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UAV-AdNet: Unsupervised Anomaly Detection using Deep Neural
Networks for Aerial Surveillance

Ilker Bozcan and Erdal Kayacan

Abstract— Anomaly detection is a key goal of autonomous
surveillance systems that should be able to alert unusual obser-
vations. In this paper, we propose a holistic anomaly detection
system using deep neural networks for surveillance of critical
infrastructures (e.g., airports, harbors, warehouses) using an
unmanned aerial vehicle (UAV). First, we present a heuristic
method for the explicit representation of spatial layouts of
objects in bird-view images. Then, we propose a deep neural
network architecture for unsupervised anomaly detection (UAV-
AdNet), which is trained on environment representations and
GPS labels of bird-view images jointly. Unlike studies in the
literature, we combine GPS and image data to predict abnormal
observations. We evaluate our model against several baselines
on our aerial surveillance dataset and show that it performs
better in scene reconstruction and several anomaly detection
tasks. The codes, trained models, dataset, and video will be
available at https://bozcani.github.io/uavadnet|

[. INTRODUCTION

Anomaly detection (i.e., finding unusual patterns that are
different from the majority of observations [1]) is a crucial
process for autonomous surveillance systems. These systems
should be able to alert humans in case of the existence
of suspicious observations during monitoring wide areas.
Furthermore, for a higher level of automation, they should
be able to learn anomalies without human supervision.

By the advance in on-board sensor technology and
computing power, unmanned aerial vehicles (UAVs) with
mounted cameras are extensively used for different visual
surveillance applications such as detection of suspicious
social events [2], violent human actions [3] and vehicles [4].
However, surveillance with UAVs requires human supervi-
sion even for assistance in the anomaly detection process. To
increase the autonomy level of UAVs for anomaly detection
task, (i) an environment representation that allows UAVs to
be aware of the existence and spatial locations of objects
in a given environment, and (ii) unsupervised learning of
anomalies in environment representations are required.

In this paper, firstly, we propose a grid-wise environment
representation for bird-view images captured by a UAV.
This representation establishes the layout of a scene that
shows objects and their spatial locations in the image (See
Fig. [I). The perspective in aerial images is foreshortened
that makes the object appear short and squat, unlike linear
perspective in side-view images (Fig. [T}a). Therefore, objects
in complete bird-view aerial images can be represented in 2D
space by discarding the depth, while keeping the altitude of
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Fig. 1. This figure shows the schematic representation of the proposed
anomaly detection framework. Having trained the model, for inference,
UAV records a bird-view image and GPS data over the inspection area.
After object detection (Fig. 1.a), grid representations are created for an
environment. Then, UAV-AdNet recovers the representations for given grids
and GPS labels. The difference between the original and reconstructed
samples indicates anomalies (e.g., the bike is an anomaly in Fig. 1.b) The
UAV-AdNet runs 30 ms on average for inference on the NVIDIA Jetson
TX2 [5], which is suitable for real-world applications.

UAV constant. Secondly, we propose an end-to-end trainable
neural network architecture for anomaly detection (UAV-
AdNet). Similar to variational autoencoders [6], latent vector-
space is constrained for being continuous to learn data
distribution. However, we sacrifice generativity for the sake
of the precision of predictions by feeding input data in the
last layer of the network.

A presence of an object can be considered anomaly ac-
cording to the environment that it is presented. For example,
a car might be considered normal if it is parked on a car-park,
yet it might be anomaly if it appears at the back side of a
building. To capture location-dependencies of anomalies, we
also feed the network with global positioning system (GPS)
data. Therefore, the network learns the data distribution
conditioned on flight location (Fig. [Ilb). We compare the
proposed method with several baselines, and show that our
method performs the best for anomaly detection tasks.

A. Related Work

1) Environment representation for robots: Environment
representation (scene modeling) is crucial for robots that
need reasoning and decision making about their environment.
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Although many scene models have been proposed in robotics
using Markov or conditional random fields [7], [8], Bayesian
Networks [9], Dirichlet and Beta processes [10], predicate
logic [11], Scene Graphs [12] ontology [13], [14] and
Boltzmann Machines [15], [16], they have been implemented
for indoor tasks using unmanned ground vehicles, humanoid
robots or service robots. The high payload capacity of these
robots allows scene models to have a variety of input data
modalities such as images, point clouds, haptic. Moreover,
most of these works have focused on indoor tasks that robots
perceive their environment in the frontal (side) view visually.
Lack of payload capacity and bird view perception of the
environment require unique environment representation for
drones.

2) Autonomous anomaly detection: Anomaly detection
has been studied wildly in variety of domains such as
computer vision [3], [17]-[19], computer audition [20]-[22],
finance [23], [24]. Among these works, we highlight three of
them which are closely related to our methodology. Xu et al.
[19] use stacked denoising auto-encoders to learn appearance
and motion features and Support Vector Machines (SVM)
to predict the anomaly scores for input images. Hasan et
al. [18] propose a fully connected autoencoder that has a
higher reconstruction error for input images, which include
abnormal observations. Koizumi et al. [20] also use the
reconstruction error of autoencoders as a clue for anomalies
for audial surveillance. However, in these studies, the recon-
struction error is considered an anomaly score. This prevents
explicit representation of anomalies (i.e., the spatial layout of
anomalies in a sample data). Compared to others, our method
can represent each anomaly observation explicitly for a given
input (i.e., it can predict both type and location of anomaly
objects).

B. Contributions

The main contributions of our work are the following:

o Environment representation for aerial images: We
propose grid-wise environment modeling, which rep-
resents the presence and locations of objects in aerial
images. To the best of our knowledge, this is the first
study that introduces environment representation for
aerial images.

o UAV-AdNet - Deep neural network (DNN) for
anomaly detection with UAVs: We propose a novel
DNN architecture, which is dedicated to anomaly de-
tection in environment representations. Our model has
crop-and-copy connection, which propagates input data
to the late hidden layer directly instead of activation
maps, unlike other well-known DNN architectures. We
observe that convolving activation maps and inputs
together recover spatial information in original input,
whereas anomaly parts in original data are removed.
Moreover, we train the network with environment rep-
resentations and GPS labels jointly, and observe that the
network learns which objects are anomalies conditioned
on GPS labels.

We evaluate UAV-AdNet on different surveillance sce-
narios which UAVs can operate: (i) Determining anomalies
which violates private rules (e.g. entering forbidden area of
private buildings), (ii) anomalies which violate public rules
(e.g. parking car on bike road), (iii) rare observations which
may arise suspicions (e.g. truck in a car park). We compare
our model (UAV-AdNet) with several baselines including
Variational Autoencoders (VAE) [6] and conditional varia-
tional autoencoder (CVAE) [25] which are heavily used for
unsupervised anomaly detection tasks. During the benchmark
evaluation, we exclude classical machine learning approaches
for the sake of space and only focus on state-of-the-art deep
learning models which are compatible with our proposed
method.

The remainder of the paper is organized as follows.
Section II introduces the proposed framework for environ-
ment representation of aerial images and anomaly detection
network (UAV-AdNet). Section III presents the evaluation
of the UAV-AdNet on several anomaly detection scenarios
and its reconstruction capacity. Section IV discusses the
weakness and future of this work. Section V summarizes
the work with a conclusion.

II. PROPOSED METHOD

In this section, we present environment representation for
aerial images that are captured by UAVs and DNN-based
anomaly detection technique (UAV-AdNet). As shown in
Fig 3] an anomaly detection framework starts by assuming
that off-the-shelf object detectors give object annotations
for raw input images. Then, grid representations that show
the existence and locations of objects are computed using
object annotations. Grid representations and corresponding
GPS labels which include latitude and longitude coordinates
of images are fed to the model as input. The model produces
reconstructed data for given input data and GPS label. During
the inference phase, the difference between original input
data and reconstructed data indicates objects which are an
anomaly in the environment. The UAV-AdNet runs 30 ms
in average for inference on the NVIDIA Jetson TX2 card,
which is suitable for real-world applications.

A. Object Detector

Initially, we use an object detector to find objects in
images. Since object detection is out of the main focus in
our work, we use an off-the-shelf object detector. In our
experiments, we choose MobileNetV2-SSDLite [26] since
it is a light-weight object detector that is applicable for real-
time on-board applications.

We implement the same network architecture except for
the output layer in the original work [26] and train the
network using the VisDrone dataset [27], consisting of aerial
images and bounding box annotations for different object
categories. The annotations for seven object categories (car,
pedestrian, bus, van, truck, bicycle, motorbike) are directly
inherited from the VisDrone dataset. “Car” instances are
manually labeled with the “Trailer” label if a trailer exists
with a car, before training.



The output layer of the network is constructed according
to 8 numbers of object categories. We use the standard
RMSProp optimizer [28] with momentum set to 0.9. The
initial learning rate and batch size are set to 0.05 and 32,
respectively. Early-stopping is applied to finish the training.

B. Grid Representation of Environment

Let us consider an aerial image dataset with annotated
object bounding boxes (D) including N images {I,,}_;,
with I € R¥%*4v*d: where d, and d, represent the number
of pixels in z and y direction and d, represents the number
of color channels. We can divide the image into grids and
assign a value to each grid cell according to the presence or
absence of a particular object. Therefore, we can use a new
metarepresentation (X) of the image dataset (D). A binary
tensor X; represents objects and their locations explicitly in
input image I;, which has the form:

X € {0, 1}V, (1)

where N, and NN, are the numbers of grid cells along z—
and y— axis respectively, and IV, is the number of objects in
object vocabulary O, i.e., the number of object types that the
object detector can detect. Each grid cell has the width s,
and the height s,, where s, = (d;/N,) and s, = (d,/Ny).
In other words, a grid tensor X consists of N, grid matrices
and each matrix consists of N, columns and N, rows. An
element of a matrix has a value of 1, if the corresponding
grid area includes center of a particular object; otherwise it
has a value of 0. The overall process can be seen in Fig.

In this work, we crop aerial images to a size of 1080x 1080
pixels and divide them into 16 x 16 grids, in which each grid
has a size of 67 x 67 pixels. The grid size is chosen according
to the average bounding box size of human instances (i.e.,
the smallest object category in the dataset) so that only one
human instance can occupy a grid cell.

C. UAV-AdNet — Deep Neural Network for Anomaly Detec-
tion

In UAV-AdNet, we use a DNN architecture that learns
objects distribution in an environment representation con-
ditioned on GPS label corresponding to the environment.
Moreover, we constrain the network to have continuous latent
space which allows the network to learn the data distribution.
This constraint is crucial in the context of anomaly detection
task since the network can reason about anomaly objects
when they are out of the distribution.

1) Input form: Firstly, we flatten a binary tensor X to a
binary vector (x) which has a length of N, x N, x N,.
Then, we create a vector 1 € R? for the GPS label of
the environment, including latitude and longitude as scalar
elements. We feed both x and 1 as input to the model.

2) Network architecture: As shown in Fig.|3] UAV-AdNet
takes a binary grid vector and GPS label as input and outputs
a new grid vector (X) in which the grid cells including
anomalies is set to 0.

The architecture of UAV-AdNet is given Fig [3] At high
level, UAV-AdNet can be seen as a sequence of layers that

process the input data at different scales. The first dense layer
has 128 hidden neurons and is followed by ReLU activation.
The second dense layer consists of two independent groups
of hidden neurons represented by g and X, which learn mean
and variance of the probability distribution of input data,
respectively. Then, the data are fed into the sampling layer,
which is a deterministic parameterized transformation of a
prior distribution [6]. After sampling the latent vector (z), it
is concatenated with the GPS input vector (1). The combined
vector is fed into the Dense3 layer, which has 2048 hidden
neurons, and the ReLU non-linearity function is applied.
The outputs of ReLU3 are reshaped to 16 x 16 x 8 sized
tensor and concatenated with tensor X. Consequently, 1 x 1
sized convolutional kernels are applied and X is calculated
as output. The whole process can be summarized in Alg.

During our experiments, we observe that the crop-and-
copy link for tensor X increases the network performance
significantly. We interpret this observation as that the copy-
and-crop link carries information from the input layer, di-
rectly, to the last layer. Therefore, even if the inputs are quite
sparse matrices (as in our case), the network can recall them
using the copy-and-crop link.

3) Loss function: In order to learn the parameters of
a probability distribution, which represents the input data
instead of just compressed representation of it, we use VAE-
like loss function (£):

L= ACrec + Ereg7 (2)

which consists of reconstruction loss (L,...) and a regularizer
term (Lyeg).

We use binary cross-entropy loss (log loss) as reconstruc-
tion loss, which penalizes the network for being dissimilar
of the input grid matrices (X) and the output grid matrices
(X). Therefore, reconstruction loss can be defined as:

N
e ==y Dxog /) (1) og (1= /s )
0

where N is the number of samples in the dataset, f(x;, ;)
is the model output for given inputs x; and l;, and 1 is the
one vector which has the same shape with z;.

We add a constraint on the encoding part as in VAE, which
forces it to generate latent vectors that roughly follow a
Gaussian unit distribution. We can interpret this phenomenon
as the network can learn object distributions in the environ-
ment if it is constrained to have continuous latent space.

Algorithm 1 Anomaly detection process with UAV-AdNet.
1: Input: Test image i, GPS label 1
Output: Detected anomalies.

Predict the object detector output O for given input i.
Get the grid representation x from O.

Run forward-pass of UAV-AdNet with x and 1 to get the
reconstructed sample X.

7: Compare x and X to find anomalies.

AN
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Fig. 2. This illustration shows how we get the environment representation from the raw image. Objects in the input image (a) are annotated by bounding
boxes using off-the-shelf object detector methods or human supervision (b). Then, the image is split into 16 x 16 grid cells (c) and cells, including object
bounding box centers, are set to value 1, otherwise set to 0 (d). Note that the sub-figure (d) is a matrix for the car category, and only shows car instances.
The metadata extraction process can be done for all types of objects given in object vocabulary O.
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Fig. 3.

This illustration shows the proposed network architecture and anomaly detection process. Firstly, RGB images are captured by UAV (I), and

objects are annotated using off-the-shelf object detectors. Then, the region of interest is cropped (s), and the heuristic-based method is applied to get the
grid representation of the environment (X). The network takes both grid representations (X)) and GPS labels (1) as input. Then, it predicts the reconstructed
sample (X) which cells, include the anomaly objects that differ from the original input.

The following regularizer term is added to the overall loss
function (2) to add the constraint:

ET@Q = DKL[Q(”H 3 | X, 1) || p(z)]a 4

where Dyp is the Kullback-Leibler divergence which mea-
sures the discrepancy between two probability distribution,
q(p, X | x,1) is the probability distribution which is repre-
sented by model parameters p, 3 for given x and 1, and
p(z) is the prior distribution for latent variables (z).

By assuming latent prior is given by Gaussian distribution
as in VAEs, i.e., p(z) = N(j1,3) where N is the Gaussian
distribution with the mean vector o= 0 and the variance

matrix 3 = I, the regularizer term can be re-written as
follows:
1
Lyeg = 3 [—log |Z] — np + r{E} + p” p] (35)
1 np np np
=5 |- logol —m+ D ol + D ui|, ©
K3 7 7

where ny, is the number of hidden neurons in o and p latent
layers; p; and o; are mean and variance hidden neurons
indexed by %; tr is the trace of a square matrix.

4) Training settings: For training the networks, we use
Adam optimizer, whose parameters are empirically set as
learning rate is 0.001, betal is 0.9, beta2 is 0.999. Training
data are split into mini-batches with a batch size of 64. The
training process is finished when validation accuracy begins
to decrease.

D. Dataset Collection

There are several aerial image and video datasets collected
by UAVs ([29], [30]), and they are used for computer vision
tasks such as object detection, image segmentation. However,
they do not include any data which are related to the environ-
ment except for images and object annotations. Therefore,
they do not allow different data modalities, which is very
relevant to robotics. For this reason, we collected our dataset,
which includes only bird-view images and corresponding
GPS label and flight data (e.g., IMU, battery level).



Fig. 4.
boxes. Scenes may contain multiple instances belonging same class (upper
left), composed vehicles such as a car with a trailer (upper right), signif-
icantly small objects such as humans, bikes (lower left) and huge objects
such as trucks that occupy a large area of a scene (lower right).

Samples from the dataset. Objects are annotated with bounding

For dataset collection, we use Parrot Bebop 2 drone that
has a fish-eye camera that allows capturing bird-view images.
The dataset is collected around Aarhus University DeepTech
Experimental Hub in Aarhus (Denmark) (See Figure [).
The drone followed a predefined path around the building
with the 30-meter altitude under different weather conditions
(e.g., sunny, partially sunny, cloudy, windy), and recorded
video, flight data and GPS data simultaneously. We have
15000 samples in total and split the whole dataset into three
categories: 60% for training, 10% for validation and 30% for
testing.

III. EXPERIMENTS AND RESULTS

In this section, we evaluate and compare our method
with several baselines for detection of different types of
anomalies. For this end, we separate test set into three
categories according to included anomaly types:

« Existence of an object which breaks private rules of the
environments (e.g., human in the forbidden zone of the
building)

« Existence of an object which breaks public rules (e.g.,
car on the pedestrian road).

o Existence of an object which does not break neither
public nor private rule yet arises suspicions due to its
rare observation (e.g. truck in the car parking area).

We compare methods in terms of reconstruction capacity
and anomaly detection capability.

A. Baselines

Although there are classical machine learning algorithms
(principal component analysis [31]) that are used for anomaly
detection, we compare our method with deep learning-based
state-of-the-art models. For this end, we choose autoencoders
and its variants as a baseline for anomaly detection tasks.

In order to observe the effect of GPS input on the network
performance, we create a variant of UAV-AdNet just by
removing the GPS input layer and call it “UAV-AdNet-wo-
gps”. Secondly, we remove copy-and-crop connections for
input grids and keep the GPS input layer. Therefore, the

network has a form of conditional variational autoencoder
(CVAE). Lastly, we use vanilla autoencoder (VAE) by re-
moving the copy-and-crop connections and the GPS input
layer. For the sake of compatibility, all models have the same
number of hidden layers and neurons as in UAV-AdNet.

We trained all networks with the same batch size and
optimizer parameters until the validation error started to
increase.

B. Evaluation Metrics

For evaluating the reconstruction capability of the meth-
ods, we use precision (Pr), recall (Rec) and Fl-score (F1),
which are defined as follows [15]:

TP TP

Pr- Rec
Pr=—— Rec = ———
TP + FP TP + FN

" Pr+ Rec’
@)

where TP, FP and FN stand for the number of true positives,
false positives and false negatives, respectively. For anomaly
detection task, we define TP as the number of grid cells that
have value of 1 in reconstructed data correctly according to
the ground truth sample; FP as the number of grid cells that
the model set to 1 but should have been 0 according to the
ground truth; TN as the number of grid cells that are set to
0 correctly according to ground truth, and FN as the number
of grid cells that the model is set to 0, yet should have been
1 according to the ground truth.

For evaluating the anomaly detection performance of the
methods, we define accuracy as the percentage of anomalies
correctly estimated for the labeled anomalies in the test
dataset.

C. Comparing Reconstruction Capabilities of Models

Abnormal objects (i.e., anomalies) are detected comparing
original input and the reconstructed data. Besides finding
anomalies in input data, in the reconstructed sample, models
should be able to recall ordinary (not anomaly) objects in
the original input as well. Moreover, the reconstructed data
should not contain further objects which differ from the
original input. In other words, the models should have high
precision and recall.

By the definitions given in (7)), the reconstruction perfor-
mances of the models are given in Table [ UAV-Adnet and
UAV-AdNet-wo-gps have significantly better precision and
recall values compared to CVAE and VAE, which shows
that combining input data and hidden representation (via
copy-and-crop connections) of the environment increases the
model performance significantly. Moreover, we observe that
feeding the model with GPS inputs also increases the model’s
reconstruction.

The copy-and-crop connections increase the reconstruction
performance of the model significantly. They carry infor-
mation regarding the original input to the last layer. These
connections prevents the vanishing of the input information
through layers.



TABLE I
RECONSTRUCTION PERFORMANCES OF THE METHODS OVER THE TEST

SET.

[ [ Precision  Recall  Fl-score ]
UAV-AdNet 0.9816 1.0 0.9907
UAV-AdNet-wo-gps 0.9427 0.9984 0.9697
CVAE 0.1963 0.5165 0.2845
VAE 0.1920 0.4102 0.2616

D. Task 1: Finding Anomaly Objects Breaking Private Rules

UAV-AdNet can find anomaly objects for the special rules
of the DeepTech Experimental Hub building. According to
these rules, anomaly cases are defined as follows:

¢ Occurrence of any human or vehicle at the backside of
the building.
o Occurrence of any vehicle at the left side of the building.

For testing, an object, that breaks a private rule, is added to
the grid representations (i.e., corresponding grid cells are set
to 1) of the test samples in order to create these anomaly
cases. Then, modified grid representation and corresponding
GPS label are fed into the model, and the model is expected
to set grid cells, including anomaly objects to O in the
reconstructed sample.

We evaluate this task with VAE, CVAE, UAV-AdNet-wo-
gps and our model, as shown in Table [l We see that our
model provides the highest accuracy for Task 1. When we re-
move the GPS input layer from the model (UAV-AdNet-wo-
gps), the anomaly detection performance decreases. More-
over, we observe that removing copy-crop connections for
grid inputs decreases the accuracy significantly.

E. Task 2: Finding Anomaly Objects Breaking Public Rules

In this task, we can test our model to find anomalies
breaking public rules. Similar to Task 1, firstly, public rules
are defined as follows:

o Pedestrians can cross a road using zebra crossings only.

« Bike can ride on bike road only.

o Vehicles are not allowed to ride or park on a bike road
except bicycles and motorbikes.

According to these rules, anomaly objects are added to
grid representations as in Task 1. After that, these objects
are founded by comparing original input and reconstructed
input during the model’s reconstruction phase. As shown in
Table our model performs better than UAV-AdNet-wo-
gps, CVAE and VAE for Task 2. We can see that feeding
the network with GPS data increases the accuracy and it
performs poorly when copy-crop layers are removed.

F. Task 3: Finding Suspicious Objects

Lastly, we evaluate the models to find an abnormal object
even if it does not break private or public rules. These
objects may be still suspicious since they barely occur in
an environment representation with a given GPS coordinate.
For instance, the occurrence of a person on the roof of the
building does not break rules but might arise a suspicion.

For this task, we add random objects to the grid repre-
sentations according to the context of the scene and without
breaking public or private rules. As shown in Table [[I} our
model provides the highest accuracy for Task 3 as well.
However, results for this task relatively worse than Task 1
and 2 since the models tend to keep the added object in the
reconstructed sample if the added object suits the contextual
layout of previous observations (e.g. if a car is added to a
road then the model may not consider it as anomaly).

TABLE II
ANOMALY DETECTION ACCURACY.

[ [ Task 1 Task 2 Task 3 |
UAV-AdNet 0.9214 0.8614 0.8255
UAV-AdNet-wo-gps | 0.8778 0.7912 0.7778
CVAE 0.6212 0.4413 0.4433
VAE 0.6198 0.4165 0.4200

IV. DISCUSSION

We observe that the crop-and-copy link for the input layer
increases the network’s reconstruction performance signifi-
cantly. By this architecture, UAV-AdNet recovers the original
input (high recall and precision), and remove anomalies
from the reconstructed sample. Moreover, we observe that
feeding GPS to UAV-AdNet also increases the reconstruction
and anomaly detection performances, whereas it is not as
effective as crop-and-copy links for inputs.

We also observe that feeding the network with irrele-
vant GPS labels during the inference phase reduces the
reconstruction performance significantly. This phenomenon
is expected since UAV-AdNet learns conditional distribution
of grid representations for given GPS labels. Therefore, it
can find anomalies for the environments which have similar
object layouts but different GPS layouts.

Since collecting test set for anomaly detection and labeling
objects as an anomaly is not a straightforward task, we
add anomaly objects randomly according to specific rules
(e.g., public, private, suspicious) which creates anomaly
cases. However, random adding of objects can create regular
environment layouts which do not contain anomaly cases.
Therefore, as future work, a more comprehensive test set
can be collected, including annotated anomalies.

In our experiments, the drone flies at a constant altitude
(30 meters) to capture data. Therefore, the grid representation
of an environment might be different if the flight altitude
changes. For instance, when the drone flies at a higher
altitude, objects have a smaller appearance. In that case, the
grid size should be decreased.

The camera position may not be perpendicular to the Earth
when the drone is accelerating or has a non-zero roll and
pitch attitude. In that case, a gimbal for the camera can be
used to fix the camera position since grid representations
should be extracted from complete bird-view images.

To create test cases, we add objects randomly into the
environment representations according to their contextual
layout. Although these synthetic samples are consistent with
real samples, they may cause an unforeseen bias in the



dataset. Hence, we will enlarge the dataset with real samples
in order to prevent the bias of synthetic samples.

Although we have conducted our experiments in a
warehouse-like building (Aarhus University DeepTech Ex-
perimental Hub), the proposed method is applicable for
different types of structured environments such as harbors,
factories, airports. To this end, after collecting a dataset in
a specific zone using predefined flight paths, a UAV can
operate for the anomaly detection task. Moreover, it can
record new samples (both aerial images and GPS data) during
the inspection for further training later on.

In this work, we only consider GPS data to increase
anomaly detection performance. Different types of flight data
can be used as input to indicate the current context of the
environment as future work. Our results indicating the effect
of GPS data are promising to use different data modalities
to increase anomaly detection performance.

V. CONCLUSIONS

In this paper, we have proposed a heuristic method for
environment representation of bird-view images and a DNN-
based anomaly detection method (UAV-AdNet) trained on
environment representations and GPS labels jointly. In our
experiments, we show that the proposed architecture has bet-
ter scene reconstruction performance with the copy-and-crop
connection for the input. Moreover, compared to autoencoder
variants, which are heavily used for anomaly detection in
different domains, we show that our model performs better
on several anomaly detection tasks. We also observe that
feeding the network with GPS data can augment anomaly
detection performance.
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