2003.04882v2 [cs.RO] 11 Mar 2020

arxXiv

Optimization-Based Hierarchical Motion Planning
for Autonomous Racing

José L. Viazquez'*, Marius Briihlmeier'*, Alexander Liniger>*, Alisa Rupenyan', John Lygeros'

Abstract—In this paper we propose a hierarchical controller
for autonomous racing where the same vehicle model is used
in a two level optimization framework for motion planning. The
high-level controller computes a trajectory that minimizes the lap
time, and the low-level nonlinear model predictive path following
controller tracks the computed trajectory online. Following a
computed optimal trajectory avoids online planning and enables
fast computational times. The efficiency is further enhanced by
the coupling of the two levels through a terminal constraint,
computed in the high-level controller. Including this constraint
in the real-time optimization level ensures that the prediction
horizon can be shortened, while safety is guaranteed. This proves
crucial for the experimental validation of the approach on a
full size driverless race car. The vehicle in question won two
international student racing competitions using the proposed
framework; moreover, our hierarchical controller achieved an
improvement of 20% in the lap time compared to the state of
the art result achieved using a very similar car and track.

I. INTRODUCTION

Over the past few decades motion planning for autonomous
driving has attracted great interest in both academic and
industrial research, see for example for a review on motion
planning, and [2]], [3] for a robotic system perspective. A
sub-field of autonomous driving where motion planning is of
crucial importance, is autonomous racing, where the goal is
to drive around a given race track as fast as possible. This
requires a motion planning method that pushes the car to the
limit of handling, and is able to handle the nonlinear behavior
in this regime [4], [3]. In this paper, we propose a novel hi-
erarchical optimization-based motion planner that exploits the
structure of the given task, and demonstrate the performance
using the Formula Student Driverless (FSD) car developed at
ETH Zurich. The robotic platform with the name pilatus is
shown in Fig. [T} and won two international autonomous racing
competitions using the algorithms presented in this work.

When investigating existing autonomous racing motion
planners and controllers, three classes can be distinguished:
The first class computes an ideal path and a velocity profile
around the track offline, and then follows this path using
a static feedback controller [4], [6]. These approaches are
intriguing due to their simplicity but since all motion planning
is done offline they lack flexibility. The remaining two classes
rely on online optimization-based motion planning [5], [[7].

1 Automatic Control Lab, ETH Zurich, Switzerland
{vjose,mariusbr}@student.ethz.ch,
{ralisa, lygeros}@control.ee.ethz.ch

2 Computer Vision Lab, ETH Zurich, Switzerland
alex.liniger@vision.ee.ethz.ch

* The authors contributed equally.

Fig. 1. Photo of pilatus ©FSG Gosala

The methods are interesting because they are able to con-
sider the nonlinear vehicle dynamics, track constraints, input
constraints, and at the same time plan an optimal motion for
the vehicle. The challenge however is that autonomous racing
requires fast sampling times in the order of 10-50ms, while
finding the optimal trajectory around a race track requires
significant foresight in the order of several seconds. This
can be challenging since the model complexity and planning
horizon both contribute to increase the computational burden.
The main difference between the two online optimization
based classes lies exactly in addressing this problem. One
is based purely on online motion planning. The advantage
is that it runs completely online, however, given today’s
computational platforms, these methods are limited to special
applications such as miniature race cars [3]], [8]. Extension to
full size car is possible [9], but only for limited top speeds.
The last approach strikes a balance between the two previous
classes and combines both offline and online motion planning
[0, [0, [12]], [13]. Our work falls under this third class that
mixes online and offline elements; the building blocks of the
method are outlined below.

In [10] a viability constraint is computed offline that guides
the online motion planner. In [13] terminal constraints and
cost are estimated using experimental data, these terminal
ingredients then guide the online Nonlinear Model Predictive
Control (NMPC) motion planner. In [12], a least curvature path
as well as velocity profile is computed offline, this trajectory
is then tracked with simple NMPC. Finally, [11] computes a
least curvature path offline. To follow the path the method
first computes a velocity profile that is then used as a terminal
velocity constraint in a low-level NMPC motion planner based

on a sophisticated vehicle model. Thus, [11] combines the
ideas of terminal constraints with an offline computed ideal
line.

Our approach is mostly inspired by [L1], specifically, our
hierarchical motion planner computes a time-optimal trajec-
tory around the race track offline, and a low-level NMPC
follows this path, while restricted by a terminal velocity
constraint extracted from the time-optimal trajectory. However,
compared to [11] our high-level motion planner computes
a full time optimal state-input trajectory using a lap time
optimization approach similar to [14], [15]. This makes it
possible to use the same model for the two levels, which
guarantees that the minimum-time trajectory is drivable while
achieving lower lap times. Compared to [11] the model used
in the high-level planner is more complex, while that in the
lower level is simpler. This resulted in reducing significantly
the online computational load, which enables the real-time
implementation of our method.

Our work makes the following contributions to the state
of the art: First we propose a hierarchical controller where
the two levels use the same vehicle model formulated in
curvilinear coordinates. Second, we show that for the given
FSD setting, following the minimum time trajectory improves
performance compared to planning the motion from scratch,
and that using terminal velocity constraints allows the use of
shorter prediction horizons without sacrificing performance.
Finally, we show that the proposed hierarchical controller can
race a full-size autonomous FSD race car, finishing fastest
in all the attended FSD competitions, and reducing the lap
times shown in [9] by 20%, using a similar car and track.
See https://youtu.be/gcnngFyWnFQ?t=13079 for the run at the
formula student Germany competition and https://youtu.be/
vkVBi9LWIJo0 for additional experiments and visualizations
of the proposed method.

In Section [l we introduce the vehicle model and constraints
used in our motion planner, and discuss time and space-
dependent curvilinear models. In Section we formulate
the high-level lap time optimization problem and the low-
level NMPC path following problem. We show numerical and
experimental results in Section[[V] and conclude the paper and
give future direction of research in Section

II. MODEL

We first introduce the vehicle model used in the hierarchical
curvilinear motion planner, including the model-related con-
straints, and the coordinate system. This allows us to highlight
similarities and differences in the two layers of our control
structure. First the model formulated in curvilinear coordinates
is presented, followed by the model-related constraints, and fi-
nally the difference between time and space-dependent models
is discussed.

The starting point is a bicycle model with dynamic force
laws [[16]. The main advantage of this model is that it strikes
a balance between simplicity and accuracy. It is significantly
simpler than a full-fledged double-track model with complex
tire forces [11], while still modeling important effects such as
tire slip and saturation.

Fig. 2. Illustration of the bicycle model in the curvilinear frame. The figure
shows the curvilinear coordinates in blue, the velocity states in green and the
forces red. The tangent of the reference path is presented as ¢(s).

A. Curvilinear Bicycle Model

The bicycle model dynamics is set in curvilinear coordi-
nates, which are formulated locally with respect to a given
reference path. In our case the reference path can be the center
line of the race track, or an ideal line. By using curvilinear
coordinates, no global position or heading is considered, and
the state information is given relative to the reference path.
The state comprises of the progress (arc-length) along the path
s, the orthogonal deviation from the path n, and the local
heading p. Given the reference path the global coordinates
can be recovered, and the curvilinear coordinates can be
obtained (locally) by projecting the global coordinates onto
the reference path. The bicycle model and the curvilinear
coordinates are shown in Fig. 2]

Several assumptions are needed to formulate our vehicle
model: (i) the car travels on level ground, (ii) load changes
can be neglected, (iii) combined slip can be neglected, (iv) all
the drive train forces act at the center of gravity, and (v) the
vehicle is a rigid body with mass m and rotational inertia I,.
The first assumption is valid as formula student race tracks
are level. The remaining assumptions hold since we use a low
level traction controller, that distributes the requested drive
train force and torque vectoring moment to the four wheels
while considering combined slip and load changes, similar to
19].

The dimensions of the vehicle are given by [z and [which
describe the distance between the CoG and the corresponding
front and rear axles. To formulate the dynamics we first
consider the curvilinear states s, n, and u, and use the
standard approach to integrate the velocities, which relies
on the curvature x(s) of the reference path, see [[15]] for a
detailed discussion. We consider next the longitudinal and
lateral velocity v, and v, and the yaw rate r, which are
influenced by the tire and drive train forces. Finally, we also
consider the actuator dynamics by using an integrator model
for the steering angle § and the driver command 7. Thus,
the state is given by X = [s; n; f4;v; vy; 73 6; T'] and the input
as u = [AJ,AT]. Under the assumptions listed above the
dynamics then becomes

https://youtu.be/gcnngFyWnFQ?t=13079
https://youtu.be/vkVBi9LWJo0
https://youtu.be/vkVBi9LWJo0

. Vg COS [— Uysinp
S =

1 —nk(s)
1 = Uy SIN [+ vy COS [,
fo=r1—"r(s)$,
Oy = = (Fp — Fy psind + muyr),

Uy = %(Fy,R + Fy pcosd —mugr),
P = i(Fy,FlF cosd — Fy rlp + M),
§=A6,
T=AT. (1)

Here r(s) is the curvature at the progress s, I, p/p are
the lateral tire forces at the front and rear wheel and F), is the
longitudinal force acting on the car. Finally, My, = py,(r(—1)
is the moment the torque vectoring system produces, where
Pry is the gain of the system and r, = tan(d)v./(Ir + lF)
is the yaw rate target, see [9] for more details. Note that
the curvature contains the full information about the reference
path. To simplify the notation we denote the dynamics in (I)
by X = f¢(X,u), where the superscript ¢ highlights that it
is a continuous time model and the subscript ¢ that it is a
time-domain model.

The tire forces are the most important part of the model,
since they model the interaction of the car with the ground.
The lateral tire forces F, r and F, r describe the lateral forces
acting on the front, and respectively the rear tires. They are
computed using a simplified Pacejka tire model [17],

l
aF = arctan (W) -9,

Vg

vy — lpr
ap = arctan | 24— ,
Vg

Fy,F = FN,FDF sin (CF arctan (BFaF))a
Fy r = Fn,rDpgsin (Crarctan (Brag)),

where ap/p are the slip angles at the front and, respectively
rear wheel, and Br/r, Cr/r and DR are the parameters of
the simplified Pacejka tire model. Finally, the normal loads on
the tires are given by Fy r = lg/(lp + lg)mg and Fn p =
lr/(lp +1r)mg.

The longitudinal drive train force F}, is composed of a motor
force Fy = C,,T, which is a linear function of the driver
command 1" € [—1,1], as well as a constant rolling resistance
term C,o and drag-force term C,ov2, thus we have F, =
CmT — CrO — CTQ’Ui .

B. Constraints

During the race, it is crucial to ensure that the entirety of
the vehicle stays within the track boundaries. This is enforced
via heading-dependent constraints on the lateral deviation n,

L. . We
n— —sin |p| + —-cosp < Np(s),

2 @)
L. . We
—n+ ?s1n|u| + 5 cosp < Ng(s),

where L. is the length and W, is the width of the car, and
left and right track width at a specific progress s are given

by Ng/(s). We denote the resulting track constraints (2)) as
X € XTrack-

Since the used tire model neglects combined tire forces,
we use a friction ellipse constraint to limit the combined tire
forces, such that the low level traction controller can better
deal with the requested forces. The resulting friction ellipse
constraints are given by

2
(ProngFar,r/r)” + F;F/R < (ADg/r)?, 3)

where Fy p = Fyyr = Fy /2 is the motor force at the front,
and respectively at the rear wheel, and a static 50/50 force split
is assumed between the wheels. pjong determines the shape of
the ellipse, and controls how much force can be applied in the
longitudinal direction, and A allows to determine the maximum
combined force. We denote the friction ellipse constraints in

Finally, we also impose constraints on the physical inputs
0 and T, as well as on the rate of change of these inputs
Ad and AT. These constraints are simple box constraints
and are determined based on physical limits for the steering
input and safety considerations for the driving command. For
a slim definition we define a = [§;7T; Ad; AT], and the box
constraints are denoted as a € A.

C. Space vs Time Domain

A natural way to formulate dynamical systems is to describe
them as a function of time, especially for the purpose of
control where control inputs are applied with a fixed sampling
frequency. However, for our dynamics it is also possible to
formulate them to evolve with respect to space, making the
state a function of the progress X(s). This transformation can
be performed using the reformulation,

. 0% 0% 0s
o o
X 1
= 5o = L&), u() = &) uE) @)

Expressing the state as a function of s comes with several
advantages, for example the time is now a function of the
states ¢ = 1/4. This allows us to naturally formulate a minimal
time problem, as the time it takes to move from s = sg to
s is given by T = f:OT 1/5 do. One additional advantage
is that the curvature does not change based on the inputs,
since s is no longer a function of time. This is especially
relevant for long prediction horizons where time dependent
formulations need an accurate initial guess of the solution. The
last advantage is that the progress state s becomes redundant
and can be dropped from the state vector, thus a reduced
state vector can be used for the space-curvilinear model
X = [n;p;vg;vy;7;0; T, The associated disadvantages are
that first, when discretizing the system it is not time-discrete
but space-discrete. This implies that, when using this model
for control, inputs should not be changed with a fixed sampling
time but at a fixed space interval. Second, pre-multiplying
the system with 1/$ makes the dynamics computationally
more complex for an optimization solver, since computing
Jacobians becomes more expensive. Finally, the space-domain
transformation introduces a singularity if the car stops (s = 0).

III. HIERARCHICAL CONTROLLER

One fundamental challenge when implementing an NMPC
is the computational burden caused by solving an optimization
problem at each time step. The main factors that influence the
computation time are the number of states and inputs, and
the prediction horizon. By using curvilinear coordinates, the
number of states can be reduced compared to the current state
of the art method [9]. To reduce the horizon length we first
compute the Lap Time Optimization (LTO) trajectory, and then
follow this path with a NMPC where the longitudinal speed
at the end of the horizon is upper bounded by the LTO speed,
see Fig.[3| Note that the LTO path as well as the LTO terminal
velocity are fundamental for shortening the horizon.

Mapping Run Offline
Reference Trajectory
Track optimization
K(s), V(s
Online

Controls

X] a [
State

Low-level]

Fig. 3. The hierarchical controller uses the reference track in both stages
of the hierarchical controller. First the lap time optimization (LTO) problem
computes a reference path, whose curvature #(s) and speed profile V;;(s) are
later used by the NMPC.

An alternative view on this approach is in terms of terminal
constraint and recursive feasibility. Since the same model is
used for the two levels, and the LTO trajectory is periodic,
the LTO trajectory is an invariant set of the system dynamics
and the constraints. Thus, if the NMPC exactly steers the
system to the LTO trajectory there exists an input sequence
that keeps the system within the constraint set indefinitely. The
terminal velocity constraint used here is a relaxation, compared
to forcing the NMPC to exactly steering the system to the LTO
trajectory. Thus, our approach does not guarantee recursive
feasibility but comes with some advantages. For one, we avoid
a terminal equality constraint that is numerically difficult to
deal with. Moreover, the online NMPC has more freedom and
can deal with cases where the LTO trajectory is not reachable
within the prediction horizon.

To highlight that horizon length is a fundamental issue for
autonomous racing, note that [9] required a 2s look ahead
at narrow formula student track and a top speed of 15m/s,
which is at most a 30m look ahead, and for full-scale cars
[L1] required a 400m look ahead.

A. Lap Time Optimization

The optimal race line is computed by a minimum-time
optimal control problem that uses the spatial dynamics (@).
To formulate the optimization problem, we use the center
line of the pre-mapped race track as a reference path and
discretize the continuous space dynamics. We discretize s with

a discretization distance of As and use a spatial forward Euler
integrator. Thus, the discrete-space dynamics have the form,

X1 = fUxE, ug) = x5 + AsfE(xg, uy,) .

To enforce that the resulting optimal trajectory is periodic, a
periodicity constraint is inserted,

fg(XNqu) = X0,

where NN is the number of discretization steps, and As is
chosen such that (N + 1)As is equal to the arc-length of
the center line.

The cost function seeks to minimize the lap time 7' =
Ziv:o As/55,. The cost also contains two regularization terms,
a slip angle cost, which penalizes the difference between the
kinematic and dynamic side slip angle, and a penalization of
the rate of change of the physical inputs. The first regulariza-
tion term is

B(xx) = q5(Baynx — Brink)? s ®)

where, ¢ is a positive weight, Siinx =
arctan(éklR/(ZF + ZR)), and 5dyn,k = arctan(vy7k/vm7k).
The regularizer on the rate of change of the physical inputs
is u” Ru, where R is a diagonal weight matrix. In summary,
the overall cost function is,

1
juro(Xk, ug) = Asé— +u’ Ru + B(xy).
k

Finally, we use the constraints introduced in Section [[I-BJ
to formulate the lap time optimization problem,

N
)Il({ilrjl I;)jLTO(XIm uy)
S.t. Xgpy1 = fg(xk, uk) (6)
flxn,un) = xo
Xk € Xrack, Xk € Xpg
ap € A, k=0,...,N,

where X = [xg,...,xy] and U = [uy, ...,uy|. The problem
is formulated in the automatic differentiation package CppAD
[18] and Ipopt [19] is used to solve the resulting nonlinear
optimization problem.

B. MPC-Curv

We use an online NMPC module that we call MPC-Curv,
which follows the LTO path. The formulation of the online
MPC-Curv problem is very similar to the offline LTO problem,
as they share the goal of finishing a lap as fast as possible.
However, MPC-Curv uses the time domain model, since it is
better suited for online control. Note that our state estimation
pipeline, as well as the low-level controllers run in discrete
time, additionally, the time domain model is computationally
less demanding, as already discussed in Instead of
minimizing time, MPC-Curv maximizes the progress over the
horizon p = Zi\’:o At $;, where At is the sampling time.

To further reduce the solve times of the MPC-Curv, we aim
to reduce the number of states in the optimization problem.

Since only the curvature and the track constraints depend
on the progress state s, and s can be accurately estimated
from the previous MPC solutionﬂ MPC-Curv fixes s to
the estimated values, and discards it in the dynamics. Note
that to get the full benefit from including the s state, one
would need to include a parametric curvature function in the
model and constraint evaluation of the MPC which would
result in additional computational overhead. Thus, we also
use X = [n;u;vg;vy;7;0;T] as the state in the MPC-Curv
problem.

The MPC-Curv cost function combines the progress op-
timization with the same regularization terms as in the LTO
problem (5). However, since the goal is to follow the LTO path,
two path following terms are added, minimizing the deviation
and local heading with respect to the reference path. The MPC-
Curv cost function can therefore be formulated as

Jmpc(Xe, uy) = —Ay 5 + QnTltz + qu,uf +u’Ru+ B(x¢),

where, ¢, and g, are positive path following weights, R a
diagonal matrix with positive weights, and B(x) is the slip
angle cost (3). In addition to the constraints an LTO terminal
velocity constraint v, 7 < V,(s7) is added, where V,, comes
from the LTO trajectory. Thus the MPC-Curv problem is

T
ZjMPC (Xt; llt)
t=0
s.t. Xg = b'e

min
X, U

Xer1 = fi(x¢,)

Xt € Xrpack, Xt € Xpg
ar €A, vyr < Ve (s7)
t=0,..T,

where the subscript ¢ is used to highlight that the problem
is formulated in the time domain. Further, X is the current
curvilinear state estimate and 7T’ is the prediction horizon. The
discrete time dynamics f{(x, u) is obtained by discretizing the
continuous time dynamics with an RK4 integrator. Note that
st is fixed and is based on the previous MPC-Curv solution,
identical to all other occurrences of the progress state s;.

The optimization problem is solved in real-time using Force-
sPro, a proprietary interior point method solver optimized for
NMPC problems [20], [21]].

IV. RESULTS

The hierarchical controller was tested in simulation and on-
track with the full size autonomous racing vehicle, shown in
Fig. The vehicle is the AMZ Driverless 2019 race car,
a lightweight single seater race car, that has an all-wheel
drive electric powertrain. The race car is equipped with a
complete sensor suite including two LiDARs, three cameras,
an optical absolute speed sensor and an INS system, among
others. The race car is also equipped with an Intel Xeon E3
that runs the control framework introduced in this paper, but
also the mapping, localization and state estimation; see [22],
[23], [9] for more details. The following results showcase the

I At least for single agent autonomous racing

performance of the controller, both in simulation and during
the final racing event at Formula Student Germany (FSG)]

The race track used at the competition is composed of
sharp turns, straights and a long sweeping curve. During the
competition, the track is first mapped, while a simple pure
pursuit controller is used to drive the vehicle. The proposed
architecture is then used for all the subsequent runs, based on
the map of the track, first the LTO trajectory is computed by
solving (6), and online the MPC-Curv is following the LTO
path, as shown in Fig.

We first describe the implementation details of the LTO
problem in Section in Section we show simulation
results that investigate the influence of the reference path and
the terminal velocity constraint on the performance of the
controller. Next, the experimental results using the proposed
controller are presented in a competition setting in Section

A. Computation of the LTO trajectory

For the LTO problem, we use N = 1000 discretization
steps, which corresponds to a discretization distance of As =
30.7cm. Finally, we limited the maximum velocity to 17m/s,
for safety reasons. Given this discretization, the optimization
problem (6) is solved in approximately 12s on a i7-7500U
processor. The resulting LTO trajectory is shown in Fig. 5]

B. Following the LTO Trajectory

To validate that an ideal line and terminal velocity con-
straints are beneficial, we tested three different controllers
in simulation. First, we tested MPC-Curv without terminal
velocity constraint, and using the center line as a reference.
To compensate for the lack of terminal constraint, we used a
longer look-ahead of 2s, which, given our sampling time of
At = 25ms results in 7" = 80. Note that this setup is compara-
ble to the MPCC used in [9], however MPC-Curv still comes
with computational advantages, due to the reduced number of
optimization variables. The second controller follows the LTO
path, still without terminal constraint. The required horizon
in this case is again of 2s. The current approach proposed
here, where MPC-Curv follows the LTO path with a terminal
constraint, results in a significantly shorter horizon of 1s.
The resulting longitudinal velocity for the three MPC-Curv
variants, as well as the LTO velocity profile are shown in Fig.
@l The velocity profiles are shown with respect to the arc-
length of the center line, and for reference we highlighted the
start-finish line in Fig. [5] which is the s = 0 point.

We can clearly see that following the LTO path allows the
MPC-Curv to drive faster, compared to following the center
line. We believe that this is due to the fact that following
the LTO path partially overcomes the limitations of a finite
look ahead, as it offloads line choice to the higher level LTO
problem. This allows reaching higher speeds especially in the
complex in-field section of the race track. Fig. |4 also clearly
shows that using a terminal velocity constraint enables the
use of a short 1s look-ahead without sacrificing performance.

2www.formulastudent.de

---= Vi(s)
—— T = 80, Center-line

—— T=80,LTO
—— T =40,LTO + V,(s7)

150 200 250

s [m]

100

Fig. 4. Comparison of MPC-Curv speed profiles computed for controller
following the center line without terminal constraint on vz (blue line),
controller following the LTO line without terminal constraint (green line),
and controller following the LTO line with terminal constraint (red line). The
velocity profile computed from LTO is shown for reference (black dashed
line).

It comes however with the cost that the brake points are solely
dictated by the terminal constraint. The lap times also confirm
this discussion, where following the center line results in the
slowest lap time of 22.70s, using the LTO path allows for a
reduced lap time of 21.67s, with identical lap times for both
LTO-based approaches.

Note that from Fig. [] it seems that the online MPC-Curv
is not fully achieving the LTO-based speed. However, the
difference is due to different tuning, LTO is tuned to give
an optimistic velocity profile and MPC-Curv to drive the real
car. Future research is needed to get the online and offline
phase of our hierarchical controller closer together.

C. Experimental Validation

The experimental validation of the hierarchical controller
was done during the Formula Student Germany Driverless
2019 competing. The controller at the competition used a look-
ahead of 1s with a sampling time of At = 25ms, and a horizon
length of 7" = 40, identical to the third controller discussed
in Section The LTO path and velocity profile used as a
reference path and terminal velocity constraint are shown in
Fig. Bl

One advantage of the proposed control structure is that
compared to the current state of the art method [9], the
optimization variables per time step are reduced. This allows
us to achieve computation times of 12.81ms in average, with
only 3% of the time instances over the 25ms limit. Compared
to [9] the decrease in computation time is approximately three-
fold, which is a drastic enhancement, since the same solver and
prediction horizon are used. Note that a different processor is
used, but even with identical processors, we noticed at least a
two-fold decrease in computation times.

Fig. [5] shows that the LTO path (left) and the experimental
results (right) are generally very similar. Therefore, MPC-Curv
is able to follow the LTO path accurately. The main difference
is that the experimental velocity slightly lags behind the LTO
velocity. Since this is not the case in the simulation results,
the cause is most likely a mismatch between the model used
in the MPC and the dynamics of the real race car. Note that
this mismatch also caused the car to slightly miss the apex in
the top right curve.

When comparing the time to finish the 10 lap race at the
competition, our proposed hierarchical controller achieved an
average lap time of 22.63s. This is 20% faster than the average
lap time of the 2018 competition winner [9]], which achieved a
lap time of 28.59s. Note that the track at the two competitions
was very similar but not identical and slightly more complex
in 2018. Our simulations suggests that the difference between
the tracks is in the order of 1.5s. The average lap time was also
8% faster, than the second fastest car at the 2019 competition
which achieved an average lap time of 24.49s. We would like
to note that 8% in terms of lap time is still a large margin. For
a video of the 10 lap race see https://youtu.be/gcnngFyWnFQ?
t=13079.

Finally, Fig. [6] shows the combined acceleration in lateral
and longitudinal direction (GG-diagram) of the run at Formula
Student Germany competition, where it can be seen that the
car achieves lateral accelerations of up to 12m/s?. Compared
to the performance of novice race car drivers this can be
considered as impressive, however expert drivers would be
able to achieve lateral acceleration of over 18m/s2.

V. CONCLUSION

A novel control approach, consisting of a hierarchical MPC
using a bicycle model in a curvilinear coordinate system
was presented. The high-level controller computes a trajectory
that minimizes the lap time, and the low-level nonlinear
model predictive path following controller tracks the computed
trajectory online. The two levels are further coupled through
a terminal constraint, computed in the high-level controller,
and used in the online optimization by the low-level controller
which ensures that while short prediction horizons can be used
online, safety is maintained at all times. The framework was
tested on a full-size Formula Student race car, demonstrating
significant performance improvements in computation time
and lap time reduction, as compared to the current state of
the art results achieved on similar platform and track. Further
research will address improvements in the coupling of the
higher and the lower level controllers, and investigating model
learning [24] which we believe will bring us close to human
expert performance.

ACKNOWLEDGEMENT

We would like to thank the entire AMZ Driverless team,
this work would not have been possible without the effort of
every single member, we are glad for having the opportunity
to work among such amazing people.

REFERENCES

[1] B. Paden, M. Cép, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of
motion planning and control techniques for self-driving urban vehicles,”
Trans. Intelligent Vehicles, vol. 1, no. 1, pp. 33-55, 2016.

[2] M. Buehler, K. Iagnemma, and S. Singh, The 2005 DARPA grand
challenge: the great robot race. Springer, 2007.

, The DARPA urban challenge: autonomous vehicles in city traffic.
springer, 2009.

[4] K. Kritayakirana and J. C. Gerdes, “Autonomous vehicle control at
the limits of handling,” International Journal of Vehicle Autonomous
Systems, vol. 10, no. 4, pp. 271-296, 2012.

[3]

https://youtu.be/gcnngFyWnFQ?t=13079
https://youtu.be/gcnngFyWnFQ?t=13079

y [m]

—15 1

-30

y [m]

—45 4

—60

-75 4

-20 0 20 40
x [m]

-20 4

—40

—60 -

—80 -

16
15
14
13

[su] "o

12
11
10

-20 0 20 40
z [m]

Fig. 5. The racing trajectory calculated by the lap time optimization (left panel) and the real-time trajectory of the vehicle (right panel). The information
about v, is given by the color of the trajectory.

Fig.

16
14
GE 12 -
g : g
& . -,
3 .
. 10
~101 :
: 8
10 0 -10
a, [m/s?]

6. Longitudinal and lateral accelerations during Formula Student Ger-

many.

[51

[6]

[71

[8]

[9]
[10]

A. Liniger, A. Domahidi, and M. Morari, “Optimization-based au-
tonomous racing of 1:43 scale RC cars,” Optimal Control Applications
and Methods, vol. 36, no. 5, pp. 628-647, 2015.

J. Betz, A. Wischnewski, A. Heilmeier, F. Nobis, L. Hermansdorfer,
T. Stahl, T. Herrmann, and M. Lienkamp, “A software architecture for
the dynamic path planning of an autonomous racecar at the limits of
handling,” in International Conference on Connected Vehicles and Expo
(ICCVE), 2019.

J. Funke, M. Brown, S. M. Erlien, and J. C. Gerdes, “Collision avoidance
and stabilization for autonomous vehicles in emergency scenarios,” [EEE
Transactions on Control Systems Technology, vol. 25, no. 4, pp. 1204—
1216, 2016.

R. Verschueren, M. Zanon, R. Quirynen, and M. Diehl, “Time-optimal
race car driving using an online exact hessian based nonlinear mpc
algorithm,” in 2016 European Control Conference (ECC), 2016.

J. Kabzan et al., “AMZ Driverless: The full autonomous racing system,”
arXiv:1905.05150, 2019.

A. Liniger and J. Lygeros, “Real-time control for autonomous racing
based on viability theory,” IEEE Transactions on Control Systems
Technology, vol. 27, no. 2, pp. 464—478, 2019.

(1]

[12]

[13]

[14]

[15]

[16]
[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

T. Novi, A. Liniger, R. Capitani, and C. Annicchiarico, “Real-time
control for at-limit handling driving on a predefined path,” Vehicle
System Dynamics, 2019.

D. Caporale, A. Settimi, F. Massa, FE. Amerotti, A. Corti, A. Fagiolini,
M. Guiggian, A. Bicchi, and L. Pallottino, “Towards the design of

robotic drivers for full-scale self-driving raclii]f cars,” in International
Conference on Robotics and Automation (ICRA), 2019.

U. Rosolia, A. Carvalho, and F. Borrelli, “Autonomous racing using
learning model predictive control,” in American Control Conference
(ACC), 2017.

R. Lot and F. Biral, “A curvilinear abscissa approach for the lap time
optimization of racing vehicles,” IFAC World Congress, 2014.

A. Rucco, G. Notarstefano, and J. Hauser, “An efficient minimum-
time trajectory generation strategy for two-track car vehicles,” IEEE
Transactions on Control Systems Technology, vol. 23, no. 4, pp. 1505—
1519, July 2015.

R. N. Jazar, Vehicle Dynamics: Theory and Application. Springer, 2008.
H. B. Pacejka and E. Bakker, “The magic formula tyre model,” Vehicle
system dynamics, vol. 21, no. S1, pp. 1-18, 1992.

B. Bell. (2019) Cppad: A package for c++ algorithmic differentiation.
[Online]. Available: http://www.coin-or.org/CppAD

A. Wichter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,”
Mathematical programming, vol. 106, no. 1, pp. 25-57, 2006.

A. Domahidi and J. Jerez, “Forces professional,” Embotech AG,
url=https://embotech.com/FORCES-Pro, 2014-2019.

A. Zanelli, A. Domabhidi, J. Jerez, and M. Morari, “Forces nlp: an effi-
cient implementation of interior-point methods for multistage nonlinear
nonconvex programs,” International Journal of Control, vol. 93, no. 1,
pp- 13-29, 2020.

M. L. Valls, H. F. Hendrikx, V. J. Reijgwart, F. V. Meier, 1. Sa, R. Dubé,
A. Gawel, M. Biirki, and R. Siegwart, “Design of an autonomous race-
car: Perception, state estimation and system integration,” in International
Conference on Robotics and Automation (ICRA), 2018.

N. Gosala, A. Biihler, M. Prajapat, C. Ehmke, M. Gupta, R. Sivanesan,
A. Gawel, M. Pfeiffer, M. Biirki, I. Sa et al., “Redundant perception
and state estimation for reliable autonomous racing,” in International
Conference on Robotics and Automation (ICRA), 2019.

J. Kabzan, L. Hewing, A. Liniger, and M. N. Zeilinger, “Learning-based
model predictive control for autonomous racing,” IEEE Robotics and
Automation Letters, vol. 4, no. 4, pp. 3363-3370, 2019.

http://www.coin-or.org/CppAD

	I Introduction
	II Model
	II-A Curvilinear Bicycle Model
	II-B Constraints
	II-C Space vs Time Domain

	III Hierarchical Controller
	III-A Lap Time Optimization
	III-B MPC-Curv

	IV Results
	IV-A Computation of the LTO trajectory
	IV-B Following the LTO Trajectory
	IV-C Experimental Validation

	V Conclusion
	References

