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Abstract— Simultaneous localization and mapping (SLAM)
plays a vital role in mapping unknown spaces and aiding
autonomous navigation. Virtually all state-of-the-art solutions
today for 2D SLAM are designed for dense and accurate sensors
such as laser range-finders (LiDARs). However, these sensors
are not suitable for resource-limited nano robots, which become
increasingly capable and ubiquitous nowadays, and these robots
tend to mount economical and low-power sensors that can
only provide sparse and noisy measurements. This introduces
a challenging problem called SLAM with sparse sensing. This
work addresses the problem by adopting the form of the state-
of-the-art graph-based SLAM pipeline with a novel frontend
and an improvement for loop closing in the backend, both of
which are designed to work with sparse and uncertain range
data. Experiments show that the maps constructed by our
algorithm have superior quality compared to prior works on
sparse sensing. Furthermore, our method is capable of running
in real-time on a modern PC with an average processing time
of 1/100th the input interval time.

I. INTRODUCTION

SLAM is the problem of estimating position and orienta-
tion while also constructing a map of the environment [1].
Solving SLAM is beneficial to navigation tasks such as path
planning, robot recycling, and human decisions. Virtually
all state-of-the-art 2D SLAM solutions today are designed
for robots with dense and accurate sensors such as laser
range-finders (LiDARs). On the contrary, recent work has
shown that small, agile, and cheap nano drones demonstrate
potential to carry out dangerous indoor exploration missions
[2][3]. These nano drones have limited battery and carrying
capacity, and it is only possible to mount low-power sensors
that can only provide sparse and noisy measurements. For
example, as illustrated in Figure 1a, the Crazyflie nano
quadrotor [4] can only sense 4 range measurements1 at 10Hz
with a maximum range of 4 meters [5], which is almost
two orders of magnitude fewer data compared to a typical
2D LiDAR with more than 180 range measurements and a
range of 10 meters, as in Figure 1b. As the result, the limited
sensing capacity introduces a challenging SLAM problem.

Prior work [6][7] has shown some progress on overcoming
the SLAM with sparse sensing problem. In their work, they
adopt the particle filter to solve the problem. However, parti-
cle filter has its limitations. First, it cannot refine and globally
optimize the complete trajectory of the robot. Furthermore,
the number of particles required for a good mapping result
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(a) 4 range measurements (b) 180 range measurements

Fig. 1: Sparse (left) vs dense (right) sensing

becomes increasingly larger when the environment space is
large, slowing down computation.

On the other hand, graph-based techniques have become
the standard for modern SLAM solutions because of their su-
perior accuracy, efficiency, and ability to refine the complete
trajectory of the robot [8][9]. A specific form of a graph-
based technique called pose graph optimization (PGO) has
been studied the most in literature because of its simple and
sparse structure, allowing it to be solved very efficiently [10].

PGO requires a frontend that computes accurate robot
pose-to-pose relations to achieve locally consistent trajec-
tory, typically achieved through scan-matching [11][12]. It
assumes that the observations from two consecutive poses
have significant overlaps so that a rigid-body transforma-
tion can be calculated directly. However, sparse sensing
invalidates this assumption. We propose a novel approach
called landmark graph that replaces scan-matching as the
frontend to address this problem. Instead of calculating a
transformation by aligning observations, we utilize the fact
that the sparse input accumulated over time can reflect the
environment’s descriptive structure (landmark). Thus, given
the uncertainty of the data, we can form hypotheses of pose-
to-pose and pose-to-landmark relations in a graph. Running
non-linear least-square optimization updates the hypotheses
and calculates a locally consistent trajectory. Our method
yields similar accuracy to scan-matching, allowing PGO to
be used with sparse range data.

PGO also requires a backend that periodically establishes
loop closure constraints between poses that resemble similar
places. The current state-of-the-art solution, correlative scan-
to-map matching [13], when applied to sparse input data with
high uncertainty, tends to fail frequently at differentiating the
correct matches from the incorrect ones because their scores
are similar. We propose an approximate match heuristic that
matches each point in the scan to not a specific cell in the
map but a neighborhood of cells. Our experiment shows
that the heuristic makes it much easier to set a threshold
to differentiate correct and incorrect matches.
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To demonstrate the effectiveness of our algorithm, we
perform extensive experiments on both our datasets col-
lected with the Crazyflie nano quadrotor [4], and Radish
datasets [14]. For Crazyflie datasets, we show that with
only 4 range measurements at 10 Hz, we can produce a
map very close to the floor plan in the indoor environment.
For Radish datasets, we show that our algorithm runs much
faster than prior work and produces maps with superior
quality. Finally, our parameter sweep experiment indicates
that our algorithm can produce reasonable maps with as few
as 4 measurements, whereas other mainstream 2D SLAM
algorithms fail catastrophically.

To summarize, our contributions are threefold:
• We are the first to provide an open-source2 graph-based

solution to solve the 2D SLAM with sparse sensing
problem. Our system is capable of running in real-time
on a typical modern computer.

• We propose a novel landmark graph to replace scan-
matching as the frontend for sparse range data. The
landmark graph can correct relative poses and achieve
locally consistent trajectories.

• We propose an approximate match heuristic to the
correlative scan-to-map matching algorithm to amplify
the score distinction between a correct and an incorrect
match, making it easier to reject incorrect loop closures
with a threshold.

II. RELATED WORKS

Traditional SLAM solutions use filtering approaches such
as Extended Kalman Filter [15] and Particle Filter (PF)
[16][17]. These approaches maintain poses and landmarks
and perform prediction and update steps recursively. Modern
works shift more attention toward the optimization approach,
often known as graph-based SLAM.

First introduced by Lu and Milios in 1997 [18], the graph-
based SLAM approaches model the SLAM problem as a
sparse graph of constraints and apply nonlinear optimizations
to refine robot trajectory. With the development of efficient
and user-friendly backend solver frameworks [19][20][21],
graph-based approach excels in accuracy over large space,
because of its ability to refine past trajectory [18]. Addi-
tionally, advances of robust graph SLAM methods such as
Switchable Constraints [22], Dynamic Covariance Scaling
(DCS) [23], Max-Mixture [24], and Incremental SLAM
with Consistency Checking (ISCC) [25] make graph SLAM
resistant to outlier sensor measurements and improve its
convergence. Many works show that graph-based SLAM can
be used for a variety of sensor configurations. For example,
ORB-SLAM2 [26] and RTAB-Map [27] are graph-based
systems that specialize in mapping with stereo and RGB-D
cameras. Cartographer [28] uses graph-based methods and
focuses on real-time mapping using LiDARs.

A subfield of SLAM problems is called SLAM with
sparse sensing, in which the robot is limited in sensing
capability and can only receive very few data points from the

2https://github.com/shiftlab-nanodrone/sparse-gslam

sensors. It is a more challenging problem because the system
receives less information with more uncertainty. However,
to our knowledge, only a few works have been proposed
to solve this problem. Beevers et al. [6] group consecutive
observations to extract line features as landmarks and use
the Rao-Blackwellized Particle Filter (RBPF) [29] to solve
the SLAM problem. Yap et al. [7] utilizes a similar approach
to tackle the problem of noisy sonar sensors, but they also
applied RBPF while assuming that the walls are orthogonal
to each other to produce accurate maps. However, RBPF has
limitations – it is not able to refine the past trajectory, and
it gets increasingly more computation and memory intensive
as the space gets larger because many more particles are
required to maintain the accuracy of the map [8].

Our work aims to address the limitations of previous work
on SLAM with sparse sensing. We are the first to apply
a graph-based approach to this problem. Nevertheless, the
adaptation of the graph-based approach is still nontrivial. Due
to the lack of sufficient overlapping between different frames
of the input data, conventional scan-matching techniques [30]
are not applicable, and the already challenging loop closure
problem becomes more challenging.

III. GRAPH SLAM WITH SPARSE SENSING

In order to solve SLAM with sparse sensing, we incorpo-
rate two graphs in our approach: landmark graph and pose
graph. The landmark graph aims to derive accurate odometry
constraints to replace scan matching as the frontend of the
pose graph. We leverage the information from a group of
scans collected over a period of time, known as ‘multiscan’,
and extract the line segments from the multiscan to describe
the environment. Subsequently, we utilize the uncertainty
(covariance) of the raw odometry and the line segments to
form constraints in the landmark graph.

As for the pose graph, we perform state copying from
the landmark to obtain accurate odometry constraints and
then apply correlative scan-to-map matching to perform loop
closure detection periodically. We propose an approximate
match heuristic to sharpen the score distinction between a
good and a bad match, thus simplifying the process of find-
ing a threshold. In the following sections, III-A introduces
the detailed formulation of the landmark graph, and III-B
presents the construction of the pose graph.

Figure 2 illustrates the high-level flow of our approach and
shows the need for a special frontend for sparse sensing. It
can be observed that when raw odometry is noisy (e.g. not
well calibrated), simply building a standard pose graph (a)
from raw odometry with correct loop closures is insufficient
to achieve a reasonable result. By contrast, we first constructs
the landmark graph (b) to obtain a partially corrected esti-
mate of the robot trajectory. Then, we build a pose graph by
taking the landmark graph as input along with loop closures,
resulting in a map close to the ground truth (c).

A. Landmark Graph

Algorithm 1 shows the high-level procedure for updating
and optimizing the landmark graph when a new measure-
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Fig. 2: Illustration of our approach on the Intel Lab dataset. For subfigures except the ground truth, the robot trajectory is
in pink, landmark line segments are in blue, and loop closures are in green.

Algorithm 1 Landmark graph update procedure

1: Create a pose vertex and odometry constraint
2: Construct multiscan
3: Extract line segments from multiscan
4: for each segment in segments do
5: Associate line segments
6: Create a constraint and insert into graph
7: end for
8: Save graph’s state
9: Optimize landmark graph

10: if Graph is inconsistent then
11: Remove the newly inserted constraints
12: Restore graph’s state
13: else
14: Update each line segment’s endpoints
15: end if

ment arrives from the sensor. The details of each line in
Algorithm 1 will map to the sections below.

1) Notation: Let the state of the robot at time t to be xt =
(x, y, θ)T and the control input to be ut = (∆x,∆y,∆θ)T .
Then, the next robot state xt+1 can be obtained using the
standard motion composition operator ⊕ (see section 3.2
of [31]). The observation in the coordinate frame of xt is
denoted as ztt, where the superscript is the index of the
frame of reference and the subscript is the observation index.
For 2D range measurements, ztt ∈ R2×n represents n 2D
Cartesian coordinates, which we will refer as a ‘scan’.

2) Multiscan construction (line 2): Similar to prior work
[6], we form a multiscan from the observations at multiple
robot poses. For real-time SLAM systems, it is unreasonable
to incorporate future observations, because it will cause delay
in processing. Thus, we choose to construct a multiscan from
k previous scans: zt, zt−1, ..., zt−k. Define a transformation
function g on a 2d point p = (a, b) by a pose x = (x, y, θ).

g(p,x) =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
p+

(
x
y

)
(1)

In order to assemble a multiscan in the frame of xt, we
need to transform each of the previous observations, zt−i, i ∈
[0, k], to the frame of xt:

ztt−i = g(g(zt−i
t−i,xt−i),x

−1
t ) (2)

Suppose that xt is the consequence of the robot motion
ut−i, ...,ut−1. Define

uit = ut−i ⊕ ut−i+1...⊕ ut−1 (3)

Therefore, xt = xt−i ⊕ uit. Then, it can be shown that

ztt−i = g(zt−i
t−i,u

−1
it ) (4)

We will use (4) to transform the observations from the
previous frames to the current frame.

3) Line segment extraction (line 3): We implement split-
and-merge to extract line segments from each multiscan,
because it has the best trade-off between efficiency and
accuracy as shown by Nguyen et al. [32]. Each line is
represented in polar form: l = (ρ, α) where ρ >= 0 and
α ∈ [−π, π) for its compactness, and we refer the reader
to Garulli et al. [33] for the details this representation and
least-square line fitting.

4) Line segment association (line 4-7): To determine if a
currently observed segment is a part of an existing landmark
with parameter (ρ, α), we use two criteria:

1) The line projection error is smaller than a threshold
2) Projected endpoints sufficiently overlap with the global

line segment
Given the endpoints p1,p2 of the observed segment in the

global frame, criterion 1 can be formulated as

∥p1 − (a+ t1d)∥+ ∥p2 − (a+ t2d)∥ ≤ ε (5)

where

a = (ρ cosα, ρ sinα)T , d = (− sinα, cosα)T (6)

t1 = (p1 − a) · d, t2 = (p2 − a) · d (7)

To test criterion 2, we first project the endpoints of the
landmark onto itself with (7) to get two scalar values s1
and s2. Then, criterion 2 is satisfied when

[s1, s2] ∩ [t1, t2] ̸= ∅ (8)

For all landmarks that satisfy (5) and (8), the one with
the smallest projection error is associated with the current
observation. If no landmarks satisfy both criteria, a new
landmark is created for future associations.



5) Graph optimization (line 9): We formulate the objec-
tive function as

F (X) =
∑
i

∥eo(xi,xi+1)∥2Σi
+
∑
ij

∥el(xi, lj)∥2Σij
(9)

where eo is the error function of the odometry constraints

eo(xi,xi+1) = v−1
i,i+1 ⊕ (x−1

i ⊕ xi+1) (10)

where vi,i+1 is the odometry measurement between the two
poses. el is the error of the pose-landmark constraints3

el(xi, lj) = vij − f(x−1
i , lj) (11)

where vij = (ρij , αij) is the measurement of the landmark
lj seen in the frame of xi, and f(x−1

i , lj) transforms the
current estimate of landmark lj from the global frame to the
frame of xi, which is given by4

f(x, l) =

(
ρ+ x cos(α+ θ) + y sin(α+ θ)

normAngle(α+ θ)

)
(12)

To calculate covariances of odometry constraints Σi in (9),
we employ first-order error propagation. Given control inputs
that cause the robot to move from xi to xi+1

xi+1 = xi ⊕ u1 ⊕ ...⊕ un (13)

the covariance can be calculated recursively as

Σi = Cov(u1 ⊕ ...⊕ un)

= J⊕

[
Cov(u1) 0

0 Cov(u2 ⊕ ...⊕ un)

]
JT
⊕

(14)

where J⊕ is the Jacobian of the motion composition operator
⊕ with respect to its inputs. To calculate the covariances of
pose-landmark constraints Σij in (9), we assume points pk

that constitute the given landmark observation are uncorre-
lated, and therefore

Σij =
∑
k

Jk Cov(pk) J
T
k (15)

where Jk is the Jacobian of the least-square line fitting
function with respect to each point pk whose expression
is provided by Garulli et al. [33]. Since each point is
transformed by (4) during multiscan construction, their co-
variances can be approximated as

Cov(pk) = Jg

[
Cov(u−1

it ) 0
0 Cov(p)

]
JT
g (16)

where Jg is the Jacobian of g w.r.t. its inputs, and

Cov(u−1
it ) = Ju−1

it
Cov(uit)J

T
u−1

it

(17)

where Cov(uit) can be calculated in a way similar to (14).
Cov(p) is original source of error of the observation, which
can be modeled as

Cov(p) = σ2
d

[
cos(θ)2 sin(θ) cos θ

sin(θ) cos θ sin(θ)2

]
(18)

3The error of angle α needs to be normalized to [−π, π) range.
4We need to make sure that the landmark after this transform has ρ >= 0.

If not, the angle needs to be incremented by π and normalized again.

Algorithm 2 Line segment endpoint update procedure

1: for each landmark do
2: Initialize s1 = ∞, s2 = −∞
3: Calculate vector representation a,d with (6)
4: for each observation of this landmark do
5: Calculate t1, t2 of the observed segment with (7)
6: s1 = min(s1, t1), s2 = max(s2, t2)
7: end for
8: Calculate the new endpoints: a+ s1d, a+ s2d
9: end for

Algorithm 3 Pose graph update procedure

1: Detect loop closures
2: if best match score > threshold then
3: Copy the state of the landmark graph to pose graph
4: Prune landmark graph
5: Insert loop closure constraint with DCS kernel
6: Optimize pose graph
7: end if

where θ is the bearing of p that is assumed to have no error
and σd is the error of this range measurement.

After all constraints for the current observations are in-
serted into graph, graph optimization is performed. The
optimal solution X∗ = argmin(F (X)) of (9) is solved by
g2o [19] with the Levenberg-Marquardt solver.

6) Consistency checking (line 10-12): Since it is possible
for line association to produce incorrect matches that intro-
duce significant errors to the graph, we follow the idea of
ISCC [25] and implement a simplified version. Assuming
the noise of the errors follows Gaussian distribution, F (X)
follows χ2 distribution, so we can check whether

F (X) ≤ χ2(0.95, n) (19)

where χ2(·, ·) is the inverse chi-squared CDF and n is the
sum of degrees of freedom of all constraints. If (19) is not
satisfied, then at least one of the constraints inserted in the
current batch is an outlier. To ensure performance, they are
all discarded and are not checked one by one.

7) Line segment endpoint update (line 14): The endpoints
information is essential to compute (8). When a pose-
landmark constraint is created, the endpoints of the observed
segment are stored in addition to the line parameters. The
algorithm to update line endpoints is shown in Algorithm 2.

B. Pose Graph

The purpose of the pose graph is to produce a globally
consistent map with the initial estimate from the landmark
graph and the help of loop closures. The high level procedure
for updating the pose graph is shown in Algorithm 3.

1) Notation: To distinguish the vertices of the pose graph
from the landmark graph, yi is used to represent these
vertices. Each xi in the landmark graph provides initial
estimate for yi in the pose graph. wi,i+1 is the odometry
measurement between yi and yi+1, which is derived from



the landmark graph as

wi,i+1 = x−1
i ⊕ xi+1 (20)

2) Loop closure detection and approximate match heuris-
tic (line 1-2): We mainly follow the approach of the Car-
tographer [28]. First, after every certain distance traveled,
we create a local submap using the combined observations
during this interval. Then, the submaps are stored as oc-
cupancy grids, in which each cell stores a probability of it
being occupied. At the same time, we continuously construct
multiscan from several recent poses5 to match against all
previous submaps using correlative scan-to-map matching
[13], defined as finding the transformation w∗ that best aligns
the scan h with submap M .

w∗ = argmax
w∈W

N∑
i=1

M⌊whi⌉ (21)

where W is the search space for the transformation, whi

transforms the ith range measurement in the scan to the
submap coordinate frame, and M⌊·⌉ returns the occupancy of
the nearest grid cell. If the sum in (21) for w∗ is greater than
a threshold, we will accept the loop closure as a constraint
in the pose graph.

Nevertheless, both the multiscan and the map are noisy
due to the sparsity of the input data. This frequently causes
the algorithm to consider matches with points off by a few
centimeters as bad matches, making it harder to differentiate
good from bad matches effectively. A naive way to solve
the problem is to use a larger cell size for the submap grid.
However, this negatively affects the scan-to-map matching
accuracy due to the decrease in submap resolution.

To solve the problem, we use an approximate match
heuristic. Instead of using the nearest cell for each point
in the scan to calculate a score, we apply a 3x3 max kernel
around the grid cell corresponding to each observed point.

w∗ = argmax
w∈W

N∑
i=1

max
x,y∈[−1,1]

M⌊whi + (x, y)T ⌉ (22)

The effect of applying this max kernel is illustrated in
Figure 3. Before applying the kernel, both the correct and
incorrect matches have similar scores, making it hard to set a
threshold hold to distinguish them. After applying the kernel,
the score difference between them is significant enough to
distinguish them effectively.

Although (22) seems computational expensive due to
the repeated application of the 3x3 max kernel, in reality,
one can precompute the submap occupancy grid with the
kernel applied because submaps are fixed after construction.
Therefore, our method (22) have no performance penalty
compared to the original method (21) besides a small submap
initialization cost.

5These poses need to have their estimates adjusted in the landmark graph
before combining the sparse range measurements associated with each of
them

Fig. 3: Blue points are observations to be matched with
the submaps. Applying the max kernel makes it easier to
distinguish the good match (b) from the bad match (a).

3) Graph state copying and pruning (line 3-4): To make
use of the optimized pose estimates in the landmark graph,
the odometry constraints between consecutive pose vertices
are calculated with (20). Additionally, the estimates of the
poses in the pose graph are copied from the landmark
graph after each successful loop closure. Note that only the
estimates of the poses inserted after the last loop closure
optimization are copied. This ensures that we keep the
estimates of vertices that are already optimized.

After the state is copied, the landmark graph can be pruned
by fixing the recently added vertices and edges and removing
all other edges and constraints. This pruning procedure
ensures that the landmark graph’s size remains small, thus
making it efficient even in prolonged exploration tasks.

4) Graph optimization (line 4-5): The pose graph ob-
jective follows the classical formulation as introduced by
Sünderhauf et al. [34], which is given by

F (X) =
∑
i

∥eo(yi,yi+1)∥2Σi
+

∑
ij

∥elc(yi,yj)∥2Σij
(23)

where eo is identical to (10), and

elc(yi,yj) = w−1
ij ⊕ (y−1

i ⊕ yj) (24)

where wij represents a rigid transformation between pose yi

and yj calculated by the loop closure detector. In (23), the
covariance matrices for odometry constraints, Σi, are copied
from the landmark graph. The covariance matrices for loop
closure constraints, Σij , are calculated by fitting a Gaussian
distribution to the neighborhood of wij as in Olson [13].

However, the least-square formulation of graph SLAM by
itself is not resistant to outlier constraints, which may arise
due to uncertainty and ambiguity of measurement and the
environment. Sparse sensing makes this problem worse by
providing less measurement with more uncertainty. Hence,
robust SLAM methods are critical to ensure the success of
our algorithm. A few robust SLAM methods can work with
our model, such as ISCC [25], and DCS [23]. As per our
experiments, DCS works the best in our implementation,
and it is fairly easy to tune. Finally, we used Gauss-Newton
algorithm provided by g2o [19] to minimize (23).

IV. EXPERIMENTS

To demonstrate the effectiveness of our algorithm, we per-
form extensive experiments on the well-established Radish



Fig. 4: Kernel choices vs mapping error

Fig. 5: Multiscan sizes vs mapping error

[14] datasets and real-world sparse sensing datasets we
collected. The quality of maps are measured by absolute
translational error and absolute rotational error, proposed
by Kümmerle et al. [35] who also provide the ground truth
for the datasets. When not otherwise specified, the grid
cell size for our maps used in the experiment is 0.1m. 4
range measurements are sampled from each scan to simulate
sparsity, and each range measurement is capped at 5m.
Multiscan size is 120, meaning that 30 consecutive 4-point
scans are grouped as the input for the landmark graph.

A. Comparison among approximate matching kernels

To justify the use of the 3x3 kernel in (22), we compare
the quality of the maps constructed from the Intel Lab dataset
using no kernel, 3x3 kernel, 5x5 kernel, and 7x7 kernel.
As shown in Figure 4, 3x3 kernel is the ideal size that
provides the appropriate fuzziness against sparse and noisy
data, yielding the lowest mapping error. Using larger kernel
sizes will harm matching accuracy due to the significantly
increased tolerance for mismatches.

B. Comparison among multiscan sizes

For our proposed landmark graph to work, an appropriate
multiscan size needs to be chosen. As shown in Figure 5,
although our algorithm can work with a wide range of
multiscan sizes, there is a ”sweet spot” in the middle which
gives low errors. The reason is that when the multiscan size
is too small, fewer line segments can be extracted, causing
the frontend’s accuracy to degrade. On the other hand, when
the multiscan size is too large, errors from odometry will
accumulate more, causing the extracted line segments to tilt
away from the ground truth. The middle range provides good
balances between data density and error accumulation.

C. Sensitivity study on the number of range measurements

Although our algorithm is designed for sparse sensing,
it will be interesting to see how the algorithm performs as
measurements get denser. In Figure 6, we vary the number

Fig. 6: Number of range measurements vs mapping error

of range measurements sampled from the Intel Lab dataset
from 4 to 60 (out of 180). For reference, we also present the
results of GMapping [36].6

We can observe that the mapping accuracy improves with
the addition of new range measurements. While GMapping
fails under 30 range measurements, our method can still
produce reasonable maps, even when there are as few as
4 range measurements per scan.

Note that when measurements get denser, diminishing
return can be observed. The explanation for diminishing
return is that our frontend is tailored for sparse data by
interpolating probable line segments, and it does not benefit
directly and significantly from the additional characteristics
exhibited by the increasing density of data.

D. Comparison with previous works

We first run our algorithm on the datasets used by Beevers
et al. [6] We follow their way to simulate sparse sensing –
sub-sample range measurements and set distance cap – for
a fair comparison. As shown in Figure 7, our algorithm has
more solid and clear representation of the walls. Furthermore,
unlike previous work, our algorithm is less susceptible to
spurious landmarks. For example, we highlight a few places
in Figure 7 where the previous work has noticeable aliasing
while we do not.

Second, we evaluate our approach on Aces, Intel Lab, and
MIT Killian datasets from Radish. Even for a SLAM system
with dense input data, it is challenging to produce good
results on these datasets because (1) Intel Lab’s odometry is
extremely noisy, (2) Aces lacks revisits of the same places,
which makes loop closure more challenging, and (3) MIT
Killian dataset has a considerable dimension of roughly
190m by 240m. Since no quantitative baselines for sparse
sensing exist, we have no choice but to compare our results
with GMapping [36], a dense sensing method.

In Table I we present results of GMapping with 30 range
measurements (30pt), which is the lowest number that can
yield a good map for each dataset. While our method can
work with as few as 4 range measurements, we present re-
sults using 11 range measurements (11pt), which can produce
results as least comparable to the results of GMapping across
all datasets. As we can observe, our proposal can produce
results comparable to or better than GMapping with much

6We also experimented Hector SLAM [37] and Cartographer [28]. How-
ever, as they are designed for dense sensing (e.g., via modern LiDARs),
they do not produce meaningful output under moderately sparse settings
(e.g., less than 60 range measurements).



(a) CMU NSH (b) Stanford Gates (c) USC SAL

Fig. 7: For each subfigure, the left image is from prior work [6] while the right image is our result. We highlight the visual
details to demonstrate the better quality of our generated maps.

TABLE I: Quantitative comparison with GMapping

This Work GMapping

Aces 11pt 30pt
Absolute translational 0.0455± 0.0492 0.1040± 0.2839
Absolute rotational 1.159± 1.440 1.334± 2.421

Intel Lab 11pt 30pt
Absolute translational 0.0848± 0.1151 0.1139± 0.2274
Absolute rotational 2.319± 2.371 2.283± 2.331

MIT Killian 11pt
Fail to produce mapAbsolute translational 0.0718± 0.1913

Absolute rotational 2.065± 3.846

Olsson Hall
Dimensions: 
24m x 24m
Duration: 
381s

Rice Hall
Dimensions: 
19m x 28m
Duration: 
314s

Raw Odometry Corrected Map

Raw Odometry Corrected Map

Floor Plan

Floor Plan

Fig. 8: Maps built with data from Crazyflie compared with
the floor plan. Drone trajectory is in pink. The irrelevant
details of the floor plan are covered in black.

fewer range measurements. Additionally, GMapping fails to
complete the MIT Killian dataset within a reasonable amount
of time due to the large dataset size and high number of
particles needed to produce good maps under sparse settings.

E. Real world sparse sensing datasets

Besides using sub-sampling to simulate sparse sensing, we
demonstrate our work on real-world robots with sparse range
sensors. We utilized the Crazyflie [4] nano-quadrotor, which
weighs only 27g and is capable of estimating its trajectory
with its IMU and PMW3901 optical flow sensor. We equip it
with 4 VL53L1x ToF sensors providing distance to the front,
back, left, and right, with an effective range of 2m and at a
rate of 10Hz. We collect around 5 to 6 minutes of flight data
in Olsson Hall and Rice Hall of University of Virginia by
driving the drone around manually. As shown in Figure 8,
although the drone can localize itself with dead-reckoning to

TABLE II: Speed evaluation. Unit is in seconds

Dataset ACES Intel Lab MIT Killian

Average data interval 0.185 0.197 0.439
Mean processing time 0.0008 0.0022 0.0061
Max frontend processing time 0.011 0.011 0.021
Max backend processing time 0.106 0.214 0.654
GMapping mean processing time 0.348 0.240 Fail

(a) Frontend (b) Backend

Fig. 9: Processing time distribution. Time is in log scale.

some extent, the odometry error still accumulates over time,
leading to map aliasing. Our algorithm can correct the map
and produce results similar to the floor plan. Since the range
measurements are incredibly sparse, it is worth noting that
some regions of the occupancy grid are not completely filled.

F. Speed Evaluation

To demonstrate the real-time capability of our algorithm,
we evaluate our system’s processing time on a Desktop
PC with Intel Core i7-9700K. The frontend (Algorithm 1)
runs synchronously with the input data, while the backend
(Algorithm 3) runs asynchronously. We summarize the key
statistics in Table II and the time distribution as a stacked
histogram in Figure 9. It can be observed that our method
use only 1/100th of the data interval on average with most
processing happens very quickly. This can be attributed to the
efficient frontend and graph pruning. Occasional processing
time peaks in frontend are also well below the average data
interval. For the backend, its processing time allows it to
execute a few times per second in the background, allowing
loops to be closed very promptly.

On the other hand, GMapping spends significant amount
of time for each dataset, due to need for many particles for
map to be reasonably accurate. This shows why graph-based
approaches are more suited for sparse sensing than particle
based methods used in prior works.



V. CONCLUSIONS

This paper presented the first graph-based system to
address challenging SLAM with sparse sensing problems.
The solution incorporated a novel frontend analogue to scan
matching but tailored for sparse sensing and an improved
loop closure detection algorithm. Our system is evaluated
using various datasets, and it shows promising ability to han-
dle even large real-world indoor exploration tasks. Possible
future directions of research include extending the algorithm
to solve the multi-robot SLAM with sparse sensing.
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