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Efficient Spatial-Temporal Information Fusion
for LiDAR-Based 3D Moving Object Segmentation

Jiadai Sun  Yuchao Dai* Xianjing Zhang

Abstract—Accurate moving object segmentation is an essential
task for autonomous driving. It can provide effective information
for many downstream tasks, such as collision avoidance, path
planning, and static map construction. How to effectively exploit
the spatial-temporal information is a critical question for 3D
LiDAR moving object segmentation (LiDAR-MOS). In this work,
we propose a novel deep neural network exploiting both spatial-
temporal information and different representation modalities of
LiDAR scans to improve LIDAR-MOS performance. Specifically,
we first use a range image-based dual-branch structure to
separately deal with spatial and temporal information that can
be obtained from sequential LiDAR scans, and later combine
them using motion-guided attention modules. We also use a
point refinement module via 3D sparse convolution to fuse the
information from both LiDAR range image and point cloud
representations and reduce the artifacts on the borders of the
objects. We verify the effectiveness of our proposed approach
on the LIDAR-MOS benchmark of SemanticKITTI. Our method
outperforms the state-of-the-art methods significantly in terms
of LIDAR-MOS IoU. Benefiting from the devised coarse-to-fine
architecture, our method operates online at sensor frame rate.
The implementation of our method is available as open source
at: https://github.com/haomo-ai/MotionSeg3D.

I. INTRODUCTION

Environmental perception can help vehicles observe and
understand the surrounding situation. The ability to recognize
and distinguish between dynamic and static objects in the envi-
ronment is the key to safe and reliable autonomous navigation.
At the same time, this information can also be used for many
downstream tasks, such as avoiding obstacles [1], static map
construction [2], and path planning [3]. Therefore, being able
to perform accurate and reliable moving object segmentation
(MOS) based on LiDAR sequences online is a key capability
to improve the perception of autonomous mobile systems. To
reason about the motion of the surrounding objects, one needs
to exploit 4D spatio-temporal information.

MOS can be viewed as a higher-level two-class “semantic”
segmentation task. Instead of distinguishing the basic semantic
classes, e.g., humans, vehicles, and buildings, MOS infers
the dynamic properties of objects and separates the actually
moving objects, e.g., driving cars and pedestrians, from static
or non-moving objects e.g., buildings and parked cars. For
point cloud segmentation, popular existing solutions can be
divided into point cloud-based [4, 5], voxel-based [6, 7],
and range image-based [8, 9, 10]. Point-based methods can
extract effective features from unordered point clouds, but
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Fig. 1: LIDAR-MOS comparison between our method and LMNet.
The upper row shows the segmentation results on range images
and the lower row shows the results in 3D point clouds. Red
pixels/points are moving objects while black ones represent static
objects. Blue circles highlight the wrong predictions. (a) There are
many artifacts on the borders of objects, but not obvious in the range
image. (b) Fusing spatial-temporal and different representation of
LiDAR scans, our method reduces the artifacts and achieves sota
performance.

they are difficult to scale effectively to large-scale point
cloud data. Sparse voxels convolution [6, [1] can reduce
the computational burden of point clouds, but voxelization
will introduce information loss. Range images are used as
a comparably lightweight intermediate representation and at-
tractive for online applications. However, it causes boundary-
blurring issues due to back-projection. Instead of using a
single representation, we propose to first use a range image-
based backbone to obtain a coarse segmentation and then
use a lightweight 3D voxel sparse convolution module to
refine the segmentation results. Using such a coarse-to-fine
architecture, our method combines the advantages of different
representation modalities of LiDAR scans to alleviate the
boundary-blurring issue, while maintaining good efficiency.
Example results are shown in Fig. 1.

Different from existing segmentation methods, which are
done on a single LiDAR scan, determining whether an object
is moving or not usually requires multi-frame observations.
Chen et al. [2] propose LMNet to directly use off-the-shelf
segmentation networks [8, 9, ]. It exploits the spatial-
temporal information by simply concatenating the residual
images calculated from multiple continuous scans. In contrast
to LMNet, we propose a novel dual-branch structure that first
deals with spatial and temporal information separately and
then fuses them using motion-guided attention modules.

The main contribution of this paper is a novel deep neu-
ral network to tackle online LiDAR-MOS in 3D data. Our
method uses a dual-branch structure bridged by motion-guided
attention modules to exploit spatial-temporal information from
sequential LiIDAR scans. We use a coarse-to-fine architecture
fusing range-image and point-cloud representations to reduce
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the artifacts on the borders of the objects without applying
a kNN post-processing and a semantic refinement. Based on
that, our method achieves online performance, i.e., performs
faster than the frame rate (10 Hz) of a typical 3D LiDAR sen-
sor. Our method achieves the state-of-the-art LIDAR-MOS per-
formance on the SemanticKITTI-MOS benchmark [2]. When
using the proposed extra data from KITTI-road sequences, our
method gains around 10% improvement on the hidden test of
the benchmark. We will release the extra annotated data of
the KITTI-road dataset together with the implementation of
our method to support future research.

Our contributions can be summarized as follows: (i) We
propose a dual-branch structure bridged by motion-guided
attention modules to better exploit the temporal motion in-
formation in residual images. (ii) We use a coarse-to-fine
architecture to reduce blurred artifacts on object borders.
(iii) Our method achieves the state-of-the-art performance in
LiDAR-MOS on the SemanticKITTI-MOS benchmark.

II. RELATED WORK

Moving object segmentation (MOS) has been well studied in
the literature using image sequences [12] or RGB-D data [13].
However, it is still challenging for LiDAR data due to the
sparsity and uneven distribution of the range measurements.
Also, how to exploiting 4D spatio-temporal information from
point cloud sequence is still an open question. Here, we focus
on approaches using only LiDAR sensors and refer for visual
approach to existing surveys [12, 13].

There are some geometric-based methods [14, 15] to tackle
the LiDAR-MOS problem, they do not need training data and
procedure but occasionally result in incomplete or inaccurate
detection of moving objects. There are map cleaning-based
methods that can be used to separate moving objects from
static LIDAR maps. For example, Kim et al. [16] exploit the
consistency check between the query scan and the pre-built
map to remove dynamic points. The map is then refined using
a multi-resolution false prediction reverting algorithm. Lim et
al. [17] remove dynamic objects by checking the occupancy of
each sector of LiDAR scans and then revert the ground plane
by region growth. In contrast, Arora et al. [18] segment the
ground plane and then remove the “ghost effect” caused by the
moving object during mapping. Chen et al. [19] use the map
cleaning method with clustering and multi-object tracking to
track the trajectories of different objects and generate training
labels for LIDAR-MOS based on the tracking results. Even
though such map cleaning methods can distinguish moving
and static objects, they usually can only run offline and are
not suitable for online MOS.

For online LiDAR-MOS, there are deep network-based
methods, which use generic end-to-end trainable models to
learn local and global statistical relationships directly from
data. For example, there are point cloud scene flow meth-
ods [20, s ], which usually estimate motion vectors
between two consecutive scans. Based on the predicted mo-
tion vectors, it separates moving and non-moving objects
by estimating the velocity of every point, which may not
differentiate between slowly moving objects and sensor noise.

It is worth mentioning that most of them are hard to handle
large scans (about 100k points) obtained by the LiDAR sensor,
and the real-time performance is difficult to guarantee. In
addition, it is also possible to determine whether the object
is moving according to the displacement of the bounding box,
which requires some prior information for target detection or
tracking [23, 24, 25, 26, 27].

Semantic segmentation can be viewed as a related step
towards MOS. Recently, LiDAR-based semantic segmentation
methods operating only on sensor data have achieved great
success [4, 8, 9, 10, 28, 29]. However, most single LiDAR-
frame semantic segmentation methods only find movable
objects, e.g., vehicles and humans, but do not distinguish
between actually moving objects, such as walking pedestrians
or driving cars, and non-moving/static objects, like building
structures or parked cars. Wang et al. [30] also tackle the
problem of segmenting things that could move from 3D laser
scans of urban scenes, e.g., cars, pedestrians, and bicyclists.
Ruchti et al. [31] use a learning-based method to predict
the probabilities of potentially movable objects. Based on the
semantic segmentation results [8], Chen et al. [32] propose a
semantic LIDAR SLAM, which detects and filters out moving
objects by checking the semantic consistency between online
observation and semantic map representation.

In contrast to the single-frame methods, some methods [4,

, 29] operate on multiple point clouds or an aggregated point
cloud submap to achieve better segmentation results and at the
same time separate moving and non-moving objects. However,
these methods perform operations directly on point clouds,
which are often laborious and difficult to train. Furthermore,
most of them are both time-consuming and resource-intensive,
which might not be applicable for autonomous driving.

The most related work to ours is LMNet [2], which also
separates moving and non-moving objects using LiDAR scans.
Instead of designing a new network structure, it reuses the off-
the-shelf LiDAR semantic segmentation methods [8, 9, 10].
To obtain inter-frame motion information, it feeds the multi-
frame residual images directly into the existing structure as
extra channels to the range image. Such simple concatenation
without special design often can not accurately exploit the
motion information contained in the spatio-temporal scan
sequence. Moreover, LMNet only uses range image repre-
sentation, bringing many artifacts during back-projection to
point clouds, as shown in Fig. 1. Different from LMNet, we
propose a novel network. It uses two specific branches to
extract appearance features from range images and temporal
motion features from residual images, respectively. And then,
it uses motion-guided attention modules with different scales
to fuse them. In the final stage of decoding, we back-project
the 2D features to the 3D point cloud, and use a lightweight
sparse convolution module to refine the segmentation results.

III. OUR APPROACH
A. Preliminaries

Range Image Representation. It is a lightweight data rep-
resentation obtained by projecting the 3D point cloud into
2D space. The advantages of range representation are that it
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Fig. 2: Overview of our method. We extend and modify SalsaNext [10] into a dual-branch and dual-head architecture, consisting of a range
image branch (Enc-A) to encode the appearance feature, a residual image branch (Enc-M) to encode the temporal motion information, and
use multi-scales motion guided attention module to fuse them. And then an image head with skip connections is used to decode the features
from fronts. Finally, we back-project 2D features to 3D points and use a point head to further refine the segmentation results. Specifically,
BlockA and BlockE are the ResBlocks with dilated convolution, BlockB is the pooling and optional dropout layer, BlockC is the PixelShuffle
and optional dropout layer, BlockD is the skip connection with optional dropout, BlockF is the fully connected layer.

can alleviate the massive consumption caused by the direct
processing of point cloud data, and it can facilitate the use
of mature 2D convolutional neural networks that have been
well studied in vision-based tasks. The range image is widely
adopted in various tasks [8, 9, 10, 33, 34], and we only give
a quick review. For each LiDAR point p = (x,y,z) with
Cartesian coordinates, a spherical mapping II : R? - R? is
used to transform it to image coordinates, as following,

u '\ i [1 — arctan(y, x) ﬂ.fl] w
( Y ) N ( [1— (arcsin(z 1) + fup) £71] A ) ;o (D

where (u,v) are image coordinates, (h,w) are the height and
width of the desired range image, f = f,, + fqown is the
vertical field-of-view of the sensor, and r = ||p||2 is the
range of each point. After that, we can use (u,v) to index
the 3D point and integrate its coordinates (z,y, z), range r,
and intensity e as the five channels of the range image.

Residual Images. We follow LMNet [2] using residual images
to exploit the spatial-temporal information from sequential
LiDAR scans. To generate a residual image between the
current frame [ and the previous frame k, there are three
steps. First, using the relative pose to transform the previous
scans k to the current coordinate system. Second, re-projecting
the transformed past LiDAR points into range image. Third,
computing the residual dfm for each pixel ¢ by computing
the normalized absolute difference between the ranges of the
current frame / and the transformed frame £ as

k—l . : .
TP —T; r; 1 € valid pixels,
a - {| I/ P .

0 otherwise,

where r; is the range value of p, from the current frame
located at image coordinates (u;,v;) and r¥~! is the corre-
sponding range value from the transformed scan located at
the same image pixel. Please refer to [2] for more details.

Meta-Kernel Convolution. As argued by Fan et al. [34], using
2D convolution on range images cannot fully exploit the 3D
geometric information due to the dimensionality reduction of
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Fig. 3: Architecture of the Meta-Kernel Module [34]. According to
the 3D coordinates stored in the range image and the input feature
map, the weight of 3 x 3 neighborhood can be calculated via the
relative coordinates of the center point, and then a 1x1Conv is used
to aggregate neighbor features to update the center feature.

the spherical projection. Exploiting meta-kernel convolution,
we can take advantage of the 3D geometric information by
using the relative Cartesian coordinates of the 3x3 neighbors
of the center, as shown in Fig. 3. A shared MLP takes these
relative coordinates as input to generate nine weight vectors
wj, and does element-wise product on the corresponding nine
feature vectors f;. Finally, by passing a concatenation of the
nine neighbors output g; to a 1x1 convolution, we aggregate
the information from different channels and different sampling
locations to update the center feature vector.

B. Network Overview

We assume a given sequence of LiDAR scans {S;}7_; and
poses {&:} € SE(3) provided by a SLAM system, where ¢
represents the time step. The goal is to get accurate point-
wise segmentation of moving objects for the current frame,
using only the current and previous LiDAR scans. The system
architecture is illustrated in Fig. 2. We propose to use both
2D range images and 3D point clouds to obtain accurate 3D
segmentation. Our method is mainly based on range images
and refined by a lightweight 3D point cloud network.

Our proposed network architecture is built upon the Sal-
saNext [10], a single encoder-and-decoder network for LIDAR
range image-based semantic segmentation. To make it suitable
for MOS, we extend and modify it into a dual-branch and dual-
head network, consisting of a range image branch (Enc-A) to



encode the appearance feature, a residual image branch (Enc-
M) to encode the temporal motion information, an image head
(ImageHead) with skip connections to decode the features
from both Enc-A and Enc-M, and a point head (PointHead)
to further refine the segmentation results. Specifically, in the
feature encoding stage, we first use the meta-kernel operator
to better capture the 3D spatial information, and then use a
motion-guided attention module to more effectively fuse the
motion information extracted from residual images. In the final
stage of decoding, besides the loss on the range image dealt
with the ImageHead, we also back-project the 2D features
to 3D point clouds, and use a lightweight sparse convolution
module (PointHead) to refine the segmentation results.

C. Dual Branches with Motion Guided Attention Module

Different from LMNet [2], which directly concatenates
the range image and residual images together as the input
of the original SalsaNext, we use two specific branches to
extract appearance features from the range images and motion
features from the residual images, respectively. To preserve
descriptive features, we furthermore replace the average pool-
ing in BlockB with SoftPool as suggested by [35]. In Enc-
A, we place one Meta-Kernel convolution layer after the
first ResContextBlock [10] to learn dynamic weights from
relative Cartesian coordinates and enable the network to obtain
more geometric information from the range images, making
the convolution more suitable to the range images. Different
from the range image branch, in Enc-M, we only use one
ResContextBlock to avoid overfitting of the residual images.

Inspired by video-based object segmentation methods [306,

, 38] using optical flow to obtain appearance features, we
add a spatial and channel attention module [36] to extract
motion information from residual images. Such motion infor-
mation enhances the appearance features extracted from range
images, i.e., exploiting motion information and emphasizing
more salient areas in appearance features. As illustrated in
Fig. 4, we use a similar structure to Li et al. [36] to fuse the
features of the two branches. We denote f, as the appearance
feature of range images from Enc-A and f,, as the motion
feature of residual images from Enc-M branch, and have:

f! = fa ® Sigmoid (Convyx1 (fm)), 3)
[V = f! @ [Softmax (Convyx1 (APool (f1))) - C| + fa, (4

where all f represent feature map of size C' x h x w. APool(-)
denotes average pooling in the spatial dimensions. Our method
first uses a spatial attention to emphasize the spatial locations
on the current appearance feature f, using the motion feature
fm and generates a motion-salient feature f!. Second, we
adopt the channel-wise attention to strengthen the responses
of essential attributes by channel-wise attention and generate
the final spatial-temporal fused feature f7'.

D. Coarse-to-Fine: Point Refine Module via 3D SparseConv

Although LMNet [2] can perform LiDAR-MOS only us-
ing a 2D segmentation network, the boundary-blurring effect
is unavoidable due to the limited resolution of the feature
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Fig. 4: Architecture of the Motion Attention module. The spatial
attention and channel attention are used to fuse the moving feature
from residual image and appearance feature from range image.
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Fig. 5: Architecture of the PointHead module. According to the index
of spherical projection, 2D features are back-projected to 3D point,
and then we use a sparse voxel-based branch and point-based branch
to extract point-wise features for more accurate classification. The
upper row represents the voxel-branch and the lower is point-branch.

maps and the dimensionality reduction of the range image
representation. This leads to false positive predictions around
object boundaries. To tackle this issue, we propose a coarse-
to-fine strategy. Instead of only using the pixel-wise loss, we
propose a point head to refine the segmentation results after
the 2D convolutional network. This two-step coarse-to-fine
strategy makes the supervision more effective and utilizes both
pixel-wise and point-wise supervision. To this end, we back-
project/re-index the feature maps of the last layer to the orig-
inal point locations. Then, we refine point-wise segmentation
results by combining this with spatial information performing
a relatively lightweight point cloud convolution operation.
Back-projection is performed with indices computed when the
point cloud is projected to the 2D range image. As shown
in Fig. 5, we back-project 2D feature maps (C X h X w)
from ImageHead into point-wise features (N x C). Then, we
use points in Cartesian coordinates (x,y,z) and point-wise
features to initially voxelize 3D sparse voxel. Finally, we use
two branches of 3D sparse convolution and point cloud-based
MLP to further refine the results using spatial geometry, and
reduce the artifacts that occur around the object boundaries.

E. Loss Functions

Following [2, 10], two loss functions are used to super-
vise our network. The total loss function combines both
weighted cross-entropy and Lovasz-Softmax losses [39] as
L = Lyee + Lys. To alleviate the imbalanced distribution over
different classes, the cross-entropy loss function is weighted
with inverse square root frequency for each class, defined as

‘che(y7g) = - Zaip (yl) log (p (:l)l))? Qg = 1/\/ﬁa (5)

where y; and g; are the true and predicted labels and f; is the
frequency of the i'" class. The Lovasz-Softmax loss can be



formulated as follows:

1 o oy 1=zi(c) if c=yi(c)
Lis = @ ;AJC (m(c)), mi(c) _{ zi(c) otherwise
: (6)

where |C| is the class number, A represents the Lovész
extension of the Jaccard index, z;(c) € [0,1] and y;(c) €
{=1,1} hold the predicted probability and ground truth label
of pixel ¢ for class c, respectively.

The same loss function is applied to both pixel and point
levels in a two-stage training scheme. We first apply the loss
on the pixel level to supervise the range image-based encoder-
and-decoder backbone. Then, we freeze the 2D range image
network and apply the loss point-wisely to train the proposed
PointHead. In this way, we train the network fusing supervi-
sion from both range image and point cloud representations.

F. Implementation Details

We use PyTorch [40] library to implement our method,
which is trained with 4 NVIDIA RTX 3090 GPUs. The size
of the range image is set to 64 x 2048. We apply the same
data augmentation as used in LMNet [2] during training. We
minimize L. and L;s; using the stochastic gradient descent
with momentum 0.9 and weight decay 0.0001. The initial
learning rate is set to 0.01. We use the implementation of
3D sparse convolution from TorchSparse [6] to implement our
PointHead. We train the network using a two-stage training
scheme. First, we train the 2D convolutional network with the
image labels. After that, we freeze the parameters of the 2D
encoder-decoder network and use the point cloud labels to
train the PointHead separately.

IV. EXPERIMENTS

In this section, we conduct a series of experiments on the
SemanticKITTI-MOS dataset [2] to evaluate the quality of the
MOS and different design considerations of our method.

A. Experiment Setups

Datasets. We train and evaluate our method on the
SemanticKITTI-MOS dataset [2], which uses the same split
for training and test as used in the original odometry dataset
and remapping all the 28 semantic classes into only two types:
moving and non-moving/static objects. The dataset contains 22
sequences in total, where 10 sequences (19,130 frames) are
split for training, 1 sequence (4,071 frames) for validation,
and 11 sequences (20,351 frames) for testing.

There are currently only a few datasets available for 3D
LiDAR-based MOS, and the ratio of moving objects in the
current Semantic-KITTI MOS dataset is relatively small. We
call a LiDAR scan a dynamic frame if the number of moving
points in that frame is larger than 100, otherwise it is a static
frame. The proportion of dynamic frames is only 25.77% in
the train split. To have more data at hand, we use an automatic
label generation method [19] to first automatically generate
coarse labels for the KITTI-road dataset ! and then manually

Thttp://www.cvlibs.net/datasets/kitti/raw_data.php?type=road
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refine them to enrich the training data for this task. We label 12
sequences of KITTI-road, where 6 sequences (2,905 frames)
are used for training and 6 sequences (2,889 frames) for
validation. We will release this additional labeled dataset to
facilitate further research.

Because of the unequal distribution of dynamic and static
training samples, as also indicated in [41], we omit frames
from continuous static frames to speed up the training, i.e.,
using a smaller downsampled dataset for faster experiments.
It has been verified by experiments that reducing the training
data will lead to a slight decrease in the IoU of moving objects,
but the effectiveness of each module is still guaranteed.

Evaluation Metrics. Following the protocols of LMNet [2],
for quantifying the MOS performance, we measure the Jac-

card Index or intersection-over-union (IoU) metric [42] over
moving objects, which is given by
IoU = TP/(TP + FP + EN), @)

where TP, FP, and FN represent true positive, false positive,
and false negative predictions for the moving class.

Baselines. Because there are not many existing learning-
based implementations for LiDAR-based MOS available, we
only choose three typical approaches using different types of
inputs as representatives. (1) Range Image View: LMNet [2]
uses the residual images as additional channels together with
the range images as input to a range image backbone and is
trained with binary labels. A kNN post-processing [8] is used
to reduce artifacts on objects’ borders. And we choose the best
setting of LMNet (with SalsaNext backbone) for comparison.
(2) Bird’s Eye View (BEV): LiMoSeg [4 1] uses two successive
LiDAR scans in 2D BEV representation to perform pixel-wise
classification and can run at high frame rates on embedded
platforms. (3) Point-Voxel View: Cylinder3D [7] uses cylindri-
cal partition and point-level feature extractor to segmentation.
We modify its open source code’ to input two consecutive
aligned frames and train it from scratch with MOS-labels to
perform MOS.

Since the implementation of LiMoSeg is not publicly avail-
able, we report the results from the original paper. The results
of Cylinder3D and LMNet are from the retrained models using
the same setup as used by our methods.

Protocols. We follow the protocols of LMNet [2], using the
official dataset split to train and validate the network, using 8
residual images as the input of Enc-M and the range image
with 5 input channels (z,y, z,7,e) as the input of Enc-A as
described in Sec. III-A. The generation of the residual image
is in line with [2]. Note that, our method does not use any
semantic information of different classes to refine predictions,
such as vehicle and buildings. This means that our method
only needs the binary moving/non-moving labels for training.

B. Evaluation Results and Comparisons

The 3D LiDAR-MOS evaluation results of moving objects
IoU are shown in Tab. I. All the methods are evaluated
on both, the validation set (sequences 08), which is unseen

Zhttps://github.com/xinge008/Cylinder3D
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TABLE I: Evaluation and comparison of moving objects IoU on the
validation set (seq08) and the benchmark test set.

Methods kNN road | validation | test
LiMoSeg*[41] 52.60 -

Cylinder3D* [7] 66.29 61.22
LMNet [2] 58.11 50.18
LMNet [2] v 62.51 54.54
LMNet* [2] v 63.82 60.45
Ours-v1 63.17 60.21
Ours-v1 v 68.07 62.53
Ours-v1 v v 66.93 69.27
Ours-v2 71.42 64.86
Ours-v2 v 69.28 70.16

* indicates all frames in training split are used, without downsampling.

during training, and the hidden test split (sequences 11-21)
of the benchmark dataset. The implementation of the bird-
eye-view method LiMoSeg is not publicly available, and only
the validation set result is reported in the original paper [41].
Hence, its test result is missing. For LMNet, we use its
released code also with our sampled data protocol to retrain the
model from scratch, which performs slightly worse than that
reported in the original paper. For a deeper insight, we report
the results of our method using only the 2D segmentation
network structure called “Ours-v1”, and the complete structure
with the proposed PointHead called “Ours-v2”.

As can be seen in Tab. I, our method achieves significantly
better performance than the state-of-the-art learning-based
methods in terms of LiDAR-MOS. The improvements come
from our designed dual-branch structure with the motion-
guided attention and the coarse-to-fine scheme with the Point-
Head module. Our method using only the range-image back-
bone without kNN (Ours-v1) already outperforms most of the
baseline methods and is on par with Cylinder3D, which is
a dense point cloud-based semantic segmentation method but
cannot achieve real-time performance due to the large amount
of computation. When training with the proposed extra KITTI-
road sequences, our method gains a better generalization and
LiDAR-MOS performance on the hidden test set. Our method
with the proposed PointHead (Ours-v2) achieves the state-of-
the-art LIDAR-MOS performance with an ToU of 70.16% in
the SemanticKITTI-MOS benchmark, by exploiting and fusing
both the range image and point cloud representations of the
LiDAR data. Moreover, our method could also run online,
which will be further discussed in Sec. IV-D.

More qualitative comparisons are shown in Fig. 6. As
illustrated, the range image-based LMNet generates many
wrong predictions on the borders of the objects, while the
point cloud-based method Cylinder3D often misses detecting
parts of the moving objects. Using the devised dual-branch
structure and motion-guided attention and fusing both different
representations of LiDAR scans, our method detects most
points belonging to moving objects without bringing artifacts
on the objects’ borders.

C. Ablation Study

In this section, we conduct several ablation experiments on
the validation set (sequence 08) of the SemanticKITTI-MOS
dataset to analyze the effectiveness of different components of

our method. For the validation of each setup, we train 3 times
and report the averaged results.

We first provide an ablation study on the architecture of
the proposed network in Tab. II. We vertically compare each
module with different setups of our proposed network to the
vanilla LMNet (with SalsaNext backbone) (a). “A” refers to
the improvement gained by different setups compared to the
baseline (a). We report the results of using the proposed dual-
branch architecture with motion-guided attention (MGAtten.)
under (b). The dual-branch structure with attention improves
the vanilla method (w/o kNN) by 2.74% in terms of IoU. On
this basis, we add the Meta-Kernel convolution (c), SoftPool
(d), and combine them together (e). The performances further
improve consistently. Our final setup gains an improvement of
5.06% compared to the baseline without kNN.

We also divide different setups horizontally into three
groups: without using a KNN post-processing (w/o kNN), with
a kNN post-processing (w/ kNN), and with using our proposed
PointHead (w/ PointHead). When comparing the setups with
or without using kNN for post-processing, we see a clear
improvement after applying just a simple kNN in all setups.
Instead of using a kNN, we propose to use a PointHead to
further refine the MOS results of the 2D range image network
by fusing the supervision from 3D points level. As can be seen,
using our proposed PointHead, we obtain even better results
than both with and without kNN in all setups. Different to
kNN as an extra post-processing module, our PointHead is a
part of the network and enables our method to exploit and fuse
both representations of LiDAR scans in a more elegant end-to-
end manner. More specifically, compared to the same setting
without using kNN post-processing, our proposed PointHead
achieves a maximum absolute 3.35% improvement over its
counterpart using a kNN and 8.25% improvement over its
counterpart without using post-processing. As shown in Fig. |
and Fig. 6, the qualitative results also prove that PointHead can
better handle the blurred boundary of moving objects. Filtering
based on kNN votes is limited by the receptive field (size
of k). In contrast, our module is end-to-end trained, and the
receptive field is more flexible, so it performs better than with
kNN post-processing.

Another ablation study about using extra training data from
the KITTI-road sequences is shown in Tab. III. In the original
SemanticKITTI dataset, sequence 08 is set as the validation
set considering that it contains all the different categories
of semantic classes. However, for MOS task, we found that
sequence 08 is difficult to represent all different situations to
well evaluate the trained models for MOS, since sequence
08 only contains the LiDAR data collected in the urban
environment. Therefore, we introduce extra KITTI-road data to
provide more training and validation data collected in different
environments such as country roads or highways.

As shown in Tab. III, we test both LMNet and our methods
using different training setups. As can be seen, the models
trained using extra KITTI-road data, (iv) and (v), achieve
better performance on the hidden test set compared to their
counterparts, (i7) and (iii) trained only using SemanticKITTI-
MOS data. This indicates that our trained and validated
models achieve good generalization ability using the proposed



(a) LMNet (b) Cylinder3D

(c) Ours-vl

(d) Ours-v2 (e) Ground Truth

Fig. 6: Qualitative results of different methods for LiDAR-MOS on the validation set of the SemanticKITTI-MOS dataset. Blue circles
highlight incorrect predictions and blurred boundaries. Best viewed in color and zoom in for details.

TABLE II: Ablation study of components on the validation set (seq08). “A” shows the improvement compared to the vanilla baseline (a).

| Baseline and components | w/o KNN A | w/ kNN A | w/ PointHead A
(a) | LMNet (with SalsaNext) 58.11 62.51 64.05
(b) | + DualBranchWithMGAtten 60.85 +2.74 65.50 +2.99 67.74 +3.69
(¢) | + DualBranchWithMGAtten + SoftPool 61.65 +3.54 66.27 +3.76 68.52 +4.47
(d) | + DualBranchWithMGAtten + MetaKernel 62.75 +4.64 67.57 +5.06 70.26 +6.21
(e) | + DualBranchWithMGAtten + MetaKernel + SoftPool 63.17 +5.06 68.07 +5.56 71.42 +7.37

TABLE III: Ablation on extra data and different validation setups.

validation
Methods kNN  road | seq08  seqO8+road test
(i) | LMNet [2] v 62.51 - 54.54
(i) | LMNet* [2] v 63.82 - 60.45
(iii) | Ours-v1 v 68.07 - 62.53
(iv) | LMNet [2] v v 54.26 81.80 62.98
(v) | Ours-vl v v 66.93 84.67 69.27

* indicates all frames in training split are used, without downsampling.

additional data. Interestingly, the performance of the models
trained with extra KITTI-road data decreased on the original
validation set sequence 08, which indicates that the perfor-
mance/improvement of the validation and test sets are not
strictly positively correlated.

D. Runtime and Efficiency

The runtime is evaluated on sequence 08 (about 122k points
per scan) with Intel Xeon Silver 4210R CPU @ 2.40 GHz and
a single NVIDIA RTX 3090 GPU. In Table IV, we report

TABLE IV: Comparison of running time (ms) with baseline methods.

LMNet ‘ Cylinder3D ‘ Ours-v1 ‘ Ours-v2 ‘ Ours-v2f
1331 | 12438 | 4181 | 11693 | 8525

the average time comparison of several baseline methods and
ours. Due to serial processing, the PointHead block affects the
total time. We also provide a lightweight PointHead-Lite (T)
with fewer layers to trade-off the accuracy and speed, which is
faster than the frame rate 10 Hz of a typical 3D LiDAR sensor
(e.g., Velodyne or Ouster).

V. CONCLUSION

In this paper, we have presented a novel and effective
network for LIDAR-based online moving object segmentation.
Our method uses a dual-branch structure to better explore and
fuse the spatial and temporal information that can be obtained
from sequential LiDAR data. A point refinement module is
designed to significantly reduce the boundary-blurring arti-
facts of the objects, and this coarse-to-fine strategy enables



our method to operate online. We additionally annotated the
KITTI-road dataset to enrich the training data, which enhanced
the generalization ability of the model. Experimental results
on the SemanticKITTI-MOS dataset demonstrate the state-of-
the-art performance of our proposed method.
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