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Abstract— Robots using classical control have revolutionised
assembly lines where the environment and manipulated objects
are restricted and predictable. However, they have proven less
effective when the manipulated objects are deformable due to
their complex and unpredictable behaviour. The use of tactile
sensors and continuous monitoring of tactile feedback is there-
fore particularly important for pick-and-place tasks using these
materials. This is in part due to the need to use multiple points
of contact for the manipulation of deformable objects which
can result in slippage with inadequate coordination between
manipulators. In this paper, continuous monitoring of tactile
feedback, using a liquid metal soft force sensor, for grasping
deformable objects is presented. The trained data-driven model
distinguishes between successful grasps, slippage and failure
during a manipulation task for multiple deformable objects.
Slippage could be anticipated before failure occurred using data
acquired over a 30 ms period with a greater than 95% accuracy
using a random forest classifier. The results were achieved using
a single sensor that can be mounted on the fingertips of existing
grippers and contributes to the development of an automated
pick-and-place process for deformable objects.

I. INTRODUCTION

Robots are yet to replace their human counterparts in envi-
ronments that contain unpredictable elements. For example,
partially predictable environments, such as an assembly line
for manufacturing deformable objects, remain a challenge.
This is due to the complex and unpredictable behaviour that
deformable objects often exhibit. A key aspect of successful
manipulation tasks in nature is the continuous monitoring
of tactile feedback, including slip anticipation. The impor-
tance of this was clearly shown by Johansson et al. [1]
who anesthetised human fingertips, significantly impairing
their performance on a pick-and-place task. Anticipation of
slippage is also important as it can indicate a change in the
contact conditions or loading, knowledge of which can be
used to adapt the contact normal force. In nature, the normal
force during grasping is just above the minimum to prevent
slippage, this likely induces small slips that can be used
for monitoring these contact conditions [2]. This is needed
for tasks that require precision grasping, rather than power
grasping, such as manipulating deformable objects. It also
avoids sensor saturation which can result in a reduction in
sensitivity and dynamic range of the sensors.

There is a rich history of tactile sensors developed to detect
slippage. Sensor technologies include optical [3], [4], [5],
[6], [7], neuromorphic [8], PolyVinyliDene Fluoride (PVDF)
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[9], [10], magnetic [11], acoustic [12], accelerometers [13],
[14], [15], friction-based [16], capacitive [17], [18], and
piezoresistive [19]. The onset of slippage occurs when the
shear force is greater than the static friction force. Both
the coefficients of static and dynamic friction between two
objects in contact are material and system dependant, varying
with properties including normal loading and sliding velocity
[20]. Slippage is characterised by the frictional force between
the two surfaces increasing and decreasing as the objects
move relative to each other, this is referred to as the stick-
slip phenomenon [21]. However, many of these works focus
exclusively on slip detection rather than continuous moni-
toring of multiple stages of the manipulation task, although
some of the sensors would be suitable for both.

The methods for classifying slippage vary from unsophis-
ticated method, such as using a threshold for spikes in sensor
readings, to nonlinear data-driven methods. For instance,
James et al. [7] compared thresholding, linear and nonlinear
support vector classifiers (SVC), and logistic regression using
the optical TacTip sensor. Thresholding could be used for
classifications [7] but had a significantly lower F1-score (the
harmonic mean of the precision and recall) than the more
sophisticated data-driven methods. Massalim et al. [13] used
deep learning to analyse data from accelerometers embedded
in the fingertips of a gripper to classify slippage and texture
of a rigid object. Grover et al. [22] mapped barometric tactile
sensor data to slippage using a Temporal Convolutional
Neural Network (TCN) to extract temporal features from the
signals. Kim et al. [15]) transformed the data from a sensor
made of piezoelectric material that measures vibration into
the frequency domain before using a convolutional neural
networks. Veiga et al. [23] used random forests to classify
slip with the fluid filled BioTac. An LSTM model was used
as the order of the inputs was deemed important. As temporal
features are important, most non-LSTM methods provide
a window of consecutive samples from the raw data or a
spectrogram.

In this paper, we aim to show the continuous monitoring
and slip anticipation capabilities of the liquid metal soft force
sensor developed in [24]. The soft force sensor can detect
the contact normal force as well as shear force for slip
anticipation. A data-driven approach was used to classify
each stage of a grasping task for deformable objects for
continous monitoring, including slip anticipation. We will
first introduce the basic working principle of the soft force
sensor in section II, then discuss the experimental setup
for acquiring a large labelled training dataset in section III,
and finally explore the resulting force profiles for grasping



Fig. 1. Liquid metal soft force sensor [24]. (a) The EcoFlex® 00-30
silicone soft force sensor consists of channels partially filled with liquid
metal. The capacitances of the two sensing electrodes (green and red)
are measured while the excitation electrode (blue) is electrically excited.
(b) Cross-section view of the sensor showing a single unit (two sensing
electrode channels and one excitation electrode channel) out of the total
of four. The relative position of the sensing electrode compared to the
excitation electrode changes when a force is applied to the sensor. When
a normal force is applied, the distance between the sensing and excitation
electrodes decreases. When a shear force is applied, the sensing electrodes
shift horizontally.

deformable objects and train various data-driven methods in
section IV.

II. HARDWARE

The tactile sensor used in this paper was a liquid metal
soft force sensor (Fig. 1) developed by Aksoy et al. [24]. The
force sensor is based on capacitive sensing using a unique
design. It was fabricated out of EcoFlex® 00-30 silicone
with embedded microfluidic channels partially filled with
liquid metal (EGaIn). The sensor was electrically shielded
on both sides to block any electromagnetic interferences.
The grounded shielding was a mixture of carbon parti-
cles (CE300, Ketjenblack) and EcoFlex® 00-30. The sensor
was designed to sense very small (milli-Newton) normal
(Fnormal) and shear (Fshear) forces simultaneously, in the
directions shown in Fig. 1(a). It can withstand in excess of
20 N normal force and still give reliable readings.

The relative position of each sensing electrode (1 & 2)
compared to the excitation electrode (Fig. 1 green, red &
blue, respectively) changes when a force is applied to the
sensor. This changes the capacitance between the electrodes,
which are read out using a 2-channel capacitance meter.
The magnitude of change in capacitance depends on the
magnitude and direction of the applied force. The changes in
capacitance are then converted to force values using a second
order surface fit during calibration. The second order fit for
the normal and shear forces, in Newtons, using this sensor
are of the form

F = a∆C1 + b∆C2 + c∆C2
1 + d∆C1∆C2 + d∆C2

2 (1)

where ∆C1 and ∆C2 are the changes in capacitance
readings in pF from sensing electrode 1 and sensing electrode
2, respectively. A second order fit was found to sufficiently
capture the physics involved. A higher order fit did not result
in a significantly lower error. The coefficients a, b, c, d,

Fig. 2. (a) The soft force sensor was (b) modified to include EcoFlex®

00-30 silicone flaps were adhered to the sensor (SilPoxy, Smooth-On) so
that it could be (c) mounted on a finger of the gripper. The flaps also
protects the sensor from damage during shear. (d) The modified sensor was
mounted on a ATI Nano 17 6-axis load cell on a 1 degree of freedom
gripper. The gripper was mounted on a Universal Robotics (UR5) arm. A
Texas Instruments FDC1004EVM capacitance data acquisition board was
used to read capacitance readings from sensing electrodes 1 and 2 while
exciting the excitation electrode.

and e were fit during calibration and were -1.406, -1.227,
0.2465, -1.294, and 0.281 for Fnormal and -0.824, 0.721,
0.146, -0.076, and -0.148 for Fshear, respectively. Notably,
these two forces are not decoupled as both are a function
of the two capacitance readings, Fnormal(∆C1,∆C2) and
Fshear(∆C1,∆C2).

Shear force sensitivity is highest when the electrodes can
move easily relative to each other. In the original sensor
design, the sides of the sensing region were exposed (Fig.
2(a)) which could result in damage to the sensor due to an
excessive shear force or the edges of the sensor catching in
folds of the manipulated textiles. This was also a potentially
significant problem due to the high volume of data that is
required for training a data-driven model. A solution was to
adhere (SilPoxy, Smooth-On) EcoFlex® 00-30 flaps to the
sensing region on four sides (Fig. 2(b) & (c)) and adhere
the underside of the sensor to the mechanical gripper using
Kapton® Tape. However, while the flaps were necessary
for data acquisition, they potentially constrain the relative
motion between functional layers which likely reduces the
sensitivity of the sensor. An EcoFlex® 00-30 skin was also
adhered (SilPoxy, Smooth-On) to the top layer of the sensor
that would be in contact with the deformable objects to
protect the electrically insulated shielding from wear that
could result in more noise in the capacitance readings.

The flaps allowed the sensor to be mounted on an ATI
Nano17 6-axis Transducer. The Nano17 was aligned so that
the force along the z-axis provided the normal force while



the force along the x-axis provided the shear force. The load
cell was used to both compare with the soft force sensor data
and to aid in the manual labelling of the training dataset.
However, the model that will be trained uses only the soft
force sensor data meaning that only the soft force sensor,
which has a low profile and can be integrated easily on a
mechanical gripper, is needed. The Nano17 was mounted on
a bespoke 3D printed gripper (Fig. 2(d)) that used an Arduino
Uno controlled KST Coreless X20-8.4-50 servo motor. A
Texas Intruments FDC1004EVM 4 Channel Capacitive to
Digital Converter Evaluation Module was used to excite the
excitation electrode and measure the capacitance of both
sensing electrodes. The gripper was mounted on a Universal
Robots UR5 arm.

III. DATA ACQUISITION

Continuous monitoring of tactile feedback during grasping
of deformable objects is necessary to carry out pick-and-
place tasks. In particular, the anticipation of slippage is
important so that reactive actions can be taken by other
subsystems. A data-driven model will be trained for clas-
sifying the tactile sensor data into four categories including
(i) gripper open, (ii) successful grasp of object, (iii) object
slippage, and (iv) grasp failure causing the object to drop.

The data acquisition process was carefully planned to both
produce data that would best approximate the data that would
be seen during a pick-and-place task while also allowing for
a large number of automated repetitions. Classes (ii) and
(iii) need particular attention. Class (ii), successful grasp of
an object, will likely be distinguishable from the gripper
being closed, but no object grasped, by the increase in the
shear force in the former due to the gravitational force
on the object’s mass. The deformable objects used during
acquisition of the training data will therefore need to be
free hanging. Slippage, class (iii), will likely occur for many
different grasping forces, velocities and angles. For instance,
the object will slip at various velocities depending on the
velocity of the end effector if the object is under tension.
The angle of the slip direction relative to the direction that
shear force is most sensitive in the sensor, shown in Fig. 1,
will also be an important factor. In addition, slippage will
result from an increase in shear force. However, the shear
force may increase when the object is under tension but there
is no slippage occurring. It is therefore necessary to include
data for the object under tension in the successful grasping
class (ii), as well as during the slippage class (iii), so that
the difference can be learned.

The process, illustrated in Fig. 3, was developed to meet
these requirements. First, the open gripper approaches the
deformable object hanging below it. The gripper closes and
the object is lifted. The object was attached to the same
surface as the UR5 arm with sufficient slack in the string
that the object is initially free hanging. As the object is lifted,
the string reaches it’s maximum length at which the object is
under tension. The tension is not sufficient to cause slippage
and will therefore be treated as an acceptable feature under
the successful grasp class (ii). The tension is then reduced

by moving the gripper down again before the gripper is
once again lifted upwards causing tension to increase until
slippage occurs. At this point, the deformable object falls
back down to it’s starting position and the gripper returns
to it’s initial position, ready to start the next cycle of the
process.

In order for the data-driven model to be generalisable,
different contact normal forces, gripper velocities and gripper
poses were used for the grasp-slip cycle. A total of 75
combinations were chosen which included 3 grasp forces
(1.5, 3 and 4.5 N), 5 velocities (20, 30, 40, 50, and 60
mm/s) and 5 angles (0°, ±10°and ±20°). The grasping normal
forces and velocities were chosen to avoid slippage without
reducing the sensitivity of the sensor in the former and to
match the expected collaborative use case of a person and
robot simultaneously manipulating the fabric at a manageable
speed for the latter. A total of 500,000 data points were
collected by the TI DAQ board at a frequency of 100 Hz.
The data is labelled manually by visual inspection of both
the force and shear force profiles in Fig. 4(a) & (c), discussed
below. This is aided using the change in force between
adjacent time steps in Fig. 4(b) & (d).

IV. RESULTS

This section first looks at the profile of the forces from the
soft force sensor and then uses this data to train several data-
driven models. The former is used for manually labelling the
data by visual inspection and the latter aids the selection of
the algorithm that is most suitable for this dataset. Inspecting
the force profiles also helps illustrate the features of the data
that the model may use to distinguish each of the classes.

The normal and shear force readings over a grasp-slip
cycle for the soft force sensor are shown in Fig. 4(a) while
Fig. 4(c) shows the same forces measured by the load cell.
The data from both sensors are comparable in magnitude
and both show a negative correlation between the forces.
For instance, a rising magnitude in the shear force results in
a falling magnitude of the normal force.

As the slip phase progresses in Figs. 4(a) & (c), sharp
changes in the magnitude of the forces is visible. This is more
easily observed in Figs. 4(b) & (d) which show the change
in the forces between successive datapoints. As the slippage
progresses (circled in green), the magnitude of the change in
force between datapoints increases in the data for both the
soft force sensor and the load cell. This is called the stick-
slip phenomenon [21] and is characterised by the frictional
force between the two surfaces increasing and decreasing
repetitively. This change in magnitude is most apparent in
the shear force data for both sensors, as would be expected.
The sharp changes in magnitude are used for the manual
labelling process. The onset of classes (i), (ii), and (iv) are
clear from the large spikes in Fig. 4(b) & (d). Slippage is
more challenging to label but can also be identified by larger
magnitude changes in force between successive samples.

The material of the deformable objects, as well as the
parameters for the contact normal force, gripper velocity
and pose, all influence the profile of the normal and shear



Fig. 3. The repeatable data acquisition process follows six steps. The gripper approaches the object suspended under it. The gripper is closed and the
object is lifted upwards and then lowers to cause an increase and then reduction in tension but without slippage. The increase in tension is possible because
the object is attached to the same surface as the robot arm. The object is lifted once again until slippage occurs between the two surfaces. After the object
has slipped out of the grasp, the gripper remains closed as both the gripper and the object return to the initial positions.

force data (Fig. 5). For instance, the profiles of the forces for
the food packaging shows a much sharper rise in the shear
force (Fig. 5(b)) compared to the profiles for the fabric (Fig.
5(a)). This is likely due to the fabric stretching as tension
is increased while the food packaging, which is flexible but
not stretchable, does not.

Each grasp-slip cycle in the dataset were labelled in a
similar manner as is seen in Fig. 4. The data was then split
into training, validation and testing datasets with a 80%, 10%
and 10% split respectively. Each of these datasets was then
split into windows of 3 samples where a sample is a pair of
forces (Fnormal, Fshear). This corresponds to the algorithm
seeing 30 ms of data due to the 100 Hz sampling frequency.
This was done so that the algorithms could use the relative
change in each of the forces between time steps as well as
the relative magnitude of the two forces at any given time
step. Window lengths up to 15 samples were tried but did
not result in greater accuracy while smaller window sizes
had a lower F1-score.

The windows of 3 samples were then inputs to each of the
classification algorithms. Logistic regression (LR), support
vector classifier (SVC), random forest classifier (RF) [25]
were trained using Python’s sklearn library and a long short-
term memory (LSTM) recurrent neural network (RNN) was
trained using Python’s keras library. LSTM is the only one
of the four that has a temporal component, that is, the order
of the samples is important. The other three algorithms take
six inputs to the network and use them to estimate the output
which, in this case, is the class prediction using one-hot
encoding.

LR is a linear method that can be used for classification
as it can output a value that corresponds to the probability

that an instance belonging to a certain class. It does this
by computing a weighted sum of the input features plus
a bias term where the weights are learnt during training.
A nonlinear SVC was used with a third-degree polynomial
kernel function as it performed better than a linear SVC
without overfitting the data. The RF is another nonlinear
model where the flexibility can be tuned by choosing hyper-
parameters such as the maximum depth of each tree, where a
greater depth corresponds to a greater flexibility. The LMTS
model is a RNN variant where the state of the network
is influences both by the most recent datapoint as well as
previous datapoints. The recurrent neurons in RNNs feed the
output of a previous datapoint back into the network which
allows the network to have some memory of past datapoints,
although samples that are further back in time have a smaller
influence on the current state of the network. This model is
therefore both nonlinear and provides a time factor where
the order of inputs is important.

Each of these algorithms were trained 5 times and predic-
tions were made using the validation dataset. Fig. 6 shows
the mean of the F1-score for each of the algorithms as well
as the mean precision, recall and F1-scores in the table. The
F1-score is the harmonic mean of the precision and recall

F1–score = 2
(Recall ∗ Precision)

(Recall + Precision)
(2)

where Precision = TP/(TP + FP ) and Recall =
TP/(TP + FN) where TP is the true positives, FP is
the false positives and FN is the false negatives. That is,
the precision is the ratio of true positives of a class to all
predicted positives while recall is the ratio of true positives
of a class to all instances of that class. The F1-score uses the



Fig. 4. The forces read from both the soft force sensor and a load cell
were used to aid in the manual labelling of the data by visual inspection.
(a) Fnormal and Fshear read from the soft force sensor, (b) ∆Fnormal

and ∆Fshear between successive time steps for the soft force sensor, (c)
Fnormal and Fshear read from the load cell, and (d) ∆Fnormal and
∆Fshear between successive time steps for the load cell. Spikes in (b)
and (d) show the onset of the success, failure and the open gripper classes.
Slippage was also visible by frequent larger magnitude spikes (circled in
green). See each stage of the grasp-slip cycle (colour coded) in Fig. 3.

Fig. 5. Each material produces different normal and shear force profiles.
(a) shows the force profiles for the fabric while (b) shows the same for the
plastic packaging.

harmonic mean as it is sensitive to the lowest values. Finally,
the F1-score for a trained model with multiple classes is then
the mean of the F1-scores for each of the classes.

LR had an average F1-score of 0.9 showing that a linear
model was sufficient to make predictions with this dataset
but that the performance could be increased by using a
more flexible model (Fig. 6). This suggests that the decision
boundary is nonlinear but that the degree of nonlinearity is
low. All three nonlinear methods performed similarly well,
however the RF classifier had the highest F1-score at 0.955.
Therefore, the temporal component of the LSTM did not
result in a better performance.

The best RF classifier was then selected as the final model.
It was used to make predictions for each of the four classes
using the test data (Fig. 7). The F1-score was only 0.6%
lower for the test data than for the mean for the validation

Fig. 6. Logistic regression, support vector classifier, long short-term
memory recurrent Neural Network, and a Random Forest Classifier (RF)
were compared using the validation data. A window of 3 data points or 30
ms was sufficient to correctly classify all classes including slippage. The
mean precision, recall and F1-scores are shown here. The Random Forest
Classifier had the highest mean F1-score although all algorithms had a score
greater than 0.9 where 1.0 is the maximum.

Fig. 7. The test data confusion matrix for the random forest classifier
shows slippage was classified correctly 97.25% of the time. The F1-score
on the test dataset was only 0.6% lower than on the validation dataset.
The confusion matrix shows an above 95% class prediction accuracy for all
classes in the white diagonal.

data. The confusion matrix shows that each of the classes
were classified correctly at least 95.36% of the time. Slippage
was classified correctly 97.25% of the time.

Confusion most often occurred with the successful grasp
class (ii) which was most often incorrectly predicted as the
gripper open class (i). This likely occurs at lower contact
normal forces when the difference between the gripper being
open and gripper closed on the object is lowest. The 30 ms
window of data was sufficient to anticipate slippage which
had a total duration greater than 1000 ms depending on the
velocity of the gripper. This gives sufficient time to detect
slippage, verify the class by waiting until several successive
predictions corroborate the first, and then performing a
reactive action to stop slippage from continuing.

V. CONCLUSION

The work in this paper shows the continuous monitoring
capabilities of a previously developed novel soft force sensor
for continuous monitoring of tactile feedback, including
slip anticipation. The results highlight the usefulness of
continuously monitoring tactile feedback from this soft force
sensor during the manipulation of deformable objects, such
as textiles, during pick-and-place tasks. This is a particularly



challenging problem due to the complex and unpredictable
behaviour of deformable objects. It was shown that each
stage of the grasping procedure was successfully predicted
using the trained data-driven model with a greater than 95%
accuracy. Slippage was successfully predicted with 97.25%
accuracy using just 30 ms of data, allowing rapid anticipation
of slippage. The trained model is also generalisable in
that it can successfully make predictions when the contact
normal forces, gripper poses and slip velocities are varied.
Various data-driven methods were compared to find the
appropriate method for successfully classifying each stage
of the grasping task. Nonlinear methods performed better
than less flexible models with the random forest classifier
having the highest F1-score. The sensor used in this paper
was sufficiently sensitive to detect small fluctuations in the
force profiles due to slippage when the contact normal force
was low. Each stage of the manipulation task was monitored
using a single soft force sensor that can be mounted on an
existing gripper. Our method of continuous force monitoring
and slip anticipation is a key step towards the use of robots
in assembly lines where they are tasked with grasping and
manipulation soft, fragile and deformable materials.
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