
A Hybrid Primitive-Based Navigation Planner for the Wheeled-Legged
Robot CENTAURO

Alessio De Luca1,2, Luca Muratore1 and Nikos G. Tsagarakis1

Abstract— Wheeled-legged robots have the potential to nav-
igate in cluttered and irregular scenarios by altering the loco-
motion modes to adapt to the terrain challenges and effectively
reach targeted locations in unstructured spaces. To achieve this
functionality, a hybrid locomotion planner is necessary.

In this work we present a search-based planner, which
explores a set of motion primitives and a 2.5D traversability
map extracted from the environment to generate navigation
plans for the hybrid mobility robot CENTAURO. The planner
explores the map from the current robot position to the goal
location requested by the user, considering the most appropriate
composition and tuning of locomotion primitives to build up a
feasible plan, which is then executed by the robot. The available
primitives are prioritized and can be easily modified, added
or removed through a configuration file. Our approach was
evaluated both in simulation and on the real wheeled-legged
robot CENTAURO, demonstrating traversing capabilities in
cluttered environments with various obstacles.

Index Terms: Sensor-based Control, Motion and Path Plan-
ning, Legged Robots

I. INTRODUCTION
Today, real world applications are still imposing high

level challenges to robotics, demanding enhanced loco-
manipulation skills combined with high level of autonomy
from robots that are attempting to address such applications.
Navigating efficiently and autonomously through cluttered
terrains is certainly one of the most required skills for
permitting a mobile robot to reach a target location within
the environment to perform a task. To successfully navi-
gate while negotiating terrain features and obstacles, mobile
platforms need first to perceive the terrain features and the
involved obstacles, then select an appropriate locomotion
mode/strategy to tackle these terrain challenges based on
their physical mobility capabilities that can be wheeled,
legged or hybrid based.

To obtain the necessary information from the environment
in order to navigate and interact with it safely, several
methods have been proposed. The majority of these tech-
niques considered the use of 2.5D elevation maps extracted
from the point cloud of the environment. Few examples are
[3], [4] and [5], where robots built the map from scratch
using the on-board sensors in order to then perform path
planning actions. These methods have demonstrated good
results and are suitable to perform a search-based planning
that is generally faster than sample-based methods in which

1Humanoids and Human-Centered Mechatronics Research Line, Istituto
Italiano di Tecnologia (IIT), Via Morego 30, Genova 16163, Italy.E-mail:(
alessio.deluca@iit.it; luca.muratore@iit.it;
nikos.tsagarakis@iit.it)

2DIBRIS, Università di Genova, Italy, 16145.

Fig. 1: CENTAURO robot performing single-wheel move-
ments to negotiate the obstacles.

a tree of whole-body actions is built like in [6]. In addition,
when dealing with highly challenging tasks, as for example
in the fields of disaster response or inspection and mainte-
nance of damaged infrastructures, high mobility flexibility
is required to adapt to potentially very unstructured terrains.
Hybrid mobility robots merge the benefits of both legged
and wheeled locomotion and can provide a richer repertoire
of locomotion actions in such challenging applications. Sev-
eral hybrid robots have been proposed in the last decade.
CENTAURO [1], is a recent platform, which supports both
locomotion modes thanks to its 4 articulated legs ending in
360° steerable wheels, while CHIMP [2] robot incorporates
track elements in its limbs and can change the locomotion
mode as needed to navigate and reach a target location. In
DARPA Robotics Challenge (DRC), the winner of the 2015
edition, the DRC-HUBO robot [7] used wheels attached to
the knees permitting it to change locomotion mode moving
to a kneeing position. Another example is the hybrid robot
MOMARO [8], which has a humanoid upper body and four
legs ending in wheels. During DRC, the MOMARO robot
was controlled remotely via teleoperation but in the following
years the MOMARO team also introduced a framework for
semi-autonomous locomotion and manipulation based on a
set of motion primitives [9]. Here the researchers applied the
A*-search on a grid map to perform path planning, in which

stepping actions were included as abstract steps and later
expanded in a trajectory. However, in this case there was
still the need for a human operator that controls remotely
the robot.

Similar to these results, in [10] a control framework to
tackle the hybrid locomotion based on some motion modes
(driving, walking and hybrid) was proposed. Also in this
case the resulting framework did not show autonomous
capabilities, in fact reinforcement learning techniques will
be subsequently explored to select the motion modes and
the velocities based on the terrain geometry, improving the
foot placement planning.
Fully autonomous capabilities can be seen in [11], where
the team from ETH introduced a new version of their
quadrupedal robot ANYmal, adding wheels to the legs,
proposing a hierarchical whole-body controller (WBC) and
a motion planner. This work was extended in [12], which
enabled the robot to perform stepping and driving simulta-
neously, decomposing the optimization problem in separate
wheels and base Trajectory Optimization (TO). The results
were also shown in the DARPA Subterranean challenge,
revealing the advantages of wheeled-legged robots in real-
world applications. The team also presented a combined sam-
pling and TO based-planner for hybrid robots in [13], where
the sampling stage manages the whole-body configurations,
while the optimization stage satisfies the system constraints.

In our previous work [14] we demonstrated the au-
tonomous capabilities of the CENTAURO robot (Fig. 1) with
the use of a set of motion primitives concatenated by a
Finite State Machine (FSM) to perform obstacle crossing
tasks, being limited to deal with only rectangular shaped
objects placed in series, decoupling driving and crossing
tasks. In the work presented in this article instead, we extend
the framework implementing a primitive-based planner, built
upon the Anytime Repairing A* (ARA*) [15], allowing
the robot to perform a search on the 2.5D traversability
map extracted from the environment, enabling to deal with
more complex scenarios. During the search, the nodes are
expanded based on the wheels and pelvis position and the
primitives available, selecting when feasible, the driving
action over the stepping ones. In addition we developed
a module that simplifies the planned solution by merging,
whenever possible, multiple planned actions into one speed-
ing up the execution.

The use of motion primitives permits us to describe
parametrized atomic actions that the robot is allowed to
consider during the planning and enable or disable them
based on the capabilities of the robot platform used or the
characteristics of the terrain. To summarize, the features and
contribution of the proposed framework are:

• the definition and use of a set of motion primitives
provided by the hybrid mobility robot CENTAURO
and appropriately parametrized, permitting to generate
the leg end-effectors positions in the defined reachable
space,

• the introduction of a highly flexible, adaptable and
extendable search-based planner built upon the ARA*,

based on a set of motion primitives acquired at run-
time from a configuration file, to perform a search on
the 2.5D elevation and validity maps acquired from the
perception system,

• the combination of multiple single actions to build more
complex behaviours, called macro actions, speeding up
the execution of the task,

• the autonomous navigation execution through terrains
occupied by obstacles that necessitate mixed wheel and
stepping actions to be traversed.

We demonstrate our framework in simulation environment
and on the real CENTAURO robot evaluating the ability of
the planner to find a solution in different real case scenarios
based on the primitives available. The rest of the paper is
organized as follows: in Section II we give an overview of
the implemented framework; in Section III we describe how
the hybrid planner works and in more details the motion
primitives defined; in Section IV the validation studies and
results are discussed and finally in Section V we outline the
conclusions and future work directions.

II. FRAMEWORK OVERVIEW

The proposed framework is composed of three main
components: the traversability extractor, the hybrid primitive-
based planner and the plan executor. A visual representation
of the framework can be seen in Fig. 2.
For the traversability extractor we explored the method in
[16] to create a 2.5D elevation map that is transformed into
a binary map which we will call foothold validity map. This
map takes into account the elevation and edges, extracted
through the application of different filters together with the
inflation radius specifying the minimum distance that we
want to keep from the obstacles.

At the beginning of each test, the map is built online from
scratch, rotating the robot to capture the elements around
it. Of course, it is also possible to provide a pre-saved
representation of the environment together with a correct
initial localization of the robot. An example of the foothold
validity map can be seen in Fig. 3A, where the traversable
areas are presented in blue while those zones that are not
considered safe due to edges or proximity to obstacles are
indicated in red. The values of the filters applied take also
in consideration the radius of the wheels in order to tune
correctly the inflation radius near obstacles. This map is used
by the proposed hybrid primitive-based planner in an offline
way, without considering new updates of the map while
the robot is moving. The planner takes also into account
the available primitives and finds the sequence of primitive
actions that allows the robot to achieve its goal. At this
point, the identified plan is refined and some primitives are
combined into one single Macro action. The macro that we
considered up to now is the Reshape, which allows to execute
simultaneously the single-wheel drive movements enabling
to move independently the four wheels via driving, instead
of moving just one at a time, speeding up the execution.

The output of the planner is a sequence of parametrized
actions composed of pelvis and wheels position, together

Fig. 2: Overview of the framework pipeline, in green the perception component, in orange the motion execution module
and in blue the hybrid planner component.

with the corresponding action selected and wheel(s) involved.
This sequence is used by the plan executor to generate the
appropriate references (position or velocity) that are sent to
the cartesian controller CartesI/O [17], which computes the
Inverse Kinematic and sends the respective commands to the
robot joints through the software middleware XBot [18]. The
velocity of the movements is proportional to the distance
traveled by the end-effector, considering also a maximum
value defined by the user. In the following section we will
illustrate in more details the proposed hybrid planner.

III. HYBRID PRIMITIVE-BASED PLANNER

For the implementation of the hybrid planner we decided
to employ a search-based approach. In particular, we im-
plemented the ARA* to perform the search on the foothold
validity map. The search is carried out by evolving the robot
state in the map through the application of the primitives
available to the planner, considering their costs, priorities
and feasibility. The state-of-the-art ARA* was extended
to a primitive-based one, gaining the ability to adapt the
search according to the constraints defined and the motion
primitives acquired during the initialization. The use of the
Anytime version of the A* will permit us in the future to
realize an online implementation of the planner, since the
ARA* finds, in a small amount of time, the first sub-optimal
solution which is refined until the available time expires.
In the ARA*, at each iteration of the main loop, the costs
of the nodes are considered to expand the node with the
smallest cost. In details the ARA* minimizes:

f(n) = g(n) + ϵ h(n) (1)

where n is the node, g(n) is the cost from the starting
position to the node n, obtained by adding the cost of the

current action (explained in the next sections) to the previous
node cost g(n − 1), h(n) is the heuristic function, which
estimates the cheapest path from n to the goal and it is
evaluated as the sum of the distances along x and y in
grid cells. Finally ϵ is used to provide sub-optimal solution
and it is decreased in the following iterations. We start the
search with ϵ = 4, which offers, in our case, a good trade-off
between planning time and optimality of the solution found.

For each node visited during the search, the neighbors
are expanded based on the reachable space defined for the
selected primitive. If the new f score of the neighbor, which
is computed from the node that we are currently visiting, is
smaller than the one saved in the previous iterations, then
the neighbor is added to the list of nodes to be visited.

A. Motion Primitives

The use of a set of motion primitives provides great
flexibility permitting to shape and extend the framework
in order to adapt it to the primitive actions offered by a
robotic platform. The primitives considered in this work for
the case of the CENTAURO robot platform, are whole robot
driving and single-wheel motion. The latter is then internally
subdivided into single-wheel driving and stepping based on
the elevation difference in the trajectory examined. If needed,
we can also treat these two sub-actions as separate primitives
and enable just one of them, based on the platform consid-
ered and map requirements. These motion primitives allow
to exploit the capabilities of our hybrid robotic platform
to be able to accomplish the desired tasks by employing
different locomotion strategies concatenating autonomously
the atomic actions in different order. We defined these
primitives considering a number of different parameters that
can be easily changed via a configuration file. Using these

Fig. 3: (A) The binary foothold validity map where the
red elements represent untraversable areas and the blue the
safe parts of the environment. (B) The scaling factor map
associated with the map above. Black means that there are
no obstacles in the surrounding space, so no scaling is
needed (preferred driving), grey instead shows areas close
to obstacles in which single wheel actions may be needed.

parameters it is possible to enable/disable the actions, change
the costs assigned, reshape the reachable space considered
or also modify the clearance to keep around the wheels for
avoiding the collision with the obstacle.
All the parameters were experimentally tuned by performing
several trials with different obstacle arrangements in order
to obtain a more efficient planner, both in terms of search
time and optimality of the solution. Although, a change
in the parameters of the primitive actions’ costs does not
prevent the planner to find a solution, even if less optimal.
However, changing the parameters of the primitives like
reachable space or safety thresholds can, of course, challenge
and eventually prevent the planner to find a solution due
to the more constraints imposed on the motion capabilities,
preventing the robot to adapt to a complex scenario.
The following paragraphs present in details the two primi-
tives implemented:

1) Whole Robot Driving: this primitive allows to perform
the driving action with the whole robot enabling the robot
to translate and/or rotate. This action is selected if all the
wheels are not close to any obstacles. The above check
was incorporated in the map with the introduction of the
inflation radius to speed up the planner computation, avoid-
ing repetitive loops checking the neighbors of the wheels
position. The driving action is parametrized by the maximum
distance and rotation that can be achieved with a single use
of the action. Modification to these parameters are allowed,
but note that increasing them will result in longer planning
time because, for each state considered, there will be more

possible neighbors to be visited. We experimentally decided
to consider a maximum translation of 0.08m and rotation of
±10o for each application of the action.
The cost defined for this action, CD, is the following:

CD = (|i|+ |j|) (Od + (Ge|De|+Gd + |α|) + Ci + Ca)
(2)

where i and j represent the movement (in grid cells) along
x and y direction respectively, Od = 35 is the offset for the
driving corresponding to the minimum cost of the driving
action, Ge = 24 is the gain for the elevation difference (De)
of the wheels before and after the primitive motion, Gd

= 2 is the cost associated to the driving action and α is
associated with the rotation angle considered.
Ci = 0.75 Od and Ca = 10 Rdiff , which are additional
costs used to, respectively, score more the nodes close to
objects based on an inflation radius defined (i.e. 20 cm)
and based on the alignment of the robot in order to prefer
actions that allow to face the path being followed, having
Rdiff the rotation difference between the actual yaw and
the desired one resulting in such alignment.
This definition allows to consider different possibilities
and prefer the configurations in which the robot is driving
looking forward, far enough from the obstacles and with
the wheels at the same elevation level, so driving in flat areas.

2) Single-Wheel Action: with respect to our previous work
[14], here we do not have the need to provide separate
actions: reshape of the support polygon, stepping on, over
and down. In this implementation we have a single-wheel
action that allows to move the wheel in the reachable space
considering the difference in the elevation for the trajectory
connecting the starting and ending position of the wheel. In
this way, if the elevation difference is smaller than the radius

Fig. 4: Motion primitives considered: (A) whole robot driv-
ing, (B) single-wheel action. In (A) the red area around the
wheels is used to show the clearance to enable the action,
the blue arrows represent the omnidirectional movement that
can be performed with one action. In (B) we check the
maximum distance traveled and that is constrained to other
wheels, together with the difference in the elevation during
the trajectory.

of the wheel, we can consider driving assuming that such
elevation difference can be overcome by the wheel action
alone. Otherwise, we have to lift the wheel, based on the
maximum elevation in the path followed and place it in the
target position. This permits to deal with gaps, obstacles or
flat surfaces. The single-wheel action is considered by the
planner only if the whole robot driving is not possible in
a neighborhood of the considered node. Moreover its cost
is higher than that of the whole robot driving in order to
favor longer whole robot drive, if possible, with respect
to multiple single-wheel actions alternative solution which
would be slower and more complex.
Since in this action we move one wheel, we added also a
check on the support polygon that changes based on the
wheel movement to discard the configurations in which the
stability cannot be ensured. In addition, for the stepping
actions we take into account the pelvis movement to ensure
static stability. The reachable space of the wheels is trans-
lated based on the current pelvis position and the stepping
actions are considered only if the support triangle allows to
preserve the stability while lifting the wheel. To increase the
stability we added in the cost definition also a measure of the
area of the support polygon and the distance of the CoM with
respect to the edges of the polygon to consider, if possible,
more stable configurations.
The cost of the single-wheel action, COW , is therefore
described by the following:

COW = s Dp(Oo +Dw +G+ Sd + Sa +Ge |De|) + Ci

(3)

where s is the scaling factor based on the elevation difference
for the node considered (explained in the Section III-B), Oo

= 115 for the single-wheel driving and Oo = 240 for the
stepping are the minimum costs of these actions. Dp and
Dw represent the distance traveled by the pelvis and the
wheel respectively, Sd and Sa are the costs proportional to
the distance of the CoM to the support polygon and the area
of the polygon and G is the gain associated with the motion
selected, for driving (Gd = 2) and for stepping (Gs = 5).
The parameters of the cost functions were experimentally
tuned by performing several trials in simulation and are
defined in such a way to have an admissible heuristic and
to score differently the actions, based on our objectives. In
addition, for each primitive considered, we included a check
on the elevation under the pelvis to avoid navigating if the
motion would result in a collision between the pelvis of the
robot and an obstacle higher than clearance height below the
pelvis. A graphical representation of the two primitives can
be found in Fig. 4.
To sum up, we defined the two primitives providing a set
of parameters that can be easily changed via configuration
files. These parameters contain: offsets and gains to define
a preliminary priority, reachable space of the end effectors,
minimum and maximum distance among the wheels, size of
the clearances for safety reasons, maximum elevation that
can be reached for stepping actions, minimum values for
the support polygon area and distance of the CoM from the

support polygon edges. By modulating them we can define
how important are those factors, for example, we can increase
the offset of the single wheel actions to prefer much longer
driving rather than a sequence of stepping actions to cross
obstacles.

B. Primitive-Based Motion Planner

Once the map has been computed, the operator needs
only to send the target position that the robot has to reach.
At this point the planner starts computing the h score for
all the nodes considered, based on the Euclidean distance
(maximum between the x and y) with respect to the goal
position. In addition, to speed up the computation, we com-
pute also the scaling factor for each possible node in the map
comparing its elevation with the one of its neighbors. This
scaling factor has the objective of reducing the cost of the
single-wheel actions as these primitives are computationally
more expensive. We therefore considered, at the beginning,
an over-estimated offset score for single-wheel actions that,
thanks to the scaling factor, is reduced for those nodes
surrounded by objects and so more inclined to need single-
wheel actions. The information of the scaling factor, in more
details, is estimated by looking at the neighbors of the nodes.
If the elevation difference is smaller than the wheel radius,
no scaling factor will be applied since we will not need
to step. On the other hand, if the elevation difference is
higher than the wheel radius, the scaling factor will change to
facilitate the use of the single-wheel actions, speeding up the
searching. Fig. 3B presents the scaling factor map associated
with the map above. In particular, we can notice that the
black areas are the ones where the scaling factor is 1, so no
scaling is applied corresponding to an area in which there
are no objects around and driving can be performed safely.
The grey color instead is relevant to areas with obstacles,
meaning that it may be necessary to use single-wheel actions
to navigate in that area.
At this point the actual search can start. Here the planner
employs the primitives enabled with a priority and costs
assigned to explore the nodes in the map, which are char-
acterized by the pelvis position and orientation together
with other information such as: wheels position, primitive
selected and wheel moved. The ARA* iteration exits when
the smallest f score in the list of nodes that we have to
expand is higher than the f score of the goal. At this point,
the planned solution is extracted and becomes ready to be
executed. The ϵ value is decreased, the f scores of the nodes
that were not visited are updated based on the new ϵ and a
new iteration of ARA* can start. The procedure is iterated
until ϵ converges to 1, which corresponds to the optimal
solution, or when a new goal is assigned.

IV. VALIDATION STUDY AND RESULTS

To demonstrate the correctness and the performance of
our framework we run experiments in the Gazebo simulation
environment and then on the real CENTAURO robot.
Thanks to the feature that allows us to enable/disable the
primitives, we started considering only the driving with the

Fig. 5: A set of considered scenarios to evaluate the frame-
work in simulation. (A) Simple environment in which only
whole-robot driving is required. (B) Cluttered scene that
needs reshape of the support polygon. (C) Introduction of
a platform, requiring the use of stepping actions.

whole robot, then we added the single-wheel driving to
perform the reshape of the support polygon and finally we
introduced the stepping action, in which the wheels can be
lifted to cross obstacles. To acquire information from the
environment we used the Velodyne Puck 16 1, a 3D LiDAR
with a resolution of 0.03 meters. This resolution was slightly
decreased for the map definition, more precisely to 0.04
meters, avoiding to loose too many details by selecting a
higher value but introducing at the same time a smoothing
filter for reducing the noise in the map.

A. Simulation

To evaluate the correctness of the planner implemented
we started with a simple scenario in which there are few
obstacles on the ground, far enough from each other,
permitting to move the robot to the goal position via whole
robot driving only. To make the experiment more interesting,
we placed a big obstacle in front of the robot and two
thinner ones on the sides so that the resulting plan guides
the robot over the smaller obstacles, avoiding a simple
forward navigation. The scenario can be seen in Fig. 5A.
With this scenario the robot was able to complete the task

1https://velodynelidar.com/products/puck/

Fig. 6: Examples of foothold validity map and corresponding
plan to reach a target in different positions, starting from
the same pose. The colored line shows the planned CoM
trajectory and the color identifies different actions: whole
robot driving in white, single-wheel driving in green and
single-wheel stepping in orange.

in all the 10 tests performed, reaching the target without
colliding with objects. The plan was found in about 5 sec
and the total distance travelled was approximately 5.15m.
Following this, we changed the setup and considered a
series of brick obstacles placed in a random configuration in
front of the robot as in Fig. 5B. To deal with this scenario,
we had to enable the single-wheel driving in order to permit
the robot to change its support polygon and move the
wheels among the obstacles. Also in this case the robot was
able to complete all the 10 tests without failures. Here the
time required to find a solution was 5.8 sec. for an overall
movement of 5.1m.

Finally we increased the complexity of the scenario by
adding a platform in which the robot has to get on as shown
in Fig. 5C. In this case we considered also the stepping
action, requiring the robot to extricate from random objects
on the ground and finally step on the platform. Here the
robot completed successfully the task 13 times out of 15 tests
performed. The plan was found in all the tests, requiring on
average 9.8 sec and the target position specified was reached
travelling for 5.1m. The two failed trials were due to a wrong
estimate of the obstacles in the map that brought the robot
to fall, moving the wheels on the edges of the obstacles.
In Fig. 6 you can see the resulting plans associated with
three runs of the last experiment. To show the capabilities
of the planner, we considered different target locations in
a neighborhood of the center of the platform. Based on
the target specified, the planner reacts providing a different
sequence of actions. For example, in Fig. 6C we set a target
on the left edge of the platform and the robot completed
the task by driving around the bricks and then stepping
on the platform. The colored line shows the planned CoM
movements along the map in which the colors are used to
highlight the different actions selected: white for whole-robot
driving, green for single wheel driving and orange for the
stepping action. As you can see, in all the three plans shown
the most used action is the whole robot driving since we
imposed this as the one with the highest priority, limiting the
use of the other primitives only when necessary. In addition,
it can be observed that, close to the stepping actions there are
single wheel movements that are used to reshape the support
polygon and permit to lift a wheel without losing balance.
In the plan found also the poses of the wheels are obtained
but in the Figure we omitted this information for each state
to keep the image readable.

B. Real Robot

Similar experiments were carried out also on the real
robot CENTAURO. As for the simulations, we considered
different scenarios of increasing complexity, requiring to
add a primitive in order to reach the target specified.
In Fig. 7 you can see the setup considered for the final
experiment on the real robot, together with the foothold
validity map obtained and the corresponding plan found by
the planner. In this case the planner was able to find a the
first feasible solution in approximately 8.1 sec requiring the
robot to pass over the two obstacles, adjusting its support
polygon and then stepping on the platform while keeping
the equilibrium during the execution. The only input from
the operator is the target location to reach by the robot, then
both planning and execution are done in an autonomous
fashion.
During these tests the planner was always able to provide
a solution if there was enough valid space in the map
between the objects. The only problem that we encountered
was related to the localization errors that sometimes made
the robot slightly collide with the obstacles during the
execution. In particular for the localization of the robot we

Fig. 7: (A) Real scenario considered to test the implemented
framework. (B) Corresponding foothold validity map and
plan found by the primitive-based planner.

used the Intel Realsense T2652 camera and we experienced
an error in the localization proportional to the distance
traveled, so we handled this by adding a correction to the
planned sequence in order to compensate the localization
error. The extended video of the experiments in simulation
and with the real robot can be accessed in the linked video
3.
The current implementation has still some limitations that
will be addressed in future works. First of all, map updates
cannot be performed while the robot is moving. This will
be tackled with an online version that we are currently
working on and which permits to update continuously the
plan in the proximity of the robot to deal with changes
in the environment and localization errors. In addition,
occlusions of ground areas hidden by the obstacles prevents
the perception of the elevation in those cells, which in this

2https://www.intelrealsense.com/
tracking-camera-t265/

3https://www.youtube.com/watch?v=5w6est-syVM

work is indirectly obtained through the application of filters
that averages the known elevation in the neighbourhood of
the hidden areas, provoking an overestimate of the obstacles.
This can prevent a solution to be found or bring the wheels
too close to the edges when stepping on and down resulting
in a possible failure of the execution. Currently we dealt
with this issue by increasing the required clearance distances
from the obstacle. The online updates will allow us to deal
more effectively and with high robustness also with these
occluded terrain areas due to obstacles.

V. CONCLUSIONS

In this work we presented a new hybrid search-based plan-
ner for the wheeled-legged robot CENTAURO. It employs a
set of motion primitives that are easily extendable and can
be customized based on the platform physical capabilities
and navigation needs, searching on the foothold validity map
applying the primitives based on their feasibility and prior-
ity. The planner demonstrated good efficacy in addressing
terrains with different complexity and obstacle composition
and permitted to execute autonomously navigation tasks
successfully negotiating these terrain environments. Future
work plans to include the introduction of wheeled and legged
motion simultaneously together with manipulation primitives
to push objects that block the way. An online execution
implementation of the developed planner forms another
direction of our future work plans: this will allow the robot
to deal with dynamic obstacles and new entities that may
intervene while the robot is navigating in the environment
as well as to be more robust against small changes in the
scenario and localization errors.

ACKNOWLEDGMENT
This project has received funding from the European

Union’s Horizon 2020 research and innovation programme
under grant agreement No. 101016007 CONCERT, the Ital-
ian Fondo per la Crescita Sostenibile - Sportello “Fab-
brica intelligente”, PON I&C 2014 - 2020, project num-
ber F/190042/01-03/X44 RELAX and Leonardo Centauro
project (code ETCM053501).

REFERENCES

[1] N. Kashiri et al., ”CENTAURO: A Hybrid Locomotion and High
Power Resilient Manipulation Platform,” in IEEE Robotics and Au-
tomation Letters, vol. 4, no. 2, pp. 1595-1602, April 2019, doi:
10.1109/LRA.2019.2896758.

[2] A. Stentz et al., “Chimp, the CMU highly intelligent mobile platform”,
in Journal of Field Robotics, vol. 32, no. 2, pp. 209–228, March 2015,
doi: 10.1002/rob.21569.

[3] D. Belter, P. Łabcki and P. Skrzypczyński, ”Estimating terrain ele-
vation maps from sparse and uncertain multi-sensor data,” in IEEE
International Conference on Robotics and Biomimetics (ROBIO),
2012, pp. 715-722, doi: 10.1109/ROBIO.2012.6491052.

[4] P. Fankhauser et al., ”Collaborative navigation for flying and
walking robots,” in IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), 2016, pp. 2859-2866, doi:
10.1109/IROS.2016.7759443.

[5] P. Fankhauser, M. Bjelonic, C. Dario Bellicoso, T. Miki and M. Hutter,
”Robust Rough-Terrain Locomotion with a Quadrupedal Robot,” in
IEEE International Conference on Robotics and Automation (ICRA),
2018, pp. 5761-5768, doi: 10.1109/ICRA.2018.8460731.

[6] A. Settimi, D. Caporale, P. Kryczka, M. Ferrati and L. Pallot-
tino, ”Motion primitive based random planning for loco-manipulation
tasks,” in IEEE-RAS 16th International Conference on Humanoid
Robots (Humanoids), 2016, pp. 1059-1066, doi: 10.1109/HU-
MANOIDS.2016.7803402.

[7] Matt Zucker, Sungmoon Joo, Michael X. Grey, Christopher Ras-
mussen, Eric Huang, Michael Stilman, and Aaron Bobick, ”A
General-purpose System for Teleoperation of the DRC-HUBO Hu-
manoid Robot”, in J. Field Robot 32, 3 (May 2015), 336–351.
DOI:https://doi.org/10.1002/rob.21570

[8] M. Schwarz, T. Rodehutskors, M. Schreiber and S. Behnke, ”Hybrid
driving-stepping locomotion with the wheeled-legged robot Momaro,”
in IEEE International Conference on Robotics and Automation (ICRA),
2016, pp. 5589-5595, doi: 10.1109/ICRA.2016.7487776.

[9] T. Klamt and S. Behnke, ”Anytime hybrid driving-stepping loco-
motion planning”, in IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), 2017, pp. 4444-4451, doi:
10.1109/IROS.2017.8206310.

[10] J. Sun, Y. You, X. Zhao, A. H. Adiwahono and C. M. Chew,
”Towards More Possibilities: Motion Planning and Control for Hybrid
Locomotion of Wheeled-Legged Robots,” in IEEE Robotics and
Automation Letters, vol. 5, no. 2, pp. 3723-3730, April 2020, doi:
10.1109/LRA.2020.2979626.

[11] M. Bjelonic, C. D. Bellicoso, Y. de Viragh, D. Sako,F. D. Tresoldi,
F. Jenelten and M. Hutter, ”Keep Rollin’ – Whole-Body Motion
Control and Planning for Wheeled Quadrupedal Robots”, in IEEE
Robotics and Automation Letters, vol 4, pp. 2116-2123, April 2019,
doi:10.1109/LRA.2019.2899750.

[12] M. Bjelonic, P. K. Sankar, C. D. Bellicoso, H. Vallery, and M.
Hutter, ”Rolling in the Deep – Hybrid Locomotion for Wheeled-
Legged Robots Using Online Trajectory Optimization”, in IEEE
Robotics and Automation Letters, vol. 5, pp. 99, 2020, doi:
10.1109/LRA.2020.2979661.

[13] E. Jelavic, F. Farshidian and M. Hutter, ”Combined Sampling and
Optimization Based Planning for Legged-Wheeled Robots,” in IEEE
International Conference on Robotics and Automation (ICRA), 2021,
pp. 8366-8372, doi: 10.1109/ICRA48506.2021.9560731.

[14] A. De Luca, L. Muratore, D. Antonucci, N. G. Tsagarakis, ”Au-
tonomous Obstacle Crossing Strategies for the Hybrid Wheeled-
Legged Robot Centauro”, in Frontiers in Robotics and AI, November
2021, doi:10.3389/frobt.2021.721001.

[15] Maxim Likhachev, Geoff Gordon, and Sebastian Thrun, ”ARA*:
anytime A* with provable bounds on sub-optimality”, in Proceedings
of the 16th International Conference on Neural Information Processing
Systems (NIPS’03), 2003, MIT Press, Cambridge, MA, USA, pp.
767–774, doi: 10.5555/2981345.2981441.

[16] P. Fankhauser, M. Bloesch, C. Gehring, M. Hutter, and R. Siegwart,
”Robot-Centric Elevation Mapping with Uncertainty Estimates”, in
International Conference on Climbing and Walking Robots (CLAWAR),
2014.

[17] A. Laurenzi, E. M. Hoffman, L. Muratore and N. G. Tsagarakis,
”CartesI/O: A ROS Based Real-Time Capable Cartesian Control
Framework,” in International Conference on Robotics and Automation
(ICRA), 2019, pp. 591-596, doi: 10.1109/ICRA.2019.8794464.

[18] L. Muratore, A. Laurenzi, E. Mingo Hoffman and N. G. Tsagarakis,
”The XBot Real-Time Software Framework for Robotics: From the
Developer to the User Perspective,” in IEEE Robotics & Au-
tomation Magazine, vol. 27, no. 3, pp. 133-143, Sept. 2020, doi:
10.1109/MRA.2020.2979954.

