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Non-linear control under state constraints with
validated trajectories for a mobile robot towing a

trailer
Joris Tillet, Luc Jaulin, Fabrice Le Bars

ENSTA-Bretagne, Lab-STICC UMR CNR 6285, 2 rue
François Verny, 29806 Brest, France.

Abstract—In this paper, we propose a set-inversion approach
to validate the controller of a nonlinear system that should
satisfy some state constraints. We introduce the notion of follow
set which corresponds to the set of all output vectors such
that the desired dynamics can be followed without violating
the state-constraints. This follow set can then be used to choose
feasible trajectories that a mobile robot will be able to follow. An
illustrative example with a robot towing a trailer is presented.
This example is motivated by the safe control of a boat towing
a marine magnetique sensor to find wrecks.

Index Terms—Interval analysis, Lie derivatives, mobile
robots, nonlinear control, state constraints, tank-trailer.

I. INTRODUCTION

Nonlinear control methods [15], [37], [19] have been stud-
ied for years and have found many convincing applications
in robotics [4], [9], [38], [8]. When state constraints are
involved, the problem is much less studied because it requires
to solve nonlinear inequality constraints mixed with nonlinear
differential equations. Even if planning methods [22] have
provided some interesting results, the problem can still be
considered as open as soon as some guarantee is required.

In this context where nonlinear differential problems are
considered, interval methods have been shown to be able
to provide solutions in a reliable way [39], [12], [11] and
have been successful for many robotics applications such
as localization [32], [5], control [24] or planning [13], [28].
In a dynamical context, the reliability is mainly due to the
possibility to integrate nonlinear differential equations in a
guaranteed way [36] [40] which is not possible with other
approaches, to our knowledge. Large scale problems have
even been solved efficiently by adding contractors [33], [2]
to the interval theory. This motivated researchers to use more
frequently interval approaches for nonlinear control [34], [32]
[30].

In this paper, we want to combine methods coming from
nonlinear control theory such as flatness [10], or feedback
linearization [21], to cast the problem of finding safe trajec-
tories (i.e., that do not enter inside the forbidden zone) into a
set inversion framework. The resolution of the set inversion
problem can then be performed using interval analysis [17].

Set inversion is now considered as mature enough to solve
efficiently real problems (see e.g., [7], [3]).

The idea of using flatness with interval methods is not
new since it has been used for robust controller design [20]
[14], fault detection [29], state estimation [16] or to deal
rigorously with uncertainty [31]. The principle is to use
flatness to transform differential constraints into analytical
inequalities using Lie derivatives. Then, the resolution is
performed numerically and rigorously using interval analysis
tools [26].

In this paper, we consider problems with state constraints.
We propose to project this set onto the set of vector outputs.
This projection is shown to be possible if we get a controller
that obliges the output to obey a desired dynamics. The
corresponding projected set will be called follow set and will
then be used to find trajectories that are consistent with the
constraints.

Our approach will be illustrated on the tank trailer problem
which is known to be difficult from the control point of view,
but also for planning a safe trajectory [22]. This choice is
motivated by the safe control of a boat towing a magnetic
sensor where the validatation of the dynamic of some state
constraints related to the towing cable. Other approaches of
motion planning under constraints can be used to find a
probable safe trajectory [27, 1], but here the goal to provide
guaranteed results.

The paper is organized as follows. Section II sets up the
problem in a formal way and presents the mathematical tools
that will be used for the resolution. Section III introduces
the tank-trailer robot and shows how to find a controller so
that the output (the center of the trailer) follows the required
dynamics. Section IV defines the follow set and shows that it
can be described as a set inversion problem. It also explains
how the follow set can be used to find safe trajectories. A test-
case related to the safety trajectory of the tank-trailer robot
for internal and external collisions is considered in Section V.
Section VI concludes the paper and gives some perspectives.
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II. FORMALISM

Consider a mobile robot described by the following state
equations  ẋ = f(x) + g(x) · u

y = h(x)
x ∈ X

(1)

where u ∈ Rm is the vector of controls (or the vector of
actuators), x ∈ Rn is the state vector and y ∈ Rm is
the output vector. The functions f ,g,h are assumed to be
smooth. The dimensions of u and y are both equal to m. All
vectors depend on the continuous time t. In our context, the
system is a robot and the output y corresponds to its position
in the workspace which may be of dimension 2 or 3. The set
X is a state constraint that should be satisfied.

We now introduce the concept of Lie derivatives, classical
in control theory [19]. It will allow us to express any kth
derivative of any output as an analytical expression of the
state x.

Lie derivatives . We have

ẏ =
dh

dx
(x) · f(x)︸ ︷︷ ︸
=Lfh(x)

+
dh

dx
(x) · g(x)︸ ︷︷ ︸
=Lgh(x)

· u.

The quantity Lfh(x) is the Lie derivative along with f of h
at x. We can define recursively the ith order Lie derivative
by

Lifh(x) = LfLi−1f h(x) =
d(Li−1f h)

dx
(x) · f(x).

Relative degree. The relative degree relative for the out-
puts yj , j = 1, . . . ,m, is the smallest integer ρj such that

LgL
ρj−1
f hj(x) 6= 0.

Controllability. We want our system to follow a specific
dynamic for y, say ẏ = Ψ(y). We consider the error

e = ẏ −Ψ(y) = Lfh(x) + Lgh(x) · u−Ψ(h(x)).

If the system is controllable with y as an output, using
classical nonlinear control method, we can find a controller
u = c(x) such that e(t) converges exponentially toward 0
[19].

The following section illustrates these concepts in the tank-
trailer control problem. Then, we will see in Section IV how
the state constraint could be taken into account in this context.

III. TANK TRAILER CONTROL PROBLEM

A. Model

The state equations of the tank-trailer system, represented
by Figure 1, are given by:

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5

 =


x5 cosx3
x5 sinx3

0
x5 sin(x3 − x4)

0


︸ ︷︷ ︸

f(x)

+


0
0
u1
0
u2


︸ ︷︷ ︸

g(x)·u

(2)

with (x1, x2) the position of the tank, x3 its heading, x4 the
heading of the trailer and x5 the speed of the car. Note that
here g(x) does not depend on x.

Fig. 1. Tank with a trailer

We consider as an output the center of the trailer(
y1
y2

)
=

(
x1 − cosx4
x2 − sinx4

)
= h(x). (3)

We propose here a controller such that the output follows the
desired dynamics. This choice is motivated by the control
of our robot Boatbot which is an autonomous rubber-boat
towing a kayak to which a magnetometer is attached (see
Figure 2). The goal of this robot is to build a magnetic map
to localize wrecks [23]. In this application, the output vector
y corresponds to the position of the magnetometer.

Fig. 2. Boatbot towing a magnetometer

The approach we will follow here is inspired by [35],
except that here we want to follow a dynamics for y and
not a specific trajectory.

B. Flattened feedback

The first step to applying a nonlinear control approach is to
draw the graph of differential delays of the system (see Figure
3). A continuous arc corresponds to a differential delay
between two variables. The dashed arc corresponds to an
analytical non-differential relation relating to two variables.
For instance, since we read from the state equations that
ẋ1 = x5 cosx3 we add the two arcs x5 → x1 and x3 → x1.
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Fig. 3. Graph of the differential delays of our tank-trailer vehicle

The relative degrees ρ1, ρ2 of y1, y2 can be read from the
graph by counting the number of continuous arcs separating
the output yi to the inputs u1, u2. We get ρ1 = ρ2 = 2.
Now, since ρ1 + ρ2 = 2 + 2 < dim x = 5, a feedback-
based linearization method leaves a state variable without
any control. If we are lucky, this floating state variable is
stable and the resulting behavior is correct. Now, if we push
the method up to the simulation, we observe that for our
system the floating state variable is unstable. This instability
makes the approach inappropriate. The following theorem,
illustrated by Figure 4, provides flattened feedback of our
vehicle. Without more precisions (see [35] for details), this
means for us that the sum of the relative degrees corresponds
to the dimension of the system.

Theorem 1. Consider the controller

v̇1 = a1

u = A−1(x) ·
((

v1
a2

)
− b(x)

)
︸ ︷︷ ︸

ρ(x,v1,a2)

(4)

where

A(x) =

(
−x5 sin(x3 − x4) cos(x3 − x4)
x5 cos(x3 − x4) sin(x3 − x4)

)

and

b(x) =

(
x25 sin

2(x3 − x4)
−x25 sin(x3 − x4) cos(x3 − x4)

)
.

In the new coordinate system given by

z =


z1
z2
z3
z4
z5
z6

 =


x1 − cosx4
x2 − sinx4

x5 cos(x3 − x4)
v1
x4

x5 sin(x3 − x4)


︸ ︷︷ ︸

ϕ(x,v1)

(5)

we get the closed-loop system:
ż1
ż2
ż3
ż4
ż5
ż6

 =


z3 cos z5
z3 sin z5
z4
a1
z6
a2

 = fz(z) + gz(z) · a

(
y1
y2

)
=

(
z1
z2

)
= hz(z)

(6)

Fig. 4. The two systems in the magenta boxes are equivalent

Remark 2. This theorem suggests a better coordinate system
to represent the state where, (y1, y2) is the center of the
trailer, z5 the heading of the trailer, (z3, z6) the speed vector
of the front car expressed in the trailer frame. It also suggest
to control directly the acceleration of the trailer (via a1) and
its rotation rate (via a2).

Proof: We have

ẏ = Lfh(x) + Lgh(x)︸ ︷︷ ︸
=0

· u

= x5 cos(x3 − x4)
(

cosx4
sinx4

)
(5)
= z3

(
cos z5
sin z5

) (7)

Moreover {
ż3 = Lfz3 + Lgz3 · u
z̈5 = L2

f z5 + LgLfz5 · u
or equivalently(

ż3
z̈5

)
= A(x) ·

(
u1
u2

)
+ b(x) (8)

where
A(x) =

(
Lg1

z3 Lg2
z3

Lg1
Lfz5 Lg2

Lfz5

)
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and

b(x) =

(
Lfz3
L2

f z5

)
.

It is trivial to check that A(x) and b(x) are the matrices
given in the Theorem. The matrix A(x) is singular only if
x5 = 0, i.e., if the speed is zero. If we take the linearizing
feedback u = A−1(x) (v − b(x)) , then (8) becomes(

ż3
z̈5

)
=

(
v1
v2

)
. (9)

Finally

ż1
(7)
= z3 cos z5

ż2
(7)
= z3 sin z5

ż3
(9)
= v1

ż4
(5)
= v̇1

(4)
= a1

ż5
(5)
= ẋ4

(2)
= x5 sin(x3 − x4)

(5)
= z6

ż6 = z̈5
(9)
= v1.

which corresponds to (6).
As illustrated by Figure 5, the sum of the relative degrees

of each output is now equal to the dimension of the system
(3 + 3 = 6).

Fig. 5. Graph of the differential delays of the flattened system

C. Control the flattened system

We consider the flattened system defined by

ż = fz(z) + gz(z) · a
y = hz(z)

as defined by (6). We want y to follow a desired dynamics
ẏ = Ψ(y), such as, for instance, the Van der Pol equation
given by: (

ẏ1
ẏ2

)
=

(
y2

−
(
y21 − 1

)
y2 − y1

)
︸ ︷︷ ︸

Ψ(y)

The error that we want to cancel is the difference between
the course of the trailer and the direction given by the vector
field:

e(z) = ẏ −Ψ(y)
= Lfzhz(z)−Ψ(hz(z))

=

(
z3 cos z5 − z2

z3 sin z5 + (0.01 · z21 − 1)z2 + z1

)
.

We have

ė(z) = L2
fz

hz(z)− L1
fz

Ψ(hz(z))

=

(
−z3z6 sin z5 − z3 sin z5 + z4 cos z5

(z6 +
z1z2
50 + 1)z3 cos z5 + (

z21z3
100 − z3 + z4) sin z5

)
and

ë(z) = L3
fz

hz(z) + (Lgz
L2

fz
hz(z)) · a− L2

fz
Ψ(hz(z))

We do not give the full expressions of all quantities with
respect to the zi’s for the sake of clarity. We have deg(e1) =
deg(e2) = 2, this is why the dependency with respect to a
occurs only at the second derivative ë. Let us choose the
error equation

ë + 2ė + e = 0

to converge to zero. We get

L3
fzhz(z) + (Lgz

L2
fzhz(z)) · a− L2

fzΨ(hz(z))︸ ︷︷ ︸
ë(z)

+

2 (L2
fzhz(z)− L1

fzΨ(hz(z)))︸ ︷︷ ︸
ė(z)

+

+Lfzhz(z)−Ψ(hz(z))︸ ︷︷ ︸
e(z)

= 0

or equivalently

a = β(z)

= −
(
LgzL2

fz
hz(z)

)−1
·
(
L3

fz
hz(z)− L2

fz
Ψ(hz(z)) + 2ė(z) + e(z)

) .
Combining this expression with the controller (4), as

illustrated by Figure 6, we get the trailer center following
exactly the required vector field. Figure 7 illustrates the
behavior of the controller.

Fig. 6. With the controller, the output y follows exactly the Van der Pol
dynamics
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Fig. 7. Simulation of the tank (blue)-trailer (magenta) system following
the Van der Pol vector field

IV. FOLLOW SET

In the previous section, we have proposed a controller such
that the output follows exactly the desired vector field. In this
section, we take into account the state constraint x ∈ X.

Observability. A system is said to be observable [6] if
there exist a function Φ and integers r1, . . . , rm such that

x = Φ (y1, ẏ1, . . . , y
r1
1 , . . . , ym, ẏm, . . . , y

rm
m ) (10)

The integers ri generally correspond to the relative degrees
for the outputs yj , j = 1, . . . ,m, but this is not mandatory.
This assumption is valid for many systems as if it is flat with
the flat output y. In what follows, we assume that we have
an observable system and that Φ is available.

In the case where y follows exactly the dynamics Ψ, we
can write

y
(i)
j = LiΨyj .

We define the follow set as

Y = γ−1 (X) ,

where

γ :
Rm 7→ Rn
y → Φ(y1,LΨy1, . . . ,Lρ1Ψ y1,

. . . , ym,LΨym, . . . ,LρmΨ ym)

and X is the set of state constraints that should be satisfied
for the state x. The set Y corresponds to the set of all y such
that if y follows the dynamics Ψ, then all state constraints
are satisfied. Most of the time, the set Y cannot be computed
exactly because of the non linearities between the output y
and the state vector. So, using a set inversion approach, an
inner and an outer approximations for Y can be obtained [18].
These approximations are computed with the SIVIA (Set
Inversion Via Interval Analysis) algorithm which consists
of testing interval vectors from Y space with a dichotomy
strategy. Finally, the exact solution set is bracketed between
the inner and the outer approximation.

Once this follow set has been computed, a reachability
analysis could be performed to find viable domains in y [25].
Thus, all found y is such that all state constraints will always
be satisfied as long as the dynamics Ψ is followed.

Consider once more the tank trailer system which is
controlled so that y follows the dynamics Ψ. If we know

y1, y2, ẏ1, ẏ2, ÿ1, ÿ2 then we can find the corresponding x.
This is illustrated by Figure 8 where we can understand that
to follow properly the desired trajectory in the y space, there
exists a unique possibility for x(t). This point is clarified by
the following proposition.

Fig. 8. From y and its derivatives, we can find x

Proposition 3. For the tank-trailer system, we have x =
Φ (y1, ẏ1, ÿ1, y2, ẏ2, ÿ2) as given by Figure 9.

Fig. 9. Expression of Φ (y1, ẏ1, ÿ1, y2, ẏ2, ÿ2)

Proof: We have(
ẏ1
ẏ2

)
= Lf (y) =

(
x5 cos(x3 − x4) cosx4
x5 cos(x3 − x4) sinx4

)
Thus

x4 = atan2(ẏ2, ẏ1) (11)

and from (3), we get(
x1
x2

)
=

(
y1
y2

)
−
(

cosx4
sinx4

)
.

Moreover, differentiating (11), we get

ẋ4 =
ẏ1ÿ2 − ÿ1ẏ2
ẏ21 + ẏ22

.

Thus (
ẋ1
ẋ2

)
=

(
ẏ1
ẏ2

)
+ ẋ4

(
sinx4
− cosx4

)
and

x3 = atan2(ẋ2, ẋ1)
x5 =

√
ẋ21 + ẋ22
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Fig. 11. The purple polygon is the obstacle the car must not collide with.
The follow set is painted green. This Figure has been obtained in less than
90 seconds on a basic laptop (with a processor of 1.7GHz).

V. TEST-CASES

In this section, we consider again the tank-trailer robot. For
safety reasons, probably the most important state constraints
are the collisions. Figure 10 illustrates two types of collisions:
internal and external.

Fig. 10. Since a implies an internal collision and c corresponds to a
collision with the polygon, a, c are not in the follow set Y

External collision. Assume that there exists a polygonal
obstacle to be avoided (purple in Figure 11). The orange area
is the place where the trailer center cannot go safely with
the required dynamics. In the green area, the output y can
safely follow the cycle with the guarantee that the robot never
collides with the obstacle. The follow set has been computed
with the algorithm SIVIA based on interval analysis. The
polygonal assumption for the obstacle is not a limitation of
the method. Any obstacle with a known shape could have
been considered as well.

Internal collision. Assume that if a maximum angle of
70° exists between the trailer and the tank, then an internal
collision occurs. The set of all acceptable trailer positions is
painted green in Figure 12, assuming that the robot follows

Fig. 12. The green area corresponds to the follow set associated with an
internal collision. In the orange area, the controller will lead to a state with
an angle x4−x3 too strong and the non-collision constraint will be violated.
This Figure has been obtained in 2 minutes.

the required dynamics. Again, we have validated the painted
trajectory and the limit cycle since it remains in the follow
set. An illustrating video is given at the following link:
https://youtu.be/892 by8LVEw.

The computed follow set is an inner approximation (and
the orange area the complementary of the outer approxima-
tion), so it is a little smaller than the exact one, to guarantee
a safe behavior.

VI. CONCLUSION

In this paper, we have considered the problem of the vali-
dation of a trajectory of a robot with its controller when state
constraints exist. We have shown that using Lie derivatives,
it was possible to derive non-differential constraints defining
the follow set that takes place in the set of outputs y. Now,
the dimension of y is usually small (typically 2 or 3) in
mobile robotics, since it corresponds to the world space. As
a consequence, we were able to propose an interval-based
algorithm to compute an inner and an outer approximation
of the follow set. If the output trajectory remains inside this
set, then the trajectory can be considered as validated. An
example related to the tank-trailer robot has been treated
in the case where internal and external collisions should be
avoided.

This problem is of particular importance in the case of
articulated cumbersome robots such as marine robots where
sensors have to be towed in an environment with many
obstacles including rocks, islands, or other boats.

In addition to maritime applications where towing sensors
such as sonars or CTD (Conductivity Temperature Depth)
probes is quite typical for oceanography and hydrography,
as shown in the new attached video, delivery with ground
robots towing trailers full of postal packages, food deliveries,

https://youtu.be/892_by8LVEw
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etc. could be another example of application. Since around 5
years, deliveries with aerial drones has been a quite popular
topic, yet it seems at the moment there are several obstacles
(such as safety, highly changing law regulations about aerial
drones, energy efficiency, acceptation by people, etc.) that
prevent it to be common. Fleets of ground robots with trailers
could be a good alternative as long as they are able to safely
follow predefined paths where they would ask for a human
operator to temporarily control them in case of an unexpected
event on their known path. This could be first used inside
e.g. universities campus or factories, where the environment
of the robot can be more easily controlled than directly in
the street.
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