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Abstract— Robotic technology is increasingly considered
the major mean for fruit picking. However, picking fruits
in a dense cluster imposes a challenging research question
in terms of motion/path planning as conventional planning
approaches may not find collision-free movements for the
robot to reach-and-pick a ripe fruit within a dense cluster.
In such cases, the robot needs to safely push unripe fruits
to reach a ripe one. Nonetheless, existing approaches to
planning pushing movements in cluttered environments either
are computationally expensive or only deal with 2-D cases and
are not suitable for fruit picking, where it needs to compute 3-
D pushing movements in a short time. In this work, we present
a path planning algorithm for pushing occluding fruits to
reach-and-pick a ripe one. Our proposed approach, called
Interactive Probabilistic Movement Primitives (I-ProMP), is
not computationally expensive (its computation time is in
the order of 100 milliseconds) and is readily used for 3-D
problems. We demonstrate the efficiency of our approach with
pushing unripe strawberries in a simulated polytunnel. Our
experimental results confirm I-ProMP successfully pushes
table top grown strawberries and reaches a ripe one.

I. INTRODUCTION

State-of-the-art path planning algorithms do not tackle
the problem of fast path generation for a robotic manipu-
lator in a 3-D cluttered scene with connected objects [1]–
[6]. In this work, we propose an Interactive Movement
Primitives (IMP) strategy, that allows us to quickly plan
simple quasi-static pushing movements, e.g. for fruit pick-
ing [7] where the motion planning must readily generalise
to different configurations of fruits in clusters (fig. 1).

Labour shortage is a major challenge for many sectors,
including agriculture. In the UK alone, the soft fruit sector
uses 29,000 seasonal pickers to produce over 160,000 tons
of fruit every year [7]. Only strawberry harvesting costs
more than 60% of the total production cost. Bringing
robotic arms to the field is a response to this global
challenge of labour shortage [8]. However, precise, reliable
and fast motion planning is one of the key bottlenecks of
a robotic fruit picker [7]. A sophisticated robotic picking
technology (fig. 2) is only capable of successfully picking
isolated strawberries whereas many of the strawberries are
grown in clusters [9].

An increasing number of robotic harvesting technologies
are nowadays presented. Schuetz et al. in [10] formulated
the harvesting problem as a static optimal control problem
relying on an initially generated heuristic trajectory. In their
work, the authors generate an optimal harvesting trajectory
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(a) (b) (c)

Fig. 1. Table top grown strawberries: 1a and 1b show sample clusters
of strawberries. The configuration of the strawberries are not uniform or
easy to model. Unripe strawberries may occlude the approach path for
a strawberry picker robot (1c). The table top growing is getting popular
because the growing condition can be precisely controlled. (1c) shows our
strawberry picking robot consisting of a SCARA arm and a mobile robot.
This figure shows the simulation of polytunnel for growing strawberries.
We simulate a few possible cluster types important for formalising the
pushing movements, similar to the real cluster of strawberries shown in
(1a).

that minimises the collision and dynamical costs. In [11],
the authors presented an energy optimal combined with an
artificial potential field approach to formalise the problem
of a collision-free path-planning harvesting 6-DoFs robot.
In [7], the authors propose an active obstacle-separation
path planning strategy for picking fruits in clusters inspired
by human pickers who usually use their hands to push
and separate surrounding obstacles during picking. In the
latter work, the authors adapt a pushing action on the
obstacle fruits before reaching the target one. The pushing
action results mechanically from the move in a designed
direction, thanks to a genuine design of a fingers-like
gripper. Although a pushing action is generated along the
path to the target, it doesn’t rely on the cluster physics, and
hence is considered heuristic and limits the picking success
rate. In addition, the approach in [7] lacks consideration
of different kind of occlusions (e.g those coming from
stems) which may result in grasp failure due to components
coupling, and also, the strategy doesn’t consider combined
cases (e.g top obstacles on symmetrical side of the target)
which can leave the proposed planning strategy without
solution.

In addition to picking technology, many other agriculture
robotic technologies are researched, e.g. weed detection
and removal [12], crops growth monitoring through aerial
robots (e.g. using quadcopters) [13], fruits [14] and plants
[15], [16] detection and tracking, mobile robot navigation
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and mapping [17]- [18]. Another agri-robotics area is fo-
cusing more on robot kinematics and manipulation trying to
find a suitable and efficient gripper design. Some grippers
are developed to achieve stable and soft contacts [19] with
the fruits and others are developed based on a scissor-like
concept [9].

A human may push/move objects to reach-and-pick a
fruit or reach-and-grasp an object in a toolbox or fridge.
Some previous studies researched some of such problems
in robotic context. For instance, [3]–[6] consider problems
limited to 2-D problem of objects rearrangement on a flat
surface, e.g. in a fridge or on a shelf, to reach and grasp the
desired object in a cluttered scene. Although the approach
in [3] is computationally efficient for no-uncertainty case,
it is proposed for 2-D occlusion scene. In examples [4]–[6],
computationally expensive approaches, such as physics-
based trajectory optimisation, are successfully used. How-
ever, these approaches require a long computation time for
planning the movements (e.g. in [5] an average computa-
tion time for two objects in a refrigerator is reported for
∼ 10s).

In other real-world 3-D examples, e.g. picking fruits, the
interactions of the objects with its environments may not
involve complex computations, e.g. friction between object
and the flat surface. As such, the approaches listed before
are not efficient or readily applicable to our application
because they are designed for 2-D problems and need long
time for planning and performing pushing movements.

In contrast to optimisation based approaches, robot
learning from demonstration (LfD) approaches, e.g. [20],
have been successfully developed to minimise the planning
time. For instance, Dynamic Movement Primitives (DMP)
are used to generate and adapt the robot trajectory in real-
time [21] where they can also be used to avoid colli-
sion [22]. Probabilistic Movement Primitives (ProMP) is
also an LfD approach which features interesting properties
useful for our problem [23] - [24]. For example, Maede
et al. [25] proposed an interaction learning method for
collaborative and assistive robots based on probabilistic
movement primitives. With ProMPs, we are able to en-
code variability and uncertainty in the movements and to
derive new operations which are essential for implementing
modulation of a movement, coupling, co-activation and
temporal scaling. Shyam et al. [26] proposed a probabilistic
primitive based optimisation technique to generate smooth
and fast trajectories. Their approach relies on the Covariant
Hamiltonian optimisation framework for motion planning
with obstacle avoidance constraints initialised with a prob-
abilistic primitive.

In this paper, we extend ProMP [26] and propose an
Interactive-ProMP (I-ProMP) planning the pushing of un-
ripe strawberries. Our contribution is manifold as follows:
(i) we present primitive cluster types for a challenging
strawberry picking problem, defining different configu-
rations of strawberries; (ii) we present I-ProMP which
efficiently generates, in 0.19s mean computation time and
0.0022 standard deviation, movements necessary for push-

(a) (b)

Fig. 2. State-of-the-art strawberry picking head [7]: although this so-
phisticated design can successfully pick most of the isolated strawberries,
it fails to pick (i) some of them due to a large error in the planned target
position 2a, or (ii) all the occluded strawberries 2b.

(a) (b)

(c) (d)

Fig. 3. Cluster configurations identified in this paper and simulated in
Gazebo 8.0: a target strawberry (red) is surrounded by two neighbours
(green) with detached (a) and (b) attached stems lower, CI , upper, CII , and
at the same level, CIII of the target one, from left to right respectively.
(c) CIV : the goal strawberry is occluded by a stiff-inclined stem, unripe
strawberry. (d) CV I : the goal strawberry is occluded by a stiff-inclined
stem-strawberry from one side and an unripe (straight) stem-strawberry
from the other side.

ing strawberries occluding the robot’s way to a ripe one;
(iii) we develop a simulation environment in Gazebo 8.0
which allows us to test our I-ProMP. Hence, we test I-
ProMP in the developed simulation environment which
illustrates our approach successfully performs the pushing
movements and reaches the occluded ripe strawberry in
different configurations.

The rest of the paper is divided into the following:
section II defines the problem and the current main chal-
lenge in fruit harvesting, section III presents the approach
we followed to tackle the problem, section IV illustrates
experimental results reported on a simulated field and
section V concludes with future works.

II. PROBLEM FORMULATION

Robotic fruit picking is an interesting motion/path plan-
ning problem. For instance, a ripe fruit to be picked may
be located among leaves and unripe fruits where the robot
can neither fully observe the fruit nor plan a collision-
free robotic arm to reach-and-pick the ripe one. Cluster
configurations of fruits are determined by the fruit variety
which may result in varying number of roots and nodes.
The sophisticated end-effector design for strawberry pick-



Fig. 4. Sample paths generated for the picking robotic end-effector. We
used cubic radial basis functions for generating sample trajectories. Each
red sphere resembles a circle surrounding the cluster centred at the goal
strawberry. The sample trajectories will be used to train our Probabilistic
Movement Primitives (ProMP).

ing [7] fails to pick strawberries in clusters (fig. 2b) because
the ripe strawberries may be occluded by unripe ones. In
this paper, we adopt Interactive Probabilistic Movement
Primitives to the fruit occlusion problem.

We identify a few primitive fruit configurations in a
cluster illustrated in fig. 3 and fig. 11, which resemble
most of the real strawberry clusters. Other cluster types
may be formed by combining the primitive configurations1:
(i) clusters with isolated and non occluded components
(fig. 3a) – ripe target above and below and at the same
level of unripe neighbours, respectively from left to right;
(ii) clusters with connected components – ripe strawberry at
the same level, above and below the neighbour strawberries
(fig. 3b), respectively from left to right; (iii) a cluster with
occluded target where the target and occluding strawberry
have different nodes (fig. 3c); (iv) a cluster with occluded
target– this configuration shows one of the neighbours
occludes the target whereas another does not (fig. 3d).
We simulate all the cluster configurations in Gazebo 8.0
simulation framework. Each stem is equipped with a 3-
axes hinge at its root. A discussion for handling each case
is elaborated later on in section IV.

III. PROPOSED APPROACH

In this section, we present our proposed Interactive Prob-
abilistic Movement Primitives (I-ProMP). We used cubic
radial basis functions for generating sample trajectories,
called demonstrations, by ϕ(x) = ‖x− c‖3, where x is the
input variable and c is a fixed point, called the center of
the function. We generated 10 sample nominal trajectories
(fig. 4) with the same initial and 10 different end-points.
For each nominal trajectory we have 10 samples, their end-
points is randomly sampled with the mean equivalent to
the nominal goal point and standard deviation of 10−3. We
consider completion time for the demonstrated trajectories
to be T = 1s.

We model a movement execution as a trajectory ξ =
{Xt}t=0...T , defined by the end-effector pose Xt over time.
A ProMP model [23] describes multiple ways to execute

1In all the simulated scene, ripe and unripe strawberries are coloured
red and green, respectively

a movement, which naturally leads to a probability distri-
bution over trajectories. The latter can be represented by
a deterministic function of weights ω and phase variable
z(t), as follows:

Xt = ψ
T
t ω + εx (1)

where ψt ∈ Rn×3 is a basis matrix, ε is a zero mean
Gaussian random variable with variance Σx. We choose
k gaussian basis functions which have been shown to be
good enough for non-periodic movements,

ψ
G
k = exp(− (zt − ck)

2

2h
) (2)

where zt is a time-dependent phase variable, ck is the center
of the kth basis function and h is the width of the basis.
Basis functions in Eq. 2 are normalised by Σ jψ j(z).

1) ProMP trained by demonstrations: In order to learn
a movement primitive with properties similar to the gen-
erated demonstrations, we learn weight parameters using
an extension of the maximum likelihood (ML) estimate
[27], e.g. using the expectation maximization algorithm,
as follows

ω = (λ I +ψ
T

ψ)−1
ψ

T X (3)

where λ is a regularisation term to avoid over-fitting in
the original optimisation objective [23]. The probability of
observing a trajectory X given the parameter vector θ =
{µω ,Σω} is given by the marginal distribution

p(Xt ;θ) = N (Xt |ψT
t µω ,ψ

T
t Σω ψt +Σx) (4)

where µω and Σω are the mean and variance of the weight
vector respectively.

2) ProMP conditioning at a goal neighbourhood: We
consider a scenario in which the robot has a camera looking
at the table from the side view localising a ripe strawberry
at pts(t) = [x1,x2,x3]. The picking robot first moves to the
bottom of the ripe fruit, pbs(t) = [x1,x2,x3−0.1]m, which
is captured by the first camera, to get a better view of the
cluster with a camera-in-hand. Then, the robot performs the
push movements to open occlusions and reach the target
strawberry. We consider the picking actions are cyclic, i.e.
after picking strawberry i, the robot plans the movements
to pick strawberry i+1 and so on. The picking head of the
robot is equipped with a punnet; so, the robot directly picks
the strawberries into the punnet. As such, target picking
position at time t becomes initial position for planning
the next picking movements. At time t, we condition the
ProMP at pbs with time (t+ t1)s, with t1 = 0.85, and at pts
with time (t +T )s. In addition, we synthesise a systematic
strategy to condition the primitive at selective neighbour
fruits, as a first attempt to create a pushing action in an
occluded scene.

Fig. 5 compares the effect of the number of basis func-
tions on the regeneration performance of the learnt ProMP.
This figure shows that a ProMP with larger number of basis
functions can capture and/or generate higher nonlinear
behaviours.



(a) (b)

Fig. 5. ProMP generation for the same number of simulated fruits:
(a) with number of basis ψ = 4, bandwidth h = 1m and T = 1s; (b)
with ψ = 10, h = 1m and T = 1s. As it these figures show, ProMP with
larger number of basis functions can capture more non-linearity of the
demonstrated trajectories.

(a) (b) (c)

(d) (e) (f)

Fig. 6. (a) One learnt ProMP with number of basis functions ψ =
20, bandwidth h = 1m (b) ψ = 10, h = 1m and (c) ψ = 4, h = 1m, all
with conditioning time vector Tc1. (d) One learnt ProMP with ψ = 4 and
conditioning time Tc2, (e) Two learnt ProMPs with ψ1 = 4 and ψ2 = 4,
(f) Two learnt ProMPs with ψ1 = 4 and ψ2 = 5.

We distinguish an approaching trajectory, which has the
least non-linearity, and a pushing trajectory, which may be
highly non-linear. As such, we consider two ProMPs which
represent different level of non-linearities with respect to
the phase variable input. The first ProMP, namely MP1 is
used to generate reach-to-pick, whereas the second ProMP,
namely MP2, is used to generate push-to-pick, as follows:{

MP1[ψ1(zt)], t0 ≤ t < t1,
MP2[ψ2(zt)], t1 ≤ t < T,

(5)

where, MP1 and MP2 have k = 4 and k = 5 basis functions,
respectively. Comparing the trajectories generated using
MP1 and MP2 models (fig. 6 e-f) versus using (i) just one
ProMP over completion time T = 1s (fig. 5) and (ii) just
one ProMP over completion time T = 2s (fig. 6 a-d), shows
the superiority of two ProMPs in our specific example.
Fig. 5a shows that, with a single primitive we are not able
to achieve near zero variance ProMP at the conditioned
neighbour fruits (unripe) while holding the time duration
of the demonstrations, i.e. T = 1s. On the other hand, for an
increased number of basis functions (e.g ψ = 10, as in fig.
5b) a non-linear behavior is induced along the whole tra-

jectory for a 4 desired observations, in addition to the final
(ripe fruit) and initial condition (yellow sphere). Hence, we
double the total trajectory duration to T = 2s and compare
the use of single MP with different number of basis: ψ = 20
(6a), ψ = 10 (6b) and ψ = 4 (6c), all with the same
discretised conditioning time Tc1 = [0,0.85,1,1.3,1.6,2]s
going from t0 = 0s to T = 2s. The better case turns out
to be the one with ψ = 10. At this point, we compare this
case with a similar one, but with a different discretised time
duration Tc2 = [0,1.2,1.4,1.6,1.8,2]s (fig. 6d). It turns out
that the improvement in smoothness we got in the second
phase of the trajectory (t = 1.2s to T = 2s) results in larger
variations in the reach-to-pick trajectory (t0 to t = 1.2s).
As a consequence, we test the learning phase on two
different time zones separately while keeping the duration
T = 2s. One ProMP is learnt from demonstrations lasting
for t1 = 0.85s and the other is learnt for the remaining time
duration (t1 = 0.85s to T = 1s). Fig. 6e shows the resulting
ProMP with ψ1,2 = 4 while 6f shows the ProMP generated
with ψ1 = 4 and ψ2 = 5 for the consecutively learnt MPs.

Based on the results obtained in fig. 6f that we choose
to adopt in this work, it is worth noting that this approach
results close to what is addressed by the strategic method in
[28] for approximating nonlinear functions in high dimen-
sional spaces. The method in [28] uses a Locally Weighted
Projection Regression (LWPR) algorithm, where new basis
functions are added automatically by the algorithm when
needed.

Given the desired end-effector observation ξ ∗t = [X∗t ,Σ
∗
x ]

with a desired variance Σ∗x , we can get the Gaussian condi-
tional distribution p(ω∗|ξ ∗t ) for the updated weight vector
ω∗, with mean and variance the maximum a-posteriori
estimate (MAP), as follows

µ
∗
ω = µω +Σω ψt(Σ

∗
x +ψ

T
t Σω ψt)

−1(X∗t −ψ
T
t µω), (6)

Σ
∗
ω = Σω −Σω ψt(Σ

∗
x +ψ

T
t Σω ψt)

−1
ψ

T
t Σω (7)

In a second phase, an online decision-making on the
neighboured fruits to condition upon is made by a planner
presented in the following, based on the criteria (i ·dng)≤
rmax

g , where dng is the euclidean distance between a neigh-
bour fruit and the target one, projected on unit vector
along the table top axis i = [1,0,0]. rmax

g = Dd,max/2 is
the maximum gripper opening radius, 3cm .

A. Interactive-ProMP

In the following section, we present a Stochastically-
driven Interactive Planner (SIP) which implements a prob-
abilistic physics-based pushing strategy to swallow a target
fruit from an 3-D cluster.

With the ProMP generated above (Eqs. 4, 6, 7) and
illustrated in fig. 7, two problems can still arise depending
on the cluster configuration in scene:
• The ProMP may cross the stem or the target fruit

before being able to swallow it. Consequently, a
damage to the scene and a large error in the goal pose
can arise.



Fig. 7. Sequential probabilistic primitives generated from an initial state
(IC) to Goal1 fruit (green sphere) while conditioning on its neighboured
fruits (red spheres) as a first attempt to generate a pushing action, then
from Goal1 to Goal2 followed by Goal2 to Goal3. The 3 primitives
are illustrated for 3 types of clusters shown in fig. 3a. Two task space
learnt probabilistic movement primitives are conditioned at a distance
10cm (cyan spheres) below the goal for a close fruit detection.

(a) (b)

Fig. 8. (a) Mock-up setup with SCARA arm, a finger-like gripper, an
RGB-D camera and a fake strawberry cluster, (b) Finger-like gripper [7]
integrated with a scissor and 3 infra-red sensors to localise the target
inside.

• The neighboured fruit by which the ProMP passes
may return to its natural position by physics effect.

In order to reduce the aforementioned risks and increase
the swallow success rate, we present hereafter a modified
version of the conditioned movement primitive that features
the following:
• Decision making on the number of neighboured fruits

that can free the robot path to the goal.
• Decision making on the local pushing direction of a

neighboured fruit
• Decision making on the amount of pushing, repre-

sented by an estimate of the angle of rotation of the
stem

The SIP algorithm: the SIP is presented in two stages.
Algorithm 1 takes as input a set of ripe G and unripe
Ḡ fruits and output the position of the pushable objects
selected at time t (Pct

p ), their orientation at time t (Pct
o )

estimated by the stem orientation (assumed given in this
work), their updated position at t (Pc∗t

p ). At first, the algo-
rithm selects a target gt , generates a cluster Cnt

p associated

Algorithm 1 The 3-D Pushing Strategy

Input: G = {matured fruits}, Ḡ = {non-matured fruits}
Output: Pct

p , Pct
o , Pc∗t

p

1: procedure PUSHING NEAREST NEIGHBOURS
2: gt ← random(G)
3: utt 3 (utt ∈ tabletop)∩ (utt ‖ tabletop)
4: Cnt

p ← RNN(gt ,Gs = GUḠ,r = 0.05)
5: Sd ,Sp,St ← Subset(Cnt

p ,dntgt ,up)
6: n ∈ {order(Sd ,axis = k)}
7: S∗d ← SubsetOPT (Sd ,Sp,St)
8: for n∗d ∈ S∗d do
9: root = ustem∩utt

10: Lstem = droot,ni

11: θ0 = arccos(ustem ·k)
12: θ = arcsin(rmax

g /Lstem)
13: dθ = θ −θ0
14: s← L2

stem +L2
stem−2∗L2

stem ∗ cos(dθ)
15: up← GetDir(v1,v2,S∗d)
16: Pc∗t

p ← Pro j(up,s)
17: end for
18: end procedure

to gt using the radius nearest neighbours technique (RNN)
where r = 0.05m is the chosen cluster radius. The clustered
points are then divided into bottom, plane and top sub-
sets, Sd , Sp and St respectively, minimised by the criteria
(i · dnt gt ) ≤ rmax

g . Sd is ordered incrementally along axis
k= [0,0,1] (operation 6), then optimised for the number of
elements (operation 7). The optimization takes into account
the points in the subset that are at quasi-equal level and
selects the one (S∗d) with smaller ‘ i ·dnt gt ’ value, in case
their stems doesn’t occlude the target, else (e.g fig. 3d)
it chooses the one that complies more with the gravity
direction because it needs less effort to push it. The latter
fact is not taken as a showcase in this work, related results
will be reported in our future work when an optimization
problem formulation will be elaborated for that purpose.
Given the stem orientation ustem, the algorithm computes
a stem length estimation, Lstem, for every element in the
optimised subset, i.e n∗d , after getting the intersection of
ustem with the table top plane (operation 9), then gets
the inclination angle θ0, computes the total inclination θ

needed to free the maximum gripper opening (operation
12), and gets the minimum displacement required (s) of
the pushable object to free the path to the target. Two
possible pushing directions are proposed, v1 and v2, each
normal to the stem direction ustem (assumed to be vertical,
hence aligned with k, only for the case of determining the
pushing direction up). If the algorithm finds other elements
from S∗d at same level as n∗d (e.g fig. 3d), it pushes n∗d along
v2 (i.e normal to table top), else, it pushes n∗d along v1 (i.e
parallel to table top). The updated n∗d coordinates (i.e Pc∗t

p )
are computed by projecting the displacement vector s on
the pushing direction up (operation 16).

Algorithm 2 takes as input the latest ripe goal gt−1,



Algorithm 2 Interactive ProMP generation

Input: gt−1,gt ,Pct
p , Pc∗t

p
Output: Interactive ProMP
procedure PROMP

2: Pcond = {gt−1,Pct
p ,Pc∗t

p ,gt}
ωML← Eq.(3)

4: µω ,Σω

for wpt ∈Gcond do
6: xd ,Σd

Update: µ∗ω ,Σ
∗
ω ← Eq.(6),(7)

8: end for
end procedure

a new ripe goal gt , Pct
p and Pc∗t

p . It then conditions the
learnt ProMPs at the input set (operation 5) and updates
the parameters of the weight distribution (operation 7).

Discussion: Clusters of type Goal2 and Goal3 in fig. 7
are not considered at this stage of work by SIP, hence Sp
and St are eliminated in algorithm 1. In a future work,
we will benefit from the genuine finger-like design of
the gripper in use (shown in fig. 8b) to test the grasp
of corresponding scenarios with pushing actions generated
kinematically by an incremental opening and closing of the
active fingers.

IV. EXPERIMENTS AND RESULTS

Given a finger-like gripper design [9] that we adopt in
our application, we consider that configurations of type 3a
and 3b can be targeted with only a primitive-based planner
applied on the ripe target. A pushing action will result
mechanically from path following. This hypothesis is tested
for the case in which the target is above neighbours and
results are reported in fig. 10, where fig. 10a represents
a ProMP generated by the planner and fig. 10b represents
the simulated end-effector trajectory (in blue), unripe fruits
trajectory and target ripe fruit trajectory.

For the case of fig. 3d, as discussed in section III, this
type of cluster gets optimised for the number of neighbours
to push and gets a pushing direction along v2, i.e normal
to table top. In the following, we present results related to
the configuration in fig. 3c and other two descendants.

A. Hardware Platform

Two SCARA arms are mounted on Thorvald mobile
robot [29] for fruit harvesting. Each arm is a 3-DoFs
PRR2 serial chain and consists of a cable-driven fingers-
like end-effector whose role is to swallow a strawberry,
center it, and finally cut it with an internal scissor. For a
detailed description of the gripper the reader can refer to
[9]. Whenever the goal fruit is detected by 3 integrated
infra-red sensors, the end-effector Xz position is increased
by 2cm to cut the stem with the scissor. As the growing
season starts in June [8], we only present our results in a
simulated polytunnel.

2P: prismatic, R: revolute

(a) (b)

Fig. 9. Field simulation on the SCARA arm mounted on a mobile base,
the Thorvald robot (b), navigating in polytunnels (a)

(a) (b)

Fig. 10. Probabilistic primitive-based strategy to swallow a soft fruit
from unoccluded clusters: no pushing actions are needed

B. Simulations and Results

We developed a simulation environment in Gazebo 8.0,
reported in fig. 9a and consisting of a polytunnel with
parallel table tops. In addition to the configurations shown
in fig. 3, we built complex clusters (figs. 11b - 11c) out of
the one shown in fig. 11a and attached them to the table
top. We sent Thorvald in the polytunnel and command
the arm to follow a joint trajectory generated from the
SPI planner. For the 3 simulated clusters, i.e figs. 11a -
11c, the SPI planner generates an interactive ProMP in
the robot Cartesian space, shown in figs. 11d - 11f with a
blue color, respectively. The joint space trajectories are first
constrained to joint limits and then passed to the SCARA
arm. They are monitored by an effort controller exposed
to a follow joint trajectory action interface. We record the
actual joint trajectories from the simulation and, with the
use of the robot forward kinematics, we report in figs. 11g
- 11i the actual end-effector trajectory and the trajectory of
each strawberry in the scene.

Discussion: In figs. 11d - 11f, every light pink sphere
(without green stem) under or above the goal represents
the initial pose of an unripe neighbour, accounted for with
a horizontal shift in position. The latter shifted position
is added to the conditioned set points and illustrated with
a short stem. The shift accounts for an amount equal to
rmax

g + rmax
f where rmax

f is an estimated maximum fruit
radius; this is to align the end-effector with the pushing
direction up. We can see that the planner doesn’t pass
through the unripe fruit above the target in fig. 11f while
the target sphere has an updated light green position
generated by the planner to align its orientation vertically.
For the scenario of fig. 11e, we computed the time for
generating an I-ProMP. The mean computation time over
1000 samples is 0.19s with a standard deviation of 0.0022.



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 11. Probabilistic primitive-based pushing strategy to swallow a soft fruit from complex clusters: (a) cluster with target fruit (red) occluded by
one stiff inclined stem and an unripe fruit (green), (b) cluster with target occluded by two stiff, unripe stem-fruit system, each from one side, (c)
cluster with target fruit occluded by two stiff stem-fruit system, one from above and another one from below, (d-f) Interactive ProMP generated for
the clusters (a-c): the target is conditioned at a point directly below it (representing the target radius, 1.5cm, plus a margin of 0.1cm). The pushed
unripe fruit is connected to the shifted pose with an inclined green stem. The legend in (d) applies to (e-f) while legend in (g) applies to (h-i) too.
(g-i) show the actual end-effector trajectory, extracted from the simulation environment. Also, they illustrate the goal fruit trajectory and the neighbour
unripe fruit trajectories.

In figs. 11g - 11i, it can be noticed that the actual end-
effector trajectory passes through the unripe fruits, and
reaches to the target (quasi-static position over time). We
note that, the generated interactive primitive is not passed
with multiple way-points to the robot joints before reaching
pbs, hence a larger difference between the generated one
and the simulated one exists. In table I, a metric is retrieved
to prove the occurrence of the pushing action. We consider
a contact has occurred if the minimum distance traveled
by the gripper frame with respect to a frame attached to
fruit center, at the fruit altitude is: 0 < dmin

f ,ee ≤ (rmax
f +

rmax
g ) = 4.5cm. For cases of CI-neighbour1 and neighbour1

of configuration fig. 11c, it results that the contact has
occurred with the conical gripper surface below the frame
attached to its vertex. This work is accompanied with
an attached video reporting the simulation of each case
scenario studied.

hmin
ee, f (cm) hmax

ee, f (cm)

Configuration CI
gt 2.12 2.12
Neighbour1 4.95 4.95
Neighbour2 1.22 1.22

Configuration fig. 11a
gt 1.368 1.369
Neighbour1 2.784 5.107

Configuration fig. 11b
gt 0.7 0.75
Neighbour1 0.6 9.06
Neighbour2 1.6 5.98

Configuration fig. 11c
gt 2.46 2.49
Neighbour1 6.1 8.3

TABLE I
Metric for initial push action occurrence: hmin

ee, f and hmax
ee, f are the

minimum and maximum distance, respectively, between gripper frame
and {gt ∪S∗d}, when it reaches to the fruit altitude.



V. CONCLUSION

In this work, we presented an interactive primitive-
based planning strategy that features pushing actions in
complex clusters. Although it can be generalized to differ-
ent applications, the proposed approach targets a specific
application, the one of robotic harvesting, and hence tackles
the problem of picking occluded fruits. Occlusion results
normally from the variety of grown clusters. In order to
generate different degrees of non-linearity in the system
behaviour, the planner learns two movement primitives
from demonstrations, conditions the resulting primitive to
pass through selective neighbours (movable obstacles), then
finds the pushing direction of each of them and finally
it augments them with an updated pose. We tested our
approach on different complex cluster configurations in a
simulated polytunnel using a SCARA robotic arm mounted
on a mobile base. The strategy succeeded to reach the
target in the different scenarios selected. As part of future
work, the pushing planner will be tested on real field at the
beginning of the coming strawberry season with an online
closed loop feedback and primitive update. In addition,
an optimization approach will be developed to take into
consideration fixed obstacles and the minimum number of
fruits to push.
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