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Abstract— Blimps are well suited to perform long-duration
aerial tasks as they are energy efficient, relatively silent and
safe. To address the blimp navigation and control task, in
previous work we developed a hardware and software-in-the-
loop framework and a PID-based controller for large blimps in
the presence of wind disturbance. However, blimps have a de-
formable structure and their dynamics are inherently non-linear
and time-delayed, making PID controllers difficult to tune. Thus,
often resulting in large tracking errors. Moreover, the buoyancy
of a blimp is constantly changing due to variations in ambient
temperature and pressure. To address these issues, in this paper
we present a learning-based framework based on deep residual
reinforcement learning (DRRL), for the blimp control task.
Within this framework, we first employ a PID controller to pro-
vide baseline performance. Subsequently, the DRRL agent learns
to modify the PID decisions by interaction with the environment.
We demonstrate in simulation that DRRL agent consistently
improves the PID performance. Through rigorous simulation
experiments, we show that the agent is robust to changes in wind
speed and buoyancy. In real-world experiments, we demonstrate
that the agent, trained only in simulation, is sufficiently robust to
control an actual blimp in windy conditions. We openly provide
the source code of our approach at https://github.com/
robot-perception-group/AutonomousBlimpDRL.

I. INTRODUCTION

Autonomous unmanned aerial vehicles (UAVs) are becom-
ing increasingly popular for various tasks, such as search
and rescue, payload (medicine, food) delivery in difficult-to-
reach areas, aerial cinematography and wildlife monitoring
[1]. Current solutions rely on quadcopters and fixed-wings.
Although quadcopters can hover in a fixed position, they are
not able to accomplish long-term missions due to their short
battery life. The situation is opposite for the fixed-wings, which
requires moving constantly to stay airborne. Therefore, for
tasks involving long flight times, carrying more payload and
hovering over a small region, the use of autonomous blimps
is an attractive solution. However, autonomous blimp control
remains a challenging problem, which we address in this paper
using a learning based approach.

Classic blimp controller design usually relies on PID
controllers [2], [3] and nonlinear control [4], [5]. PID struggles
with plant nonlinearity, and nonlinear control methods require
a dynamic model of the system which is often difficult to
acquire (i.e. friction, wind, aerodynamic effect, etc.). Deep
reinforcement learning (DRL), on the other hand, is a new
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Fig. 1: Our autonomous blimp during a flight. Unlike common designs, our
blimp has thrust vectoring which increases its agility. Inset: its gazebo model.

control framework that has achieved success in a variety of
applications that present similar challenges [6], [7].

For blimp control, the knowledge of some physical pa-
rameters, such as friction, aerodynamic effect, etc., are not
negligible but remain difficult to estimate. A model-free DRL
approach is particularly useful in such a case as it allows
an agent to learn a control policy without any pre-specified
physics and without the need to estimate those parameters
explicitly. However, training such a model-free DRL agent re-
quires significant amount of data and computational resources.
The trained agent could also often learn unexpected and unsafe
maneuvers as it only exploits the reward function. For example,
an autonomous blimp agent can learn to fly backwards and
still receive a high reward, while in reality such behavior
is undesired as it can damage the hardware. Our insight to
address these two issues is to leverage a classical model-free
approach, e.g., PID, to constraint the policy search space.
We do this by developing a novel framework based on deep
residual RL (DRRL) [8] that combines the advantages of both
classical control and reinforcement learning. The use of the
classical method in this framework not only provides stability
in training but also implicitly outlines a safe behavior for
the agent, constraining the policy search space and avoiding
undesired behaviors.

The training process can also be unstable due to the partial
observable nature of the environment, e.g. wind and buoyancy,
and this effect is exacerbated by the time-delayed blimp
dynamics. To address this issue, we integrate an LSTM (long
short term memory) [9] layer in our policy model to reduce
the effect of partial observability.

Nevertheless, our DRRL framework still requires substantial
training experience to derive a working RL policy. We address
this problem by training the agent in a software-in-the-loop
(SITL) simulation setup [10] and parallelizing it to accelerate
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this process.
Furthermore, to deploy the agent on the real blimp, it is

necessary to i) address the issue of sim-to-real gap, and ii)
maintain smoothness in the actuator commands. Thus, in
simulation, we apply domain randomization during training to
improve the robustness of the agent. To protect the actuator and
reduce the effects of chattering, we only include the increment
of the actuator command instead of the actuator command
itself (e.g., rotor acceleration instead of rotor speed) in the
action space of the agent.

In summary, the novel contribution of this paper is a model-
free DRRL-based approach for autonomously controlling a
large blimp in forward velocity, yaw and altitude, simultane-
ously, in outdoor moderate wind conditions. Through rigorous
simulations we show that our method outperforms state-of-the-
art approaches based on a PID and is robust to different flight
contexts, e.g., changes in wind speed and buoyancy. Finally,
through real-world experiments, we demonstrate that using
our approach we obtain a robust control policy that seamlessly
generalizes to the real blimp.

II. RELATED WORK

Control methods for blimps and airships, which have
similar control schemes, have been well studied [11]. Classic
approaches usually rely on PID controllers [2], [3], [12],
[13]. While being simple and robust, they often suffer from
plant nonlinearity. To overcome this, advanced approaches
have been developed using nonlinear control theory, such
as inverse optimal tracking control [14], dynamic inversion
control [4], backstepping control [15], robust control [16], and
model predictive control [17]. However, optimal control usually
requires an accurate dynamic model which can be difficult to
acquire, while robust control handles parameter uncertainty by
trading-off the performance. Another key drawback is the lack
of any real-world experiments and validation in most of these
works. The buoyancy of a real blimp can change significantly
due to the fluctuations in temperature over short time periods.
The weight distribution could also vary and thus reduce the
altitude control performance. Unfortunately, these effects have
not been addressed in any of the prior works so far.

On the other hand, recently there has been a surge of
interest in applying RL to robotics [18]. The earliest works
include Gaussian processes (GPs) for system identification
of a blimp [19] and its combination with value iteration and
Q-learning approaches [20], [21] for blimp altitude control
only. Despite sample efficiency, GPs are hard to scale up
with problem dimensions and demand higher computational
resources. As a result, they are able to achieve success only on
low dimensional tasks, such as 1-D altitude control, whereas
in our approach we show that the agent can feasibly and
successfully learn a 3-dimensional task (forward velocity, yaw
and altitude control). DRL, on the other hand, leverages deep
neural networks (NNs) for policy approximation. Thus, its
policy class can be used for higher dimensional tasks. For
example, authors in [22] train two DQN agents for rudder
and elevator control of a blimp, respectively, and demonstrate
better performance than a PID controller in simulation. The

main challenge with DRL, however, is the lack of sample
efficiency. In order to scale up the DRL formulation with the
problem dimension, a highly increased amount of environment
interactions is needed by the agent. Other challenges include,
but are not limited to, adapting a trained policy to real-world
scenarios [23] and action smoothness [24]. Furthermore, issues
such as partial observability, disturbances and noise could also
lead to unexpected behaviors. As described in the introduction,
in our approach we address all these issues through our novel
DRRL-based framework, training parallelization, domain
randomization and action space design.

III. METHODOLOGY

In this section, we first describe the blimp and the MDP
problem formulation. Then we introduce the main goal of
the work, the blimp control task (Sec.III-C). The objective in
the blimp control task is to navigate the blimp to any given
waypoint within the space L3m3, where L is the dimension of
the bounding box. This is followed by our novel DRRL-based
framework that describes our approach for the blimp control
task. Subsequently, we describe yaw control task (Sec.III-E),
where the aim is to control the blimp to a desired yaw angle
with the tail rotor. The aim of this simplified task is to perform
ablation study.

A. Preliminaries

We first briefly describe our blimp (complete details are in
our previous work [10]), which has 8 actuators. The two main
motors (thrusters), m1,2, are attached to a servo, n0, which
allows thrust vectoring. At the tail of the blimp, four fins,
f0:3, two positioned vertically and two horizontally, control
yaw and pitch angle, respectively. There is a tail motor, m0,
attached to the lower vertical fin, generating horizontal thrust
allowing further yaw controllability. Therefore, the state vector
of the actuators can be denoted as

sactt = (m(0:2), n0, f(0:3))t ∈ R8, (1)

B. Markov Decision Process

We consider the RL problem as an infinite horizon discrete
time Markov Decision Process, M , defined by a tuple
(S,A, P,R, γ) [25]. At any time step t ∈ R+ and state
st ∈ RS , an agent draws an action at from a continuous
action space a ∈ RA given the policy distribution at ∼
πθ(·|st) parameterized by θ. The environment then samples
the next state from an unknown transition distribution, i.e.
st+1 ∼ P (·|st, at). A reward is received based on some
reward function rt = R(st, at). Given the discount factor
γ ∈ [0, 1), the goal of the agent is to obtain the optimal
policy parameter θ that maximizes the expected value of the
cumulative discounted reward (2),

π∗ = argmax
πθ

E
π

[
∞∑
t

γtrt|at ∼ π(·|st), st+1 ∼ P (·|st, at)

]
(2)



C. Blimp Control Task

We formulate the problem as a path following task as
seen in previous works [22], [26], [27]. In this setting, an
imaginary path reference is generated based on waypoints for
the controller to follow. Casting the path following task as a
DRL problem, in this section we derive the observation space
and action space representation.

Since the blimp does not have a lateral movement control,
we only consider longitudinal, altitude, and velocity control.
This allows us to easily decompose the problem into planar,
altitude, and velocity control. The objective of the planar
control is to control the blimp to arrive at any waypoint in
the xy-plane, the altitude control is to reach the desired z, and
the velocity control is to track the desired velocity.

Fig. 2: The origin indicate the position of GPS sensor in NED coordinate.

Given the blimp position at O = (0, 0, 0) and velocity
vo ∈ R, a target waypoint at g = (lr, ψr, zr) in body frame
cylindrical coordinates with desired velocity vg ∈ R (Fig.~2),
the control objective of the planar control is the minimization
of the relevant distance and yaw angle, i.e. mina∈A(|lr|, |ψr|).
The objective of the altitude and velocity control is to minimize
the relevant altitude and the relevant velocity, respectively, i.e.,
mina∈A(|zr|), mina∈A(|vr|), where vr = vg − vo.

We denote the velocity vector of the blimp as V =
(u, v, w) ∈ R3, and attitude (roll, pitch, yaw) as Φ =
(φ, θ, ψ) ∈ R3. Assuming near zero lateral movement in the
blimp (i.e. v, φ ' 0), the velocity and pitch angle can be
encoded by velocity magnitude (vo = ||(u, v, w)||2) and the
altitude velocity (w = vo sin θ), alone. Therefore, the base
state vector is

sblimpt = (lr, ψr, zr, vr, vo, w)t. (3)

We augmented the base state vector with additional compo-
nents, based on the insights as explained below. It was observed
that the training progress becomes more stable if yaw velocity,
ωψ augmented to the base state vector. The airspeed sensor
readings, vair ∈ R, were augmented to enhance robustness
against the wind. To prevent overshoot when reaching a
waypoint in the planar control task, we augmented ψ′r, the
relative yaw angle of the blimp with respect to the subsequent
waypoint. Consequently, the extended state representation is

sblimp
′

t = (sblimp, ωψ, vair, ψ
′
r)t. (4)

D. Novel DRRL-based framework

Our DRRL framework consists of two controllers – a
stability provider and a performance optimizer, respectively.

Blimp

Fig. 3: DRRL control diagram. Note that input and output of the policy
network and PID controllers are scaled and clipped to the range (−1, 1)

The classical approach offers stability guarantees and basic
tracking performance which is the role usually played by
a PID controller or a robust controller to enlarge region of
attraction. Performance optimizer within this framework is a
DRL agent that can learn to adjust the control decisions of
the stability provider in order to maximize its own reward
function. The control command from these two controllers are
then mixed by a mixer fmix(·), which we will described later.
The overall structure is displayed in Fig. 3. In this paper, we
choose PID controller as our stability provider for its simplicity
and robustness. It integrates well with the DRL agent as it is
also a model-free method. No dynamic model is required with
this combination. Though its performance degrades quickly
outside the tuned speed range, the system nevertheless remains
stable and can still bring the blimp closer to the waypoint.

1) PID Controller: The PID command, apidt ∈ R4 is
determined as follows (5),

apidt = [athrust, aservo, aψ, az]
pid
t

= [fpidthrust(vr,t), 0, f
pid
ψ (ψr,t), f

pid
z (zr,t)]

(5)

where fpid(x) = kpx + ki
∫
x + kdẋ. Since it is difficult

to design a PID-based servo control, we leave this completely
for the DRL agent to control.

2) Observation and Action Space for the DRL agent: The
full actuator state, sactt , is described in (1). Since we forbid
differential thrust, symmetric actuators are always in the same
state. Thus, we feedback only one of them (i.e. m1 = m2, f0 =
f1, f2 = f3). The tail motor is controlled and observed together
with bottom fin (i.e. m0 = f2). The reduced state of actuators
is therefore defined as sact

′

t = (m1, n0, f(0,2))t ∈ R4. The
full state st for the DRL formulation, as used in (2), is now
obtained below as the concatenation of sblimp

′

t , sact
′

t , and apidt

st = (sblimp
′

t , sact
′

t , apidt ) (6)

Note that all states are scaled to the range [−1, 1] and zero-
initialized. The RL command, aRLt ∈ R4, is chosen based on
the state vectors. Then the joint action command, at ∈ R4, is
simply the mixture of RL and PID actions.

aRLt ∼ π(·|st)
at = fmix(apidt , aRLt )

(7)



We introduce 3 types of mixer: absolute, relative, and
hybrid mixer (8-10). Absolute mixer offers RL agent more
authority and is expected to have the highest performance
after convergence at the cost of performance drop during
exploration. This property is reversed for the relative mixer.
Since the absolute mixer is too aggressive and requires rigorous
tuning of the beta parameter, whereas the relative mixer is
too conservative to change the system’s inherent stability
properties, we introduce a hybrid mix as an intermediate
solution.

fmixabs (x, y) = (1− β)x+ βy (8)

fmixrel (x, y) = x(1 + βy) (9)

fmixhyb (x, y) = (1− α)fmixabs (x, y) + αfmixrel (x, y), (10)

where (α, β) ∈ [0.0, 1.0]. To reduce the effect of chattering
in the actuator state, we avoid mapping joint command, at,
to the actuator state directly. Instead, it is first mapped to
the increment of actuator state δsact

′

t ∈ R4 by element-wise
multiplication with a constant vector, c ∈ R4, and then update
the actuator state. The process is described below in (11).
This way, we prohibit sudden significant changes in actuator
states. Since our electronic speed control filters small changes,
the damage from chattering effect is almost diminished. The
disadvantage of this approach is that the control agility is
reduced due to an additional pole introduced at the origin.

δsact
′

t = c� at
sact

′

t+1 ← sact
′

t + δsact
′

t

(11)

We summerized the overall control architecture in Fig. 3.
3) Reward Function: The navigation requires moving the

robot in space by specifying a target position or following
a sequence of waypoints. The reward function is defined by
(12)

rt = w0r
success
t + w1r

track
t + w2r

act
t + w3r

bonus
t , (12)

where w0:3 ∈ R. The agent receives a success reward, rsuccesst ,
if the task is completed, i.e., a waypoint is successfully reached
within a certain threshold ε. Tracking reward, rtrackt , indicates
the tracking performance as defined in (13). Action reward,
ractt , is defined to regularize actuator commands. Bonus
reward, rbonust , specifies additional desired control property
of preventing overshoot.

rsuccesst =

{
1 if d(sblimp, starget) ≤ ε
0 otherwise

rtrackt = −i0|zr|−i1|lr|−i2|ψr|−i3|vr|,
ractt = −j0|m0|−j1|m1|−j1|m2|,
rbonust = −k0|ψ′r|/(1 + lr),

(13)

where d(sblimp, starget) measures euclidean distance between
the blimp and the target waypoint position’s 2D projections on
the ground plane. Parameters, w0:3, i0:3, k0 ∈ R, are derived
via manual tuning and j0:1 ∈ R approximate the energy
consumption of the rotors. The bonus reward is designed
to reduce overshoot by reducing the relative yaw angle to

the next waypoint when the blimp approaches current target
waypoint.

E. Yaw Control Task

Here, the agent observes yaw-related states and outputs a
yaw command to control the tail motor, m0, together with
a PID controller. The objective is to minimize the relative
yaw angle, i.e. mina∈A(|ψr|). Concretely, the observation
space is defined as syawt = (ψr, ωψ, a

pid
ψ )t and the action

space ayawt = fmix(π(·|syawt ), apidψ,t) where syawt ∈ R3 and
ayawt ∈ R. The actuator state update is described as in (11)
with c ∈ R. Different from (12), the reward function in this
task, only combines success reward and tracking reward, or
ryawt = w0r

success
t + w1r

track
t . The task is considered as

success if the agent’s relative yaw angle is kept small for a
certain period of time, as described in (14).

rsuccesst =

{
1 if T (|ψr|≤ ε) ≥ Tsuccess
0 otherwise

rtrackt = −|ψr|,
(14)

where T (·) is a time counting function and Tsuccess ∈ R+.

F. Training Setup

In this section, we describe the important factors attributed
to the robustness of the trained policy. At the beginning of each
training episode, several waypoints are sampled in the space
based on the position of previous waypoint. When the blimp
reaches the current waypoint, it receives a success reward
and activates the next waypoint. During training, observations
and actions are injected with noise. Lastly, we apply domain
randomization and sample new environment variable for each
episode according to Table.1.

variable range
wind in xy direction (m/s) [-1.5, 1.5]
wind in z direction (m/s) [-0.15, 0.15]

buoyancy (100%) [0.9, 1.1]
freeflop angle (·) [0.0, 1.5]

collapse (·) [0.0, 0.02]
deflation rate (·) [0.0, 1.5]

TABLE 1: Freeflop angle, collapse, and deflation rate determine maximum fin
decline angle, the stiffness of the cable that holds the fin, and the rigidity of
the blimp hull respectively, which jointly affect fin decline angle and reduce
the lift and drag force [10].

We train the policy network with PPO, which has achieved
strong benchmark performance and training stability. To
accelerate training, we parallelize the simulation and raise
the speed up to 14 folds of the real-time. The architecture of
our policy network (Fig. 4) includes an LSTM layer to reduce
the impact of partial observability (e.g. wind, bouyancy, etc.).

IV. EXPERIMENT DESIGN AND SETUP

With the real world scenario in mind, we address the
following questions through our experiments. Does LSTM
architecture reduce the impact of partial observability? What
are the properties of the mixers in the DRRL framework? Can
the DRRL agent improve the PID controller? How does the



agent perform under the presence of disturbance, noise, and
parameter uncertainty?

A. Experimental Setup and compared methods
We integrate our DRRL training environment in the

ROS/Gazebo SITL simulation following the OpenAI-Gym
framework. The PPO implementation is based on RLlib.
The agent is trained on a single computer (AMD Ryzen
Threadripper 3960X, 24x 3.8GHz, NVIDIA GeForce RTX
2080 Ti, 11GB). Our simulated blimp model is designed
based on our real robotic blimp (see Fig. 1). The following
methods are evaluated and compared to each other.
• DRRL agent: our proposed approach.
• PID: the PID described in Sec. III-D.1
• Baseline: the baseline is a cascade PID controller, well-tuned

to the simulation environment. Our previous work [10] has
shown that we could deploy it to the real world without
tuning, which implies a reliable quality of the simulation
and robustness of such approach. This controller directly
controls the actuator to follow the velocity reference from a
path planner instead of the waypoints (as used by the above
2 methods) and relies on an extended Kalman filter for state
estimation and noise filtering.

B. Task Suite
In this section, we describe the design of the two control

tasks that were introduced previously. The Yaw control task
(III-E) is a simplified task to evaluate different design options.
The goal is to acquire the best possible configuration to then
train a near-optimal policy for blimp control task (III-C) within
limited amount of time. To ensure reproducibility, the training
experiments are conducted with 3 different seeds. Table 2
displays the parameters for both tasks.

1) Yaw Control Task: We carry out an empirical ablation
study on training stability of DRRL agent with different PID
controller, different policy, and mixer combination. We first use
a PD and then a P-control, which correspond to a good and a
poor PID controller, respectively, for this task. PD control has
stability guarantee while P control is only marginally stable.

Fully
Connected

Fully
Connected

Fully Connected

Batch Normalization

LSTM (64)

Tanh

........
64

x2

Fig. 4: Following [28], we initialize the output layer with small weights (e.g.
1e−12), apply tanh activation function, and integrate normalization layers to
stabilize training. ht−1: hidden state. rt−1: previous reward. aRLt−1:previous
action. vt: estimated value from the critic.

2) Blimp Control Task: We design the DRRL agent for this
task based on the conclusion from the ablation study of the
yaw control task. Despite the difference in task complexity, the
PPO agent hyperperameter remains identical. We first examine
the training progress of the DRRL agent and compare to the
PID controller. The training is performed 3 times with different
seeds to ensure the reproducibility.

Then, we investigate its robustness and characteristics in
different wind context w.r.t the PID and the Baseline methods.
This comparison is performed on results averaged over 7 runs,
each lasting for 30 minutes and for 2 desired trajectories
(coil and square). Furthermore, these are subject to random
uniformly sampled wind direction. The square trajectory
consists of 4 waypoints and has 80 meters between each
waypoint. The coil trajectory has 30 meter radius covered
by 15 waypoints in total. Consecutive waypoints on it are
separated by 45 degrees and 42.4m in their projection on
the X-Y plane and by 2m in the Z direction. As the square
trajectory has longer edges, it is easier to track it as compared
to the coil. The coil trajectory is more challenging due to the
shorter inter-waypoint distance. In this case, the blimp has
to constantly slow down to control the yaw angle which can
cause altitude loss.

We test the trained agent on a real blimp with 40 meters
square trajectory. The real blimp has several different properties
compared to the simulation, e.g. trim weight difference,
buoyancy, maximum thrust etc. Many of these effects are
not domain randomized during training. That is to say, it is a
new flight context that the DRRL agent has not encountered
before and thus it pose a great challenge for generalization.

V. EXPERIMENTAL EVALUATION

A. Yaw Control Task

Fig. 5a shows that the final performance of DRRL with
LSTM architecture increases the performance of good/poor
PID control by 47%/13%. Without LSTM, the improvement
is only 33%/13%. The maximum performance drop during
exploration is 7%/25% with LSTM and 31%/47% without
LSTM. This result suggests that the LSTM is an important
building block for our DRRL framework. It can effectively
stabilize and accelerate the training progress and reduce the
performance drop during training.

The properties of the mixer type can be observed through
the training progress in Fig. 5b. Unsurprisingly, the absolute
mixer has the largest performance growth and drop during
training and achieves the highest final performance for both
good and poor PIDs, since it grants the DRRL agent more
control authority. On the contrary, the relative mixer neither
improves nor degrades the PID performance. Equation (9)
suggests that, as the agent control is dependent on the PID,
the DRRL agent has no control authority if PID control is
small. That is, when the yaw error is close to 0, P control and
DRRL agent offer no control to reduce the angular velocity
and overshoot the target angle. Consequently, the marginally
stable system property remains unchanged. Lastly, the hybrid
mix retains the properties from both mixers and achieves
the intermediate performance as expected. Although absolute



Setup details
Group Name Value
PPO learning rate schedule [1e−4, 5e−6]

γ .999
λ .9
horizon 800
batch size 22, 400
mini-batch size 2, 048
sgd iterations 32
gradient clip 1

Environment simulation frequency [hz] 30
policy frequency [hz] 10
observation noise [%] 2
action noise [%] 5
L [m] 200

Yaw Control training time [day] 1
est. wall clock time [hr] 1.7
good PID (kp, ki, kd) (1, 0, .5)
poor PID (kp, ki, kd) (1, 0, 0)
(α, β) (.5, .5)
reward scale .1
Tsuccess [s] 5
ε [%] 10
w0:1 (1, 1)
c .1

Blimp Control training time [day] 28
est. wall clock time [hr] 48

kpidthrust (.7, .01, .05)

kpidψ (.3, .003, .0075)

kpidz (2, .02, 1.0)
(α, β) (.5, .5)
reward scale .05
ε [m] 5
w0:3 (100, .9, .1, .1)
i0:3 (.6, .2, .1, .1)
j0:1 (.5, 1)
k0 1
c (.4, .4, .1, .05)

TABLE 2: horizon and γ are relatively large due to the long response time
of the blimp. In the blimp control task, altitude tracking reward weight, i0,
has greater value than other planar terms since altitude loss is not considered
as part of the success reward. reward scale is tuned to keep value loss within
the range [−1, 1] to reduce the side-effect from the gradient clip and stabilize
training.

mixer appears to be the best design, it is important to note
that it can reduce the training stability. This effect is amplified
in higher dimensional space.

We draw the following conclusions from the yaw control
experiment: 1) The LSTM plays an important role to stabilize
and accelerate training. 2) The choice of the mixer has signifi-
cant impact on the training stability and final performance. 3)
In addition to the importance of LSTM and mixer, the design
choice of the PID controller is also important. By including a
derivative term boosts nearly 50% of the initial performance.

B. Blimp Control Task

Following the conclusion from the ablation study (V-A), we
design the DRRL with LSTM policy and absolute mixer as
well as with the hybrid mixer. Even though the absolute mixer
appears to be the best configuration in simpler task, the agent
with this mixer consistently failed to obtain any functional
policy and got stuck in a local optima where the policy always
commands maximum tail rotor and results in repeated rotation
movement. The hybrid mixer, on the other hand, successfully
stabilizes the training progress (Fig. 6). It reaches 60% of the
final performance within the first 2000 episodes and continues
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(a) LSTM policy stabilizes and accelerates the training progress and reduces the
performance drop.
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(b) Absolute mixer is the most aggressive as it provides the most performance growth as
well as performance drop during exploration, and vice versa.

Fig. 5: Ablation study on the effect of LSTM and mixer type. Red dotted
curve represent the average PID control performance. Note that it is not a
coincidence that the initial performance of the agent is similar to PID since
the agent output layer weights are initialized close to zero.

to grow steadily.

As demonstrated in Fig. 7, the agent successfully tracks
both the square and coil trajectory, which implies that it does
not overfit to any specific tracks and can generalize to any
desired trajectory in the 3D space. The baseline trajectory is
more consistent compare to the others. This is because EKF
provides smoother state estimation while both the DRRL agent
and PID control receive only noisy raw observations. On the
other hand, although the trajectories of the DRRL agent and
the PID controller look fairly similar, the DRRL agent has
much less overshoots compared to both the other methods in
the coil trajectory (Fig. 7b) as it can observe the subsequent
waypoint. In the coil trajectory, we observe that the baseline
struggles following denser waypoints. To prevent altitude loss,
the baseline applies a constraint on the maximum yaw angular
rate, which limits the maximum turn radius and reduces its
agility.

In Tab. 3 we summarize the robustness tests and comparison
of methods over different trajectory types, wind speeds and
buoyancy. The DRRL agent receives highest amount of ‘total
reward’ in 4 out of 6 experiment combinations. Higher ‘success
reward’ implies that the agent can track more waypoints within
the total time span. During experiments, although the desired
velocity is 3m/s, the baseline seems to achieve only 2m/s. As
a consequences, it traverses less total distance and receives
less amount of success reward. In terms of tracking reward,
the baseline significantly outperform others. Since the tracking
reward is dominated by the altitude loss, this suggests that
the baseline can keep track of the altitude better than PID
and DRRL agent. In the coil trajectory, although the PID and
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Fig. 6: The blimp control task training progress with our DRRL integration.
The red dotted line indicates the PID performance. The hybrid mixer provides
better training stability compare to absolute mixer.

the DRRL agent can follow the trajectory well, we observe
significant loss in altitude. PID control does not have sufficient
speed to maintain the altitude and continues to sink, while
the DRRL agent relies on the thrust vectoring to loiter at
the desired altitude. Similarly, reducing the buoyancy can
impair the altitude control of the RL agent and PID control.
The baseline, while being worst at overall waypoint tracking,
tracks the altitude well. It achieves this via thrust vectoring
and because, by design, the baseline’s primary task includes
maintaining the altitude.
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(a) The square trajectory has long edge and sharp corner. It is served to test tracking
performance and overshoot reduction.
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(b) The coil trajectory has shorter distance between the waypoints. It is served for agility
and altitude control test.

Fig. 7: Behavior comparison of different controllers in no wind condition.

C. Real World Test

The result of the real test flight is displayed in Fig.8 and
Table4. We reduce the square size to 40 meters as oppose to
80 meter in simulation due to the limitation of the test field.
The wind speed was measured in average 6m/s which was
4 times more than the DRRL agent had experienced in the
simulation. Nevertheless, the DRRL agent could still hold its
own position under the gusts and successfully reached several
waypoints. Note that the row of trajectory snapshots in Fig. 8
show only a part of the complete trajectory. We also provide

Robustness Evaluation
Trajectory wind[m/s] controller r rsuccess rtrack ract rbonus

square 0 DRRL 0.0017 0.0027 -0.2143 -0.4308 -0.0107
PID -0.0055 0.0030 -0.4073 -0.4177 -0.0112
Baseline 0.0025 0.0020 -0.1050 -0.5896 -0.0136

0.5 DRRL 0.0058 0.0036 -0.2128 -0.5106 -0.0112
PID -0.0050 0.0029 -0.3901 -0.4186 -0.0111
Baseline 0.0020 0.0019 -0.1101 -0.5879 -0.0128

1 DRRL 0.0022 0.0026 -0.1927 -0.4304 -0.0111
PID -0.0077 0.0022 -0.3601 -0.4437 -0.0133
Baseline -0.0002 0.0016 -0.1123 -0.5849 -0.0141

coil 0 DRRL 0.0189 0.0082 -0.4253 -0.6330 -0.0100
PID 0.0282 0.0106 -0.4890 -0.5758 -0.0118
Baseline -0.0032 0.0013 -0.1501 -0.5795 -0.0207

0.5 DRRL 0.0451 0.0118 -0.2448 -0.6172 -0.0118
PID 0.0363 0.0118 -0.4435 -0.5733 -0.0124
Baseline 0.0017 0.0021 -0.1256 -0.5786 -0.0218

1 DRRL 0.0397 0.0108 -0.2504 -0.6211 -0.0124
PID 0.0245 0.0089 -0.3737 -0.6074 -0.0122
Baseline -0.0014 0.0016 -0.1373 -0.5780 -0.0192

buoyancy[%]
square 0.93 DRRL -0.0001 0.0026 -0.2466 -0.4369 -0.0117

PID -0.0009 0.0025 -0.4232 -0.4231 -0.0113
Baseline 0.0026 0.0019 -0.1049 -0.5899 -0.0137

1.07 DRRL 0.0043 0.0030 -0.1861 -0.4262 -0.0114
PID -0.0037 0.0030 -0.3707 -0.4226 -0.0113
Baseline 0.0022 0.0018 -0.1044 -0.5816 -0.0135

TABLE 3: The wind has the same speed for all runs in one trial but the
directions are uniformly sampled. Rewards presented are averaged over all
timesteps and trials. Higher reward is preferred. The overall performance is
indicated by the reward column, r.
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(a) Real world baseline flight.
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(b) Real world DRRL agent’s flight.

Fig. 8: Real World Experiments: Although the flight context is the same for
both real-world flights, the wind gusts arrive at different times. Therefore,
the baseline is only provided as a reference instead of a comparison. The top
rows in each of the above figures show a part of the trajectory taken by the
blimp to reach subsequent waypoints.



the baseline as a reference. But they are not comparable since
the gusts were strong and arrived irregularly, and hence, the
method that received more gusts would obtain less reward.

Real Flight Evaluation
Trajectory controller r rsuccess rtrack ract rbonus

square DRRL 0.0027 0.0022 -0.0991 -0.3969 -0.0155
Baseline 0.0006 0.0013 -0.0961 -0.3445 -0.0109

TABLE 4: Averaged rewards by DRRL agent and baseline approaches during
real-world flights.

VI. CONCLUSIONS

In this work, we presented a novel framework based on
DRRL for the blimp control task. It leverages an RL agent to
improve the basic PID control performance through interaction
with the environment. We presented and evaluated several
techniques to stabilize the training progress and enhance the
robustness of the trained RL agent, e.g., domain randomization,
LSTM layer, and a hybrid mixer in the DRRL framework.
Extensive robustness tests were conducted that demonstrated
the DRRL agent’s capability to improve the PID performance
and outperform it as well as another baseline approach.
Through real blimp flights in outdoor environment and windy
conditions, we demonstrated that the trained policy could even
generalize to a real scenario without any modification.
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