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Abstract— Autonomous navigation of ground robots has been
widely used in indoor structured 2D environments, but there are
still many challenges in outdoor 3D unstructured environments,
especially in rough, uneven terrains. This paper proposed
a plane-fitting based uneven terrain navigation framework
(PUTN) to solve this problem. The implementation of PUTN
is divided into three steps. First, based on Rapidly-exploring
Random Trees (RRT), an improved sample-based algorithm
called Plane Fitting RRT* (PF-RRT*) is proposed to obtain a
sparse trajectory. Each sampling point corresponds to a custom
traversability index and a fitted plane on the point cloud.
These planes are connected in series to form a traversable
“strip”. Second, Gaussian Process Regression is used to gen-
erate traversability of the dense trajectory interpolated from
the sparse trajectory, and the sampling tree is used as the
training set. Finally, local planning is performed using nonlinear
model predictive control (NMPC). By adding the traversability
index and uncertainty to the cost function, and adding obstacles
generated by the real-time point cloud to the constraint func-
tion, a safe motion planning algorithm with smooth speed and
strong robustness is available. Experiments in real scenarios
are conducted to verify the effectiveness of the method. The
source code is released for the reference of the community1.

I. INTRODUCTION

With the development of simultaneous localization and
mapping (SLAM) technology and the improvement of com-
puter performance, autonomous navigation technology is
widely applied to ground robots. At present, the technology
of 2D indoor ground mobile robots is relatively mature.
By improving the robustness and efficiency of existing 2D
autonomous navigation solutions [1] [2] [3], the autonomous
navigation of robots has been widely used in many fields
[4] [5], but autonomy on unstructured and off-road terrain
remains a challenge. The difficulties mainly include the
following two aspects: 1) the representation and calculation
of large-scale maps are time-consuming; 2) unstructured
terrain and real-time obstacles affect path planning.

To address these issues, this study first presents a new au-
tonomous navigation framework based on point cloud plane
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Fig. 1: The Scout 2.0 four-wheel-drive platform is used to conduct
experiments in steep slope, flat bridge, forest and arch bridge areas,
respectively to verify the feasibility, robustness, and efficiency of
PUTN.

fitting. It contains three parts: 1) sparse global trajectory
generation based on random sampling combined with plane
fitting; 2) dense path generation based on gaussian process
regression (GPR) and linear interpolation; 3) a nonlinear
model predictive control (NMPC) planner that avoids dy-
namic obstacle and guarantees safety. Our work focuses on
the surface of the point cloud map, extracts a set of point
clouds around the sampling node, and then fits a local plane
with the set. For this plane, we propose custom evaluation
indicators including flatness, slope, and sparsity, which are
integrated to evaluate the traversability. Based on the fitted
plane, we combine sampling, GPR, NMPC methods for
motion planning of the robot.

A. Related Work

Autonomous navigation based on unmanned ground ve-
hicles (UGV) has been greatly developed in recent years.
Based on 2D navigation, many frameworks for 3D navigation
have been proposed. In [6], a multi-layer 2D map extracted
from the 3D OctoMap is used to explore staircases and
slopes. However, this approach limits the ability to explore
more complex environments. In [7] [8] [9], global trajectory
in more complex environmental scenarios is resolved, but
their work all lack processing of real-time point clouds,
which may lead to dangerous situations during the movement
of the robot. Fan et al. [10] apply rapid uncertainty-aware
mapping and traversability evaluation to the robot, and tail
risk is assessed using the Conditional Value-at-Risk (CVaR).
The most visible deficiency is that when working in large-
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Fig. 2: Overview of system framework of PUTN. From left to right: lidar detects surrounding terrain and returns point clouds. Then, the
SLAM module builds a global map based on the point clouds. Next, the global map is imported to the Global Planning module, which
uses the PF-RRT* algorithm to generate an RRT tree and a sparse global path. After interpolation based on GPR, a dense global path is
imported to the Local Planning module based on NMPC Planner. The local planner produces control inputs to the robot.

scale scenarios, the algorithm needs to analyze each point
to generate a risk map, which consumes a large number of
computing resources.

Map representation of space is essential for finding paths.
The density of the map affects the accuracy and speed of
planning [11]. Therefore, when planning requires greater ac-
curacy, the RGBD camera is more commonly used [12] [13]
[14]. In order to obtain a denser point cloud map with lidar,
Shan et al. [15] apply Bayesian generalized kernel inference
to terrain elevation and traversability inference. In this way,
although theoretically higher accuracy can be obtained, it
takes more time. In [16], the authors compute trajectories
compliant with curvature and continuity constraints directly
on unordered point cloud maps, omitting any kind of explicit
surface reconstruction. But with this approach, the accuracy
of the planning heavily depends on the density of the map.

B. Contributions

This work offers the following contributions:
1) Based on Rapidly-exploring Random Trees (RRT) [17],

a new path planning algorithm named Plane Fitting
RRT* (PF-RRT*) for uneven terrain integrating a new
terrain assessment method is proposed.

2) A new Plane-fitting based Uneven Terrain Navigation
framework (PUTN) for navigation of ground robots on
uneven terrain is proposed.

3) Experiments in the real scenario are carried out to verify
the real-time performance, effectiveness, and stability of
the above algorithms.

II. OVERVIEW OF THE FRAMEWORK

A. Problem Statement

Define X ⊂ R3 as the work space. Let Xsurf ⊂ X denote
the areas close to the ground, Xobs ⊂ X denote occupied

area of space and Xfree = X\Xobs. Let Xtrav ⊂ Xfree ∩
Xsurf denote the subspace that is traversable for ground
robots.

The formal definition of the problem is as follows: Given
the initial and target state xstart, xgoal ∈ Xtrav, search a
feasible control strategy π∗. Input xstart to π∗ and it controls
the robot to move from xstart to xgoal. π∗ should satisfy: 1)
all kinematic and dynamic constraints; 2) avoiding collision
with obstacles along the way; 3) minimizing the time needed
to move; 4) minimizing the risk of the robot being unable to
maintain a stable posture.

B. System Framework

Fig.2 shows the structure of the PUTN algorithm. The
SLAM module can be implemented by A-LOAM [18], Lego-
loam [19], etc. The Global Planning module and the Gaussian
Process module generate the sparse path and the dense
path, respectively. In addition to following the global path,
considering that the loss of accuracy and the hysteresis exist
in the two modules in real-time navigation, point cloud
updated by lidar in real time will be combined in the Local
Planning module to improve the responding ability to avoid
the obstacles.

III. IMPLEMENTATION

A. Global Planning

1) Plane Fitting RRT* algorithm:
PF-RRT* is proposed to solve the problem of global

path generation in uneven terrain. Its framework is based
on informed-RRT* [20], and is presented in Alg.1. The
following are the relevant definitions:
• x ∈ R3 represents a space point.
• x ∈ R2 represents a plane point.



• x̃ ∈ R3 represents a space point on the surface of the
terrain.

• x̂ ∈ R3 represents the position of the robot center on the
terrain.

• S represents a path that is a sequence of states.
As shown in Fig.3, different from the traditional RRT, each

element in the tree is represented as a node Ni =
(
TMR̃i

, τi
)

instead of a position xi. TMR̃i
represents a local plane at the

center of the robot footprint and τi ∈ [0, 1] represents the
traversability. A higher value of τi means harder to traverse.
Here 0 represents absolutely traversable and 1 represents
absolutely unable to traverse. The detailed calculation will
be introduced in SectionIII-A.2.

Based on the definition above, given two nodes N1, N2,
let l1,2 denote the Euclidean distance between them, and the
cost function of the line connecting N1 and N2 is defined
as follows:

f(N1,N2) =

(
1 + ω

(
1

1− τ1
+

1

1− τ2
− 2

))
· l1,2 (1)

Where ω is a penalty scale factor. In this way, the
algorithm will aim to not only shorten the path but also
avoid those paths that are hard to traverse. However, the
traversability in this area is assumed to be uniform, which is
a rough approach. Further processing is needed to evaluate
the traversability of the path more accurately, and it will be
described in SectionIII-B.

Some new subfunctions presented in Alg.1 are described
as follows while subfunctions common to the informed-
RRT* algorithm can be found in [17] [21] [20]:
• Pos(N ): Given a node N , the point stored in it is returned.
• ProjectToPlane(x): Given x = [x, y, z]T , it returns x =

[x, y]T .
• ProjectToSurface(x): Given x = [x, y]T . Let res be the

resolution of the grid map, and zl be the lower limit of
the height of the grid map. It returns x̃ = [x, y, z]T where
z satisfies

min
z
z

s.t.


[x, y, z]T ∈ Xobs

[x, y, z + res]T ∈ Xfree

z − zl = k · res, k ∈ N
(2)

• FitPlane(x̃): Given a point x̃ on the surface, it fits a plane
centered on x̃ by combining the information of the global
map. This process will be described in detail in SectionIII-
A.2.
Before global planning, the space is downsampled and

represented as a spatial grid map as shown in Fig.2. This
shortens the time to find the path, but also reduces the
accuracy of the path. The problem will be partially solved
in III-B.

As illustrated in Alg.1, the PF-RRT* algorithm repetitively
adds random samples to search and optimize the solution.
Specifically, the PF-RRT* algorithm samples and expands
with 2D methods to get a new plane point xnew. Then, xnew
is first projected to a surface point x̃new. After that, a new

Algorithm 1: PF-RRT*(Nstart,Ngoal, k)

1 V ← {Nstart}, E ← ∅, σ∗ ← ∅,Ωgoal ← ∅;
2 T = (V,E);
3 for i= 1 to k do
4 if S∗ 6= ∅ then
5 xrand ← SampleEllipsoid();
6 else
7 xrand ← RandomSample();
8 Nnearest ← FindNearest(T, xrand);
9 xnearest ← ProjectToPlane(Pos(Nnearest));

10 xnew ← Steer(xnearest, xrand);
11 x̃new ← ProjectToSurface(xnew);
12 Nnew ← FitPlane(x̃new);
13 if Nnew 6= ∅ and Pos(Nnew) ∈ Xtrav then
14 Ωnear ← FindNeighbors(V,Nnew);
15 if Ωnear 6= ∅ then
16 Nparent ← FindParent(Ωnear,Nnew);
17 V ← V ∪ {Nnew};
18 E ← E ∪ {(Nparent,Nnew)};
19 T ← (V,E);
20 T ← Rewire(T,Ωnear,Nnew);
21 if InGoalRegion(Nnew) then
22 Ωgoal ← Ωgoal ∪ {Nnew};
23 S∗ ← GeneratePath(Ωgoal);
24 return S∗

local plane centered on x̃new will be fitted. Based on the
analysis of the local plane, a new node Nnew is generated,
storing a new state x̂new and its corresponding traversability.
Next, the PF-RRT* algorithm will connect Nnew to the tree
and execute the optimization with 3D methods if the validity
of Nnew is verified by collision-checking. The PF-RRT*
algorithm repeats the operations above until it iterates to the
specified maximum iterations, and an optimal solution S∗

will be returned.
Furthermore, the algorithm uses the previous path as a

heuristic which ensures the stability of the posture of the
robot. In addition to inheriting the fast search and conver-
gence speed of the informed-RRT* algorithm, the PF-RRT*
algorithm has the following advantages:

First, many traditional algorithms analyze the entire map
before planning. However, as the environment enlarges and
updates, the process of analysis will tend to be highly time-
consuming, which is lethal in the field of real-time planning.
To address this issue, the PF-RRT* algorithm carries out
terrain analysis during the expansion of the random sampling
tree to avoid useless analysis, which reduces calculation
workload and speeds up the response of the algorithm.

Second, while many traditional algorithms adopt a 2D grid
map or 2.5D elevation map [4] [5] [12], in which the height
value is used as an evaluation index for obstacles or costs,
the PF-RRT* algorithm directly adopts 3D map to represent
the environment. This enables PF-RRT* to work in more
complex 3D environments.



Fig. 3: Representation of trajectory for motion planning in complex
terrain. The planner trajectory is defined as a series of nodes
extended by the sampling tree. Each node Ni consists of a 6D
pose TMR̃i

and a traversability τi. Based on the set of selected
terrain surface points Ωi, the SVD method is used to fit a plane Pi.
Keeping the distance between the nodes satisfies kinematic vehicle
constraints.

2) Terrain Assessment:
Terrain assessment is an important step in the navigation

process of ground mobile robots. Compared with the tradi-
tional assessment method of traversability for a single point
in the terrain, ground vehicles are more interested in the
traversability of the nearby surface area while driving.

For each point on the terrain surface x̃i, points on the point
cloud map are selected by a cube box with sides of length ls,
which is represented as Ωi = {(x̃ji )j=1:Ni}. Based on this
set, the SVD method is used to fit a plane Pi, and get the
unit normal vector ni ∈ R3.

The three-dimensional coordinate system of the fitted
plane can be defined by three unit vectors exi , e

y
i , e

z
i ∈ R3:

ezi = ni (3)

exi =
qi − kiezi
‖qi − kiezi ‖2

(4)

eyi = ezi × exi (5)

where qi = x̃i+1−x̃i, towards the next node. And ki = qTi .e
z
i

is a one-dimensional vector, which represents the projection
of qi onto ezi . So RMR̃i

= [exi , e
y
i , e

z
i ] ∈ R3×3 tMR̃i

=
x̃i ∈ R3 which represent the rotations and shifts of the local
coordinate system on the plane, respectively.

In this way, each node Ni corresponds to a local plane
Pi. The traversability of the area near individual landing
points is often described in terms of slope, gradient, and
step height. However, when the vehicle is driving, we often
pay less attention to the road conditions in small areas
(pebbles, clods, etc.). Instead, we are more concerned about
the information of ground fluctuation and flatness. Based on
the above considerations, instead of analyzing points directly
[22], the traversability of the plane is determined by three
criteria: the slope s, the flatness f , and the sparsity λ:

τ = α1
s

scrit
+ α2

f

fcrit
+ α3

λ

λcrit
(6)

where α1, α2, and α3 are weights which sum to 1. scrit,
fcrit, and λcrit, which represent the maximum allowable
slope, flatness, and sparsity respectively, are critical values
that may cause the robot to be unable to move or roll over
here. τ ranges from 0 to 1, the higher the value of τ , the
worse the condition of the ground. When τ = 0, it means
that the terrain is suitable for vehicles, and when τ = 1, it

means that the ground is completely unsuitable for vehicles.
These three indicators are calculated as follows:

True Terrain Grid Map Traversability

Slope Flatness Sparsity

Fig. 4: Traversability analysis in the arch bridge area. First down-
sample the point cloud (upper left) to generate a 3D grid map (upper
middle). Then, the RRT tree is expanded and plane fitting and
analysis are performed on each node in the 3D grid map. And then
the slope, flatness, and sparsity are analyzed respectively (bottom)
respectively. These indicators are aggregated to compute the final
traversability (top right).

s = κsarc sin zez (7)

f = κf

∑N
j=1

(
ez · xj

)4
N

(8)

λ =


1 r > rmax

r−rmin

rmax−rmin
r ∈ [rmin, rmax] ∧ tr

(
ΣT Σ

)
< ttrace

0 otherwise
(9)

where κs and κf are constant coefficients. zez represents
the projection of the plane normal vector on the Z-axis of
the world coordinate system M. r represents the proportion
of vacant parts of the plane. rmin and rmax represent the
maximum and minimum acceptable vacancy ratio respec-
tively. When the ratio is between the maximum value and
the minimum value, whether the vacant points correspond
to different situations. When the empty defects are concen-
trated, it indicates that there may be pits and depressions on
the ground.

As shown in Fig.4, compared with the direct analysis of
the landing point, the analysis method of a local plane will
take more into account the whole ground situation of the
terrain. Since traversability is added to the RRT tree as cost,
the RRT tree will automatically stop expanding in difficult-
to-pass areas, which makes PF-RRT* more efficient than
traditional sampling-based terrain analysis.

In order to ensure a smooth transition between adjacent
nodes in the trajectory, it is necessary to ensure that the step
length li,i+1 between two nodes satisfies

li,i+1 <
ls
2

(10)



B. Gaussian Process Regression Prediction

After global trajectory generation, a trajectory set S and
a random sampling tree T are obtained by the PF-RRT*
algorithm. Since in each local plane associated with each
node, the traversability is assumed to be a constant value, and
the sampling step size and planning time limit the density
of generated trajectory points. In order to get a denser path,
GPR and linear interpolation are used to achieve this. Dense
path is defined as

SI =
{(
ξIi τ

I
i

)
: i ∈ γI

}
(11)

where,
{
ξIi : i ∈ γI

}
is obtained by linear interpolation from

waypoint set {ξi : i ∈ γ}. Here, the method of Gaussian
process regression is proposed to predict the traversability{
τ Ii : i ∈ γI

}
of interpolation points. The tree node set

D = {(ξi, τi)i=1:N} is used as the training set for Gaussian
process regression, and SI is the test set. The classical radial
basis function is adopted as the covariance function

k(ξ, ξ
′
) = σ2

f exp

[
−(ξ − ξ′

)2

2l2

]
(12)

Start

Goal

RRT Tree and Global Path

Traversability

Variance

Traversability

Variance

Fig. 5: Traversability estimation of interpolated path points using
GPR. The global path and the RRT tree generated by the PF-
RRT* algorithm on uneven terrain are shown on the left side.
The traversability and variance of global path interpolation points
estimated by GPR prediction are shown on the right side.

Compared with directly using the interpolation of S to
calculate the traversability, this method takes the information
of the nodes in the RRT tree T and the path S into account.
As shown in Fig.5, the confidence level is greater in areas
where nodes are denser, so we can increase the confidence
by adjusting the step size of the random exploration.

C. Local Planner

In local planning, the robot needs to follow the
dense global path computed by Global Planning Mod-
ule and GPR Module. The desired waypoints Sd =
{(pi, τi, σi, ) : i = 0, 1, . . . ,M} are selected from the inter-
polated global path, where pi = (xdi , y

d
i , z

d
i ) represents the

waypoints, and τi, σi is the predicted traversability and the
uncertainty by GPR.

We formulate the local planner as a NMPC problem. This
NMPC leverages a collocation-based trajectory optimization

using a simple differential-drive model dynamics to track the
given path while considering the traversability and obstacles
avoidance. The optimization problem has N nodes and spans
over 1 second. To simplify the problem, we only consider
the 2D planning problem in aerial view. The local terrain is
described as the normal vector nl of the local plane with
obstacles

{
xob
i =

(
xobi , y

ob
i

)
: i = 0, 1, . . . , Nob

}
. We adopt

the differential-drive model on local planes as the system
model:xk+1

yk+1

θk+1

 =

xkyk
θk

+

(‖nl × ex‖) cos θk 0
(‖nl × ey‖) sin θk 0

0 1

uk∆t (13)

The optimization formulation has the following form:

min
{xk,uk}

N−1∑
k=0

(
∥∥xk − xd

k

∥∥2
Q

+ λ ‖uk‖2R) (14a)

s.t. xk+1 = f(xk,uk) (14b)
x0 = xstart (14c)
xk ∈ X ,uk ∈ U (14d)∥∥xk − xob

i

∥∥ ≥ dsafe (14e)

Where xd
k is two-dimensional vector representing the

target points, obtained by Sd. ‖x‖A := 1
2

√
xTAx, and

the two positive definite matrices Q and R are respectively
coefficients measuring terminal costs and control costs. λ =
((1−tmean)(1−σmean))−2 is the coefficient of control cost,
tmean and σmean are obtained by averaging τi and σi in the
current local plane, respectively. This coefficient can help the
robot slow down when the average traversability is bad or
the estimation confidence is low.

IV. EXPERIMENTS
As shown in Fig.7, Scout2.0, a four-wheel-drive mobile

robot is used for the experiment. The lidar sensor is OS0-
128, and the computational hardware is Intel NUC with an
i5 2.4GHz CPU and 16GB memory.

Fig.6 shows the experiment on arch bridge terrain. CasADi
is used to solve the NMPC problem, and a C++ library is
used to implement GPR, which takes less time than Python
library. As is shown in Fig.8, after traversability and the
corresponding uncertainty are added to NMPC, the linear
velocity of the vehicle decrease where traversability increase.
Through this method, the vehicle travels more smoothly in
potentially dangerous areas such as undulating ground and
the edge of river. In addition to the arch bridge scenario,
we also conduct experiments in the forest, flat bridge, steep
slope scenarios, respectively, which are shown in Fig.9.

This study also conducted experiments to demonstrate the
advantage of the PF-RRT* algorithm in response speed. We
compare PF-RRT* with RRT* on normal grid map and grid
map analyzed in advance, respectively. The point cloud is
analyzed using the same method, which is mentioned in
SectionIII-A.2. The point cloud data are collected from real
scenarios, shown in Fig.1. The same starting point and goal
point are selected for each algorithm. Two indicators are used
to estimate the performance of each algorithm:



(a) (b) (c) (d)

Robot Pose
Global Path

RRT nodeRRT Tree
Traversability

0 0.5 1Local Planning Path

Fig. 6: PUTN in real scenarios. In the experiment, the starting point and the target point of the robot are located on different sides of the
arch bridge. Before the robot moves, the RRT tree continues to expand (a). During the movement (b) (c), the global planner generates
temporary goal point close to the final goal point in real time. And the map and the global path are constantly updated. When the robot
reaches the end point (d), the RRT starts to expand again until it receives the information of the next target point. The color of each node
in the RRT tree indicates the traversability of the current local plane. The RRT tree expands freely on the flat ground and avoids trees
or edges of the bridge where are considered to be dangerous. When a global path is found, the local planner guides the vehicle until
reaching the goal point.
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Fig. 7: Our PUTN vehicle platform for the experiment, equipped
with OS0 lidar and a camera(only for front view in the video). Two
batteries are installed to power the lidar and the onboard computer.
Wi-Fi is used for communication.

1) Time to find the initial solution.
2) Time to find the optimal solution. Considering that

sample-based algorithms can’t guarantee an optimal solution,
we compare the time consumption of the two algorithms to
reduce the cost to the same value when optimizing the path.

Fig.10 shows the result. RRT* on the map analyzed in
advance takes the least amount of time. Since there is no ter-
rain assessment, it represents the minimum time for planning
using sampling methods. After adding terrain assessment,
RRT* obviously increases a lot of time consuming, while
PF-RRT* does not. That’s because PF-RRT* only focuses
on the terrain where the robot may pass by and completes
the task with less terrain analysis. In different scenarios, the
accuracy and convergence speed of the algorithm need to be
considered comprehensively. PF-RRT* will be faster if the

Fig. 8: Velocity curve and traversability curve. From the starting
point to the target point, the traversability and the corresponding
uncertainty of the current vehicle position will change in real time.
The linear velocity of the vehicle is recorded with and without
traversability in NMPC, respectively.

grid map resolution is set to a larger value.

V. CONCLUSION

This study proposes the PUTN algorithm, which is de-
signed for a ground robot to safely and effectively navi-
gate in environments with uneven terrain. A new terrain
assessment method is proposed, which integrates different
indicators including slope, flatness, and sparsity to evaluate
the traversability of terrain. Combined with the informed-
RRT* algorithm and this terrain assessment method, a new
path planning algorithm, PF-RRT*, is proposed to obtain
a sparse global path. By using GPR to regress the RRT
tree generated by PF-RRT*, the traversability of the dense



Fig. 9: Experiments in flat bridge, steep slope, and forest. The
real scenarios corresponding to these experiments can be found
in Fig.1. The video of real-world experiments is available at
https://www.youtube.com/watch?v=3ZK-Ut29hLI.

Fig. 10: The time comparison among RRT*, RRT*+Analyse, and
PF-RRT*. The upper shows the initial time and the lower shows
the optimal time. Statistics in each group are obtained from 100
trials.

path is obtained. PUTN combines PF-RRT*, GPR, NMPC
to complete the fast, stable and safe motion planning of
the robot. Experiments are conducted in several typical real-
world scenarios. The results verify the advantages of the PF-
RRT* algorithm and the practicability of PUTN.
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