHER APPROACHES AND PERFORMANCE EVALUATION.

object IPABar TIPAUBolt
object symmetry based on [40], [26] finite non trivial cyclic (order 2)
GG-CNN [7], [32] success rate for grasping 0.78 0.67
GG-CNN [7], [32] success rate for grasping without bin 0.81 0.72
PQ-Net (ours) success rate for grasping 0.99 0.87
PQ-Net (ours) precision (all grasp poses) 0.63 0.59
PQ-Net (ours) recall (all grasp poses) 0.65 0.57
analytical approach [5] success rate for precise placement 0.85 0.80
PQ-Net (ours) success rate for precise placement 0.89 0.81
PQ-Net (ours) success rate OPE 0.96 0.85
PQ-Net (ours) precision (all grasp poses) 0.57 0.66
PQ-Net (ours) recall (all grasp poses) 0.52 0.60

novel objects without any human intervention. The approach
requires a large dataset to train on, where the process of data
generation (grasp execution) can take long, especially, when
increasing the number of grasp poses. Still the process for
data generation can run much faster than real time and can
easily be parallelized across multiple machines. Furthermore,
our method cannot do pre-grasp manipulations on the objects
to change their poses in order to more robustly grasp them.
While PQ-Net can avoid entangled object situations, we
do not propose a solution to unhook very complex object
geometries, for which no general solution has been proposed
so far [44], [45].

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel learning-based approach
for grasping in highly cluttered scenes and precise object
placement based on depth images. Our approach outputs the
6D object poses together with a graspability and quality
estimate for each automatically generated grasp pose for
multiple objects simultaneously in a single forward pass in a
joint framework (running at 92 fps). All densely discretized
and automatically generated grasp poses are executed in a
physics simulation and the gained experience is transferred
from simulation to the real world. Our approach outperforms
model-free approaches in terms of grasping success rate and
does contrary to analytical approaches not require any human
involvement (automatic configuration). We demonstrate that
our approach can be used for precise real-world robotic

pick-and-place tasks, although being entirely trained on
simulated data.

In future work, we plan to extend the approach to mixed
bins and study how to reduce the time for data generation
and training to allow a faster deployment of our solution.
Furthermore, we want to study whether the generated data
(grasping trials) can be used for model-free robotic grasping
approaches in 6D.
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