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Automatic Lane Change Maneuver in Dynamic Environment Using
Model Predictive Control Method

Zhaolun Li1, Jingjing Jiang2 and Wen-Hua Chen3

Abstract— The lane change maneuver is one of the typical
maneuvers in various driving situations. Therefore the auto-
matic lane change function is one of the key functions for
autonomous vehicles. Many researches have been conducted in
this field. Most existing work focused on the solutions for the
static environment and assume that the surrounding vehicles
are running at constant speeds. However, in reality, if not all the
vehicles on the road are fully autonomous, the situation could
be much more complicated and the ego vehicle has to deal
with the dynamic environment. This paper proposes a Model
Predictive Control (MPC)-based method to achieve automatic
lane change in a dynamic environment. A two-wheel dynamic
bicycle model, which combines the longitudinal and lateral
motion of the ego vehicle, together with a utility function, which
helps to automatically determine the target lane have been used
in the algorithm. The simulation results have demonstrated the
capability of the proposed algorithm in a dynamic environment.

I. INTRODUCTION

Driving on the highway is always a stressful and tedious
task. That is why many accidents have occurred on high-
ways, and a lot of researchers have devoted their effort on
developing autonomous vehicles which achieves safe driving
on highways. One of the key aspects of driving on highway
is the lane change maneuver, as it is one of the riskiest
maneuvers on highways. According to [1], the maneuver is
not only responsible for 4-10% of all the traffic accidents, but
also the reason for 10% of latency on the roads and 7% of the
total crash fatalities. In Netherlands, lane change maneuver
was responsible for 12.6% of all the traffic accident [2]. In
Canada, 9.8% fatalities related to car crash was caused by
lane change [3]. In the United States of American, 13,939
traffic accidents result from lane change and 24565 were
killed during 1994 to 2005 [4]. The inappropriate lane change
causes even more problems in developing countries, such as
China and India. According to the report from the Chinese
High Traffic Safety Administration, 60% of the large traffic
accidents on highway resulted from or were related to lane
changes [5]. Due to the great proportion of traffic accidents
caused by the lane change, traffic safety administration agen-
cies, funding bodies and vehicle companies have invested a
lot in developing safe autonomous lane change systems.
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In order to improve the safety of the lane change ma-
neuver, many researches have been contributed to this area
over the years. One key aspect in this area is trajectory plan-
ning. To reduce the computation complexity for trajectory
planning, numerous types of curves have been used such as
line segments in [6], harmonic curve in [7], circular curve
in [8] and polynomial curve in [9]. In [10], a comparison
between different types of curves have been made while
two planning methods have also been compared. From the
study, the authors discovered that the trapezoidal acceleration
trajectory is the best trajectory among the others since it
generates the least lateral acceleration for lane changes. They
also proved that it is better to use the sliding mode control
than PID control to stabilize the system. During the analysis,
they assumed that the vehicle was placed in an isolated
environment with no surrounding vehicles and obstacles.
The stationary obstacles were treated as simple s-topes and
the dynamic constraints were also considered for the ego
vehicle. However only a single coefficient was used as the
criteria to evaluate the achievable trajectories and to make
the choice among them. In addition, the planned trajectory
was computed once at the beginning of the maneuver. So it
can not be used in the dynamic environment where speeds
of surrounding vehicles vary with time. [11] has expanded
the results of the research by using two parameters, the
lane change time and the lane change distance, as the
criteria to evaluate and generate the path. The research was
based on vehicle-to-vehicle communication, so with low
latency conditions, highly accurate safety spaces between the
surrounding vehicles and the ego vehicle were able to be
computed. This helped to establish the dynamic constraints
for collision avoidance. However all the simulation was
carried out with a single surrounding vehicle on the target
line and it did not consider the case when the lane change
maneuver needed to be abandoned after initiated due to
environmental changes. A similar research was carried out in
[12]. They used the same lane type while the main difference
between [11] and [12] is that [12] used a series of dynamic
circles to represent the geometry of the ego vehicle and the
surrounding vehicles in the collision avoidance analysis. A
dynamic path planning algorithm was proposed in [13] where
it used constrained optimization method to generate and
update the time-independent polynomial for different lane
change situations, such as the existence of gap between the
vehicles on the target lane and the sudden acceleration of the
surrounding vehicles which closed the gap, by adjusting the
weights of the lane change time and the lateral acceleration in
the cost function. All the previous mentioned path planning



methods can be grouped into two categories: one assumed
that the surrounding vehicles have constant speed, such
as [11], [12] and [14], the other divided the whole lane
change process into different situations and the cost function
needed to be tuned for each situation, for example in [13].
However, none of them provides a fully automated algorithm
that can generate a trajectory which adapts to the changing
surrounding environment.

MPC is an online method which can generate the optimal
input for the vehicle based on the real-time sensor infor-
mation. Thus, unlike the offline methods mentioned above,
it is suitable for trajectory planning in a dynamic traffic
environment. In [15], the trajectory planning problem was
mainly treated as a longitudinal planning problem and the
MPC was first utilized to generate a longitudinal trajectory
that satisfy all the constraints related to it. If such longitu-
dinal trajectory exists, then the algorithm will generate the
corresponding lateral trajectory. However, if the gap between
the leading and tailing vehicles in the target lane is not
suitable for the lane change to be initiated, the algorithm
is unable to find a proper longitudinal trajectory and a large
amount of computation time will be wasted. In order to deal
with this problem and accelerate the computation process, a
programmatic approach was taken to decide the appropriate
traffic gap to start the lane change by estimating whether
there exists a longitudinal trajectory for the automated ego
vehicle to safely perform the lane change maneuver or not,
as explained in [16]. To achieve fully autonomous lane
change, a decision making frame work was built in [17] by
creating a utility function that took different lane properties
into consideration. However, the vehicle model used in the
paper was double-integrator for both longitudinal and lateral
dynamics. This results in two consequences: Firstly, to merge
the two separately planned trajectories, the constraints have
to be set tighter for trajectories on each individual axis,
which results in a much conservative lane change trajectory.
Secondly, the double-integrator model is a simplified model
of the ego vehicle which sacrifices a lot of model fidelity. In
addition, since most researches on autonomous lane change
maneuvers are hierarchical structure with two layers, the
mismatch of the model used in path planning and path
following layers may result in unfeasible path planned by
the higher layer which cannot be followed by the low level
controller.

The main contributions of the paper are stated as follows.
An MPC-based lane change algorithm is proposed to inte-
grate the path planning and path following layers together
with an automatic decision making frame work to achieve
automatic lane change maneuver. Such framework is suitable
for the dynamic traffic environment. A two-wheel dynamic
bicycle model with high fidelity is used for the ego vehicle,
so the simulation results do not have much deviation from
real applications.

The paper is organized as follows. The description of the
model used for the ego vehicle is provided in Section II.
In Section III, the utility function used to make decisions on
lane change is presented. The automatic lane change problem

is formulated in Section IV based on the MPC structure,
while the simulation results by the proposed algorithm are
presented in Section V. In the last section, the conclusions
and future work are discussed.

II. MODEL DESCRIPTION

For this paper, a dynamic bicycle model is used for the
model of the ego vehicle which is defined by the equations

ẍ = ψ̇ẏ + ax,

ÿ = −ψ̇ẋ+
2

m
(Fc,f cos δf + Fc,r),

ψ̈ =
2

IZ
(lfFc,f − lrFc,r),

Ẋ = ẋ cosψ − ẏ sinψ,

Ẏ = ẋ sinψ + ẏ cosψ,

(1)

where x and y represent the longitudinal and the lateral
positions of the mass center for the vehicle, respectively. ψ
denotes the yaw angle. m and IZ are the vehicle mass and
yaw inertia, respectively. lf and lr describe the distance from
the mass center of the vehicle to the front and rear axles,
respectively, while Fc,f and Fc,r represent the lateral tire
force at the front and rear wheels, respectively, in coordinate
frames aligned with the wheels. In the studied lane change
maneuver, the slip angles for all wheels are relatively small.
Hence tire forces Fc,f and Fc,r are calculated as

Fc,f = −Ca,faf ,
Fc,r = −Ca,rar,

(2)

where Ca,f (Ca,r) is the cornering stiffness for the front
(rear) tires, respectively, and af (ar) is the slip angle for the
front (rear) tires. Note that the slip angle can be calculated
as

af = δf − arctan
vy + lf ψ̇

vx
,

ar = − arctan
vy − lrψ̇

vx
,

(3)

where δf is the steering angle and ψ̇ represents the yaw rate.
In addition, vx and vy denotes the longitudinal and lateral
velocity of the vehicle.

Remark 1: To keep the high fidelity of the model, the
lateral acceleration of the vehicle ay must be maintained at
a relatively small value i.e. the maximum magnitude of ay ,
denoted by ay,max, must satisfy the constraints |ay,max| 6
0.4g where g is the gravitational acceleration.

Remark 2: The inputs of the system (1)-(2)-(3) are the
longitudinal acceleration ax at the vehicle body frame and
the front wheel steering angle δf .

Since the algorithm is designed to guide the ego vehicle
to perform the lane change maneuver, the vehicle models for
the surrounding vehicles are set as simple double-integrator.



III. UTILITY FUNCTION

In order to perform a safe and smooth lane change ma-
neuver, many aspects have to be considered, such as average
speeds of different lanes, time gap between surrounding
vehicles and the ego vehicle’s remaining traveling time in
each lane [18]–[20]. Aside from that, the traffic rule is
another important factor that needs to be considered. In
order to construct a utility function which accounts for the
lane properties and traffic rules and guides the ego vehicle
through the lane change maneuver, four aspects are taken
into consideration: Ulv , average traveling time in Ll, Ulg,
time gap density in Ll, Uld, remaining traveling time in Ll
and Uln, traffic rule factor in Ll. Note that l ∈ L where L
describes the set of lanes the ego vehicle will be traveled on.

A. Average traveling time Ulv
Ulv is used to measure the deviation of the average

velocity vlu from vdes. Its value is determined by the average
longitudinal speed on Ll, vlu. It is also related to the desired
longitudinal speed vdes which the ego vehicle is aiming to
achieve by the end of the lane change process. It is defined
as:

Ulv = −
∣∣∣∣dmaxvdes

− dmax
max(γ, vlu)

∣∣∣∣, (4)

where dmax is the maximum travel distance and is defined as
dmax = βvdes with β is a small positive constant parameter.
The constant parameter γ > 0 is used to avoid zero division
for the function (i.e. γ is chosen such that 0 < γ < vdes).
Note that the value of Ulv has the maximum value 0 when
vlu is equal to vdes.

B. Time gap density Ulg
The time gap density Ulg is used to quantify traffic density

in the lane Ll and is defined by the equation

Ulg = min(αtgdes, tgf , tgr), (5)

where α > 0 is a constant scaling factor, tgdes is the
desirable time gap for the ego vehicle E and tgf (tgr) is
time gap between E and its preceding (tailing) vehicle Sf
(Sr). From (5), it is clear that Ulg increases as both tgf and
tgr increase until both of them reaches the value of αtgdes.
Note that according to the property of the min function given
in (5), the value of Ulg is bounded even for an empty lane.

C. Remaining traveling time Uld
The remaining traveling time of Uld describes how long

the ego vehicle can stay on the lane Ll. Thus, Uld is defined
as

Uld =
min(dmax, dend)

vdes
, (6)

where dend is the distance between the current position of
the ego vehicle to the end point of the lane Ll (eg. an exit
point, a land drop or the end of an entry ramp). Note that
the min function is used to bound Uld so that its value will
not go to infinity for a normal (i.e. without ending point)
lane.

D. Traffic rule factor Uln
To cope with the left hand traffic rule all the vehicle need

to be travel in the leftmost lane if possible. So extra traffic
rule factor Uln is added to the utility function. Note that Uln
is defined as

Uln = −ζn, (7)

where n denotes the number of lanes to the left of Ll and ζ is
a positive constant scaling factor. Similarly, right hand traffic
rule can be coped with by using n to denote the number of
lane to the right of Ll.

E. The combination of the utility function

As a combination of (4), (5), (6) and (7), the final utility
function for Ll is defined as

Ul = w1
Ulv
Nlv

+ w2
Ulg
Nlg

+ w3
Uld
Nld

+ w4Uln, (8)

where ωi > 0, i = 1, 2, 3, 4 are weighting parameters and
Nlv, Nlg and Nld are normalization factors which are defined
as

Nlv =

∣∣∣∣dmaxvdes
− dmax

γ

∣∣∣∣, Nlg = αtgdes, Nld =
dmax
vdes

,

(9)

Remark 3: With the normalization of the first three com-
ponents in the utility function, they have been brought to
the same scale. This is very important for the weight tuning
process.

Remark 4: To avoid oscillations in the lane change pro-
cess, the lane change maneuver will be initiated only if the
utility function in one lane is marginally larger than another.
This means that the ego vehicle E will change from the
initial lane LI to the destination lane LD, if and only if
UD > (1 + ξ)UI with a positive constant scaling factor ξ.
Note that UD and UI are the values of the utility function
for lane LD and LI , respectively.

IV. MPC PROBLEM FORMULATION

To design the MPC controller for the lane change maneu-
ver, the constraints for the ego vehicle, the cost function and
the prediction horizon of the MPC should be set properly
to ensure the safety of the maneuver and the comfort for
the passengers. And more importantly, it needs to adapt to a
dynamic traffic environment.

A. Cost function

The cost function for the MPC consists of three parts:
reference tracking, J1, control effort minimization, J2 and
inputs rate minimization, J3. They are defined as

J1 = Q1

∑n
k=1(r1 − vx,k)2

v2
x,max

+Q2

∑n
k=1(r2 − yk)2

W 2
,

J2 = R1

∑n
k=1 a

2

a2
max

+R2

∑n
k=1 δ

2
f

δ2
f,max

,

J3 = M1

∑n
k=1 ∆a2

∆a2
max

+M2

∑n
k=1 ∆δ2

f

∆δ2
f,max

,

(10)



where Qi > 0, Ri > 0 and Mi > 0 are constant weighting
parameters, for all three parameters i = 1, 2. r1 and r2

are the references for the longitudinal velocity vx,k and the
lateral position yk of the ego vehicle, respectively. vx,max
and W denote the maximum longitudinal speed of the ego
vehicle and the width of the lane, respectively. amax and
δf,max represents the maximum values for the two inputs:
vehicle acceleration a and front wheel steering angle δf ,
respectively. In addition, ∆amax and ∆δf,max are used
to describe the maximum values for the alteration rates
of a and δf , respectively. Note that, v2

x,max, W 2, a2
max,

δ2
f,max, ∆a2

max and ∆δ2
f,max are used to normalize each

part. Therefore, the cost function for the MPC is defined as

J = J1 + J2 + J3, (11)

where J1, J2 and J3 are given in (10).
Remark 5: Weighting parameters Qi, Ri and Mi can be

adjusted to shift the balance between reference tracking,
control effect minimizing and jerk minimizing. For instance,
increasing the values of Qi, we can get a swifter lane
merge/lane change. However, the inputs of the model and
the jerk will be enlarged during the process, vice versa.

B. Constraints on the vehicle states and the control inputs

For any autonomous vehicle, safety requirements have the
highest priority and they are modeled as the states constraints
in the paper. In addition, the inputs to the vehicle, just like the
inputs to any other physical systems, have hard constraints
due to the physical and power limitations. The details of
which are given as follows.

1) The ego vehicle should always maintain enough safety
distance sm from the surrounding vehicles to avoid
potential collision.

2) The longitudinal speed of the ego vehicle should
always be smaller than its maximum speed vx,max. It
also should always be positive, which means stop and
backward motion of the ego vehicle E are not allowed
in the lane change maneuver.

3) The acceleration a and the front wheel steering angle
δf of E should be relatively small due to the power
and the physical limitation of the ego vehicle, as well
as the comfort of the passengers.

0 6 vx,k 6 vx,max,∀k = 1, . . . , N,

−vy,limt 6 vy,k 6 vy,limt,∀k = 1, . . . , N,

xk,min 6 xk 6 xk,max,∀k = 1, . . . , N,

yk,min 6 yk 6 yk,max,∀k = 1, . . . , N,

amin 6 ak 6 amax,∀k = 1, . . . , N,

δf,min 6 δf,k 6 δf,max,∀k = 1, . . . , N,

(12)

where N denotes the number of predicted time steps and
is defined as N =

Tpredict

∆t , with Tpredict representing the
time length for the prediction horizon and ∆t representing
the sampling time. Note that the upper and lower bounds
for vx, vy , a and δf are constants. However the constraints

on the longitudinal position xk of the ego vehicle is time-
varying because the surrounding vehicles Si are not sta-
tionary. The time-varying constraints xmax,k and xmin,k are
defined corresponding to three different phases of the lane
change maneuver shown in Fig. 1: before the lane change
procedure (denoted as the Pre-phase), during the lane change
procedure (denoted as the Peri-phase) and after the lane
change procedure (denoted as the Post-phase).

ESI,r SI,f

SD,r SD,f LD

LI

Peri Phase

Pre Phase

Post Phase

Fig. 1. Three Phases of Lane Change Maneuver

• In the Pre-Phase, the ego vehicle E is in the Pre region
and it belongs to the initial lane LI . Therefore, vehicle
E should keep a safe distance from its preceding vehicle
SI,f and rear vehicle SI,r on LI , yielding that the upper
and lower bounds for the longitudinal position of E are
defined as:

xk,max = xI,f − sm,
xk,min = xI,r + sm,

(13)

where xI,f and xI,r are the longitudinal position of
SI,f and SI,r of E on LI . In addition, sm represents
the safety distance.

• In the Peri-Phase, the ego vehicle E changes its lane
from LI to LD. Therefore, it needs to keep a safe
distance from all surrounding vehicles in both lanes.
This yields that, the upper and lower bounds for the
longitudinal position for E are defined as

xk,max = min(xI,f − sm, xD,f − sm),

xk,min = max(xI,r + sm, xD,r + sm),
(14)

where xD,f and xD,r are the longitudinal position of
SD,f and SD,r on the destination lane LD (see Fig. 1).

• In the Post-phase, the ego vehicle E is in the Post region
and it belongs to the destination lane LD. Therefore, we
pay attention to SD,f and SD,r on LD, yielding that the
upper and lower bounds for the longitudinal position for
E are defined as

xk,max = xD,f − sm,
xk,min = xD,r + sm.

(15)

C. Prediction Horizon

Nonlinear MPC requires large computational power, so
the prediction time needs to be set relatively short to reduce
computational time and make the controller suitable for
real time implementation. Therefore, the prediction horizon
is chosen as 1s. We assume that the surrounding vehicles
do not change lanes in the considered scenario. Hence
the prediction model for the longitudinal position of the



surrounding vehicles is given by

xSi,k = xSi,1 + vx,Si,1 ∗ (k − 1) ∗∆t, ∀k = 1, . . . ,
1

∆t
,

(16)

where xSi,1 and vx,Si,1 are the current longitudinal position
and velocity of surrounding vehicle Si. Such information can
be given by either vehicle to vehicle communication or the
ego vehicle’s onboard sensors. Note that the constant speed
model is used in the prediction. However, as the control
horizon is set to 1 second and the prediction of surrounding
vehicles updates every ∆t = 0.1s time period, the prediction
on the behavior of surrounding vehicles is relatively accurate.
The prediction horizon N is calculated as N = 1

∆t = 10.

V. SIMULATION RESULTS

The MPC based autonomous driving function was de-
signed based on standard Matlab function fmincon. To test
the effectiveness of it, the ego vehicle was placed in a
two-lane dynamic traffic environment as shown in Fig. 2.
G1 and G2 represent two gaps in the destination lane at
the beginning of the simulation. In the beginning of the

ES4 S3

S2 S1S5LD

LI

G2 G1

Fig. 2. Simulated Lane Change Scenario

simulation, the ego vehicle (represented by the blue rectangle
in Fig. 2) wanted to change from the low speed lane,
LI , to the high speed lane, LD. There were two gaps
in the destination lane, the gap between vehicle S1 and
vehicle S2, and the gap between vehicle S2 and vehicle S5.
However, after the ego vehicle has initiated the lane change
maneuver, the driver of vehicle S2 decided to accelerate and
close the gap G1. The initial position (X0, Y0) of all the
vehicles are shown as follow: E(0,−1.75), S1(31.5, 1.75),
S2(−31.5, 1.75), S3(22.5,−1.75), S4(−22.5,−1.75) and
S5(−73.5, 1.75). All the vehicles start from lane LI have the
same initial longitudinal velocity 21m/s and other vehicles
on lane LD have the same longitudinal velocity 15m/s. The
parameters and constraints related to the ego vehicle and
the utility function are listed here: vx ∈ {0,30}m/s, vy ∈
{-5,5}m/s, ax ∈ {−2

√
5, 2
√

2}m/s2, δf ∈ {−π6 ,
π
6 }rad,

m = 1575kg, IZ = 2875kg ∗m2, Ca,f = −19000N/rad,
Ca,r = −33000N/rad, lf = 1.2m, lr = 1.6m, W = 3.5m,
ξ = 0.02, α = 2, β = 30s, γ = 2, ζ = 0.1, vdes = 21m/s
and tgdes = 1.5m. In addition, we also assume that all
vehicles on the road have rectangular shape with length and
width equal to 3m and 2.4m, respectively. Simulation results
are shown in Fig. 3 to Fig. 6. From Fig. 3, it can be seen that
the lane change maneuver was initiated in the beginning of
the simulation and the ego vehicle moved to its destination
lane LD, since the ego vehicle wanted to increase its speed,
(i.e. UD(t) > (1 + ξ)UI(t), when t = 0). However, due
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Fig. 6. The ego vehicle’s acceleration a and front wheel steering angle δf

to the speed increasement of S2, the gap G1 was closed
and the utility function was able to catch the situation. At



time instant t = 0.4s, UI(t) > (1 + ξ)UD(t), hence the
ego vehicle headed back to lane LI and stayed there waiting
for the next gap G2. When t=6.4s, the gap G2 was detected
and UD(6.4) > (1 + ξ)UI(6.4). Therefore, the lane change
maneuver for the ego vehicle was re-initiated automatically.
Fig. 3 also shows that it took about 1.2s to change from
lane LI to lane LD. Thus, we can conclude that the MPC
controller successfully made E to follow different references
at different lanes (Vx = 15, y = −1.75 at LI and Vx = 21,
y = 1.75 at LD). Clearly, the speed of the ego vehicle did
not achieve the average speed in Lane LD, 21m/s, when
it entered the destination lane. Therefore it accelerated for
another 2.4s until its speed reaches 21m/s. This phenomenon
also coincides with typical human driver’s behaviors. The
whole lane change maneuver takes around 3.6s which can be
seen from Fig. 4. Take the size information of the vehicles
in the beginning of this section and the lane width into
consideration. We know that the ego vehicle belonged to
the initial lane LI when t < 0.2s and 1.3s < t < 6.6s,
while it belonged to the destination lane LD when t > 7.4s.
In addition, when 0.2s 6 t 6 1.3s and 6.6s 6 t 6 7.4s,
the ego vehicle belonged to both lanes, i.e. part of the ego
vehicle entered the destination lane LD, while the others
still belonged to the initial lane LI . From Fig. 5, we know
that when t < 0.2s and 1.3s < t < 6.6s, E has kept enough
distance from S3 and S4 on lane LI . When 0.2s 6 t 6 1.3s,
E has kept enough distance from S1, S2, S3 and S4 on
both lane LI and LD. When 6.6s 6 t 6 7.4s, E has kept
enough distance from S2, S5, S3 and S4 on both lane LI
and LD. When t > 7.4s, E has kept enough distance from
S2, S5 on lane LD. So we can draw the conclusion that the
ego vehicle E did not collide with any surrounding vehicles
during the entire lane change process. Fig. 6 shows that in
the whole lane change process the inputs of E never violated
the constraints.

VI. CONCLUSION

This paper proposed an MPC-based algorithm to achieve
the automatic lane change maneuver. A high fidelity ego
vehicle model has been considered in the algorithm to guar-
antee that the prediction of the behavior of the ego vehicle
is close to the reality according to its dynamics. In addition,
the utility function is used to make automatic decisions on
which lane the ego vehicle should head to. It was tested in
a dynamic traffic scenario and the results showed that the
proposed algorithm was capable to guide the ego vehicle
to initiate or continue the lane change when the maneuver
was safe to perform, or abandon the lane change moreover
when there was potential risk to collide with the surrounding
vehicles. To extend the capability of the proposed algorithm,
future work will focus on the extension to curvy roads and
the robustness of the algorithm on parameter uncertainties
and sensor noises.
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