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Abstract— How to design an optimal wearable device for
human movement recognition is vital to reliable and accurate
human-machine collaboration. Previous works mainly fabricate
wearable devices heuristically. Instead, this paper raises an
academic question: can we design an optimization algorithm to
optimize the fabrication of wearable devices such as figuring
out the best sensor arrangement automatically? Specifically, this
work focuses on optimizing the placement of Forcemyography
(FMG) sensors for FMG armbands in the application of arm
movement recognition. Firstly, based on graph theory, the arm-
band is modeled considering sensors’ signals and connectivity.
Then, a Graph-based Armband Modeling Network (GAM-Net)
is introduced for arm movement recognition. Afterward, the
sensor placement optimization for FMG armbands is formu-
lated and an optimization algorithm with greedy local search
is proposed. To study the effectiveness of our optimization
algorithm, a dataset for mechanical maintenance tasks using
FMG armbands with 16 sensors is collected. Our experiments
show that using only 4 sensors optimized with our algorithm
can help maintain a comparable recognition accuracy to using
all sensors. Finally, the optimized sensor placement result is
verified from a physiological view. This work would like to
shed light on the automatic fabrication of wearable devices
considering downstream tasks, such as human biological signal
collection and movement recognition.

Index Terms—sensor placement optimization, automatic fab-
rication, arm movement recognition, forcemyography.

I. INTRODUCTION

Building a symbiotic society for both humans and robots
is an ultimate goal in robotics field. To approach such a lofty
goal of human-machine symbiosis, a growing effort has been
devoted to designing more powerful wearable sensing de-
vices and smarter algorithms to recognize human movement
or intention [1], especially in the field of human-machine
interaction [2] [3], augmented reality [4], and Metaverse [5].

Recent studies investigated various types of measuring
signals to represent diverse human movement, including
surface electromyogram (sEMG) [6], [7], optical fiber [8] and
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FMG armband

Fig. 1. The special-shaped FMG armband that we fabricated (top). An
example of optimized sensor placement result of the FMG armband where
K denotes the FMG sensor number (bottom).

Force Myography (FMG) [9] [12]. Among them, due to the
light-weight, low-cost, and easy-to-collect properties [13],
FMG signal is widely used in different applications, such as
human forearm stiffness identification in robotic arm control
[14] and gait recognition by collecting FMG signals at the
thigh [10]. Specifically, as is shown in Fig. 1, a wearable
signal collection device can be easily fabricated by binding
FMG sensors as a form of a closed-loop armband [16].
Wearable FMG armbands usually adopt materials of high
stiffness and low elasticity to ensure good contact between
the armband and human skin [11]. Since different movements
of the human arm are strongly related to the relaxation and
tension of different muscles of the arm [17], the relationship
between the FMG signal and human movements can further
be established for recognition.

Meanwhile, how to make a mapping from signals to
human movements or intentions correctly is key to robust
control or interaction in downstream tasks. Delva et al. [18]
adopted a naive LDA algorithm for action classification and
achieved 76.5% accuracy and demonstrated its application in
human movement recognition. Zakia et al. [19] proposed a
SFMG-DTL model that reached NRMSE ≤ 0.6. Kahanowich
et al. [20] used the ANN model to classify actions, which
reached a strong final classification performance. Some stud-
ies turned to boost the accuracy of motion recognition further
from a sensing feature augmentation perspective by using
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Fig. 2. Evenly-distributed FMG armband modeling in previous works (top)
and our special-shaped FMG armband modeling which considers both FMG
signals and the connectivity of sensors (bottom).

more sensors for biological signals collection and verified its
effectiveness [21]. However, using more sensor points will
undoubtedly lead to higher computational cost, the heavier
weight of signal collection devices, and less portability.

Beyond the improvement of accuracy of human movement
and intention recognition, finding optimal placement of FMG
sensors or an optimal FMG sensing armband configuration
that can achieve good recognition performance while using
as few points as possible is still an open problem. Recently,
some studies [20] [22] showed that some sensors may be
redundant and contribute little to the final classification
result for intention recognition. For the task of American
Universal Sign Language recognition, Barioul et al. [23]
also found that some measuring points are useless. Inspired
by these findings that showed the potential redundancy in
sensor placements, which may incur unnecessary cost both
computationally and economically, this paper goes further
to study how to optimize the sensor placement for force
myography armbands, which may introduce more efficient
armband configurations.

To address the problems mentioned above, this paper
proposes the following solutions.

• A more general modeling of FMG armbands is estab-
lished based on graph theory. Specifically, the tradi-
tional evenly-distributed ring-shaped FMG armband is
extended to a more generic special-shaped one with the
connectivity of sensors considered,

• Based on the graph-based modeling of FMG armband,
an arm movement recognition model, which considers
both force myography signals and armband connectiv-
ity, is proposed. The model, namely Graph-based Arm-
band Modeling Network (GAM-Net), constructed with
graph convolution network, outperforms other baseline
models which only consider the sensing point signals
largely on our self-collected dataset.

• The optimization of sensor placement for special-shaped
FMG armbands is formulated and an optimization
algorithm with greedy local search is designed. Our
algorithm can largely reduce the sensor redundancy
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Fig. 3. Our Graph-based Armband Modeling Network (GAM-Net) model,
which considers both FMG signals and connectivity of sensors, for arm
movement recognition with graph convolutional network (GCN) layers used.

while maintaining a high performance.
• A self-collected FMG dataset on mechanical mainte-

nance tasks is established to verify the effectiveness of
our sensor optimization algorithm and arm movement
recognition model (GAM-Net).1

II. METHOD

A. Modeling of special-shaped FMG armband

The topology diagrams of the traditional and special-
shaped wearable FMG armband are illustrated in Fig. 2(a)
and Fig. 2(b) respectively. Compared to the traditional wear-
able FMG armband setting, which is a ring-like evenly-
distributed structure widely used in previous works [12] [18]
[24], the special-shaped one that is modeled here is a more
general configuration.

Formally, we model the special-shaped FMG armband
based on graph theory to consider both the signals of each
sensor and the connectivity between sensors. We formulate
the special-shaped FMG armband as a graph G = (V, E)
where V and E indicate the node set of sensors and the edge
set between measuring points respectively. Specifically, for
our FMG armband, the signal feature of each node v ∈ V is
a t-second forcemyography temporal feature ∈ R(tφ) when
the signal sampling rate is φ point-per-seconds. We further
define the adjacent matrix A ∈ {0, 1}N×N , where N denotes
the number of elements of set V , of graph G to represent the
connectivity A(vi,vj) between a contiguous measuring point
pair (vi,vj), taking the form:

A(vi,vj) =

{
1 (vi,vj) ∈ E
0 (vi,vj) /∈ E

(1)

B. Graph-based Armband Modeling Network for recognition

Based on the generic graph modeling of special-shaped
FMG armband considering both FMG signals X the con-
nectivity A, as is shown in Fig. 3, we further leverage graph
convolutional network (GCN) [25] to build our classifier for
FMG armbands, namely Graph-based Armband Modeling
Network (GAM-Net), for arm movement recognition. For
a specific graph-based neural network model f (X ,A), the
layer-wise propagation rule is formulated as:

1Our project repo is at https://github.com/JerryX1110/IROS22-FMG-
Sensor-Optimization



Algorithm 1 Sensor placement optimization.
Input: Dataset D = {X ,Y}, sensor set S, a classifier fc,
an action recognition performance quantifier Q(·), and the
desired sensor number k.
Output: Optimized k-element sensor subset s∗k.

1: Let s← S.
2: while k ≤ ||s||0 do
3: Let ntmp ← null, qtmp ← null.
4: for every n ∈ s do
5: q ←

∑
x∈XQ(fc, x, s \ {n})

6: if ntmp = null or qtmp < q then
7: ntmp ← n, qtmp ← q.
8: end if
9: end for

10: Let s← s \ {ntmp}.
11: end while
12: Let s∗k ← stmp.
13: Return s∗k.

H(l+1) = σ
(
D̃−

1
2 ÃD̃− 1

2H(l)W (l)
)

(2)

Here, Ã = A+ IN is the adjacency matrix of the graph G
with added self-connections. IN is the identity matrix, D̃ii =∑
j Ãij and W (l) is a layer-specific trainable weight matrix.

σ (·) denotes the Rectified Linear Unit [?], which equals to
max (0, ·). H(l) ∈ RN×D is the matrix of activations in the
lth layer; H(0) = X .

In our GAM-Net, we leverage two GCN layers and the
whole forward model takes the following form:

f (X ,A) = Ψ
(
Â
(
σ
(
ÂXW (0)

))
W (1)

)
(3)

where Â = D̃−
1
2 ÃD̃− 1

2 ; W (0) and W (1) are two weight
matrixs; Ψ (·) denotes the softmax activation function.

In the training stage, the dataset associated with FMG
signals, various FMG connectivity settings, and movement
categories is used to optimize the parameters of our model
with a simple cross-entropy loss for supervision. In the
inference stage, given a type of FMG armband with a
certain connectivity setting, we can obtain real-time move-
ment classification and recognition results by fixing the
connectivity parameter and applying an argmax function on
the output response of the model f (X ,A), which predicts
the corresponding arm movement category Ŷ .

C. Sensor placement optimization for FMG armbands
Sensor placement optimization refers to techniques that

select a subset of the most important sensor points for down-
stream tasks like action recognition. Fewer sensors can make
action recognition more efficient. Considering that noise may
exist in sensor signals, the action recognition model can
be misled by irrelevant or noisy sensor points, resulting in
worse predictive performance. So, to simultaneously reduce
the redundancy of sensor points and avoid the disturbance
from noisy or even useless sensors points, we propose a
sensor placement optimization algorithm as follows.

FMG armbands
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Fig. 4. (a) Experiment platform; (b) Self-made flexible FMG armbands.

1) Problem formulation: Suppose D = {X ,Y} is a
dataset used for the supervised movement recognition learn-
ing. In this data set, (x, y) is one example. Specifically,
x ∈ X indicates a FMG signal vector with d FMG sensors
and y ∈ Y corresponds to its target movement category.
s ∈ S denotes a d-dimensional binary selection vector of 0/1
elements, where ||s||0 = k, k < d and |S| =

(
k
d

)
. Thus, such

a selection vector can be applied to indicate the selection of a
FMG sensor subset: {x⊗s}x∈X , where ⊗ denotes Hadamard
product that yield a subset of k features for any instance
x ∈ X . Assume that Q(fc, x, s) quantifies the recognition
performance of a classifier fc trained on D via a feature
subset {x⊗s}x∈X . Then, the sensor placement optimization
(SPO) problem to find an optimized k-sensor combination
subset can be formulated as follows:

s∗k = arg max
s∈S

∑
x∈X
Q(fc, x, s) (4)

where s∗k is the indicator of an optimal sensor subset with k
elements discovered by a SPO algorithm.

2) Model formulation: Technically, the classifier is carried
out with a classical statistic model or deep neural network
parameterized with θ, fc(θ;x, s), for a given task. This
classifier is trained on D based on different feature subsets
{x ⊗ s}x∈X to learn fc : X × S → Y . After training, the
trained classifier with the optimal parameters θ∗, fc(θ∗;x, s),
is applied to the test data for prediction.

3) A SPO algorithm with greedy local search: The pro-
posed optimization algorithm follows a procedure of greedy
local search to find an optimal combination of sensor points
in a limited searching time. Concretely, the algorithm works
by searching for an optimized sensor subset by initializing
with the complete set with N sensors, S, and iteratively
removing the least essential sensor, which brings the least
performance drop after throwing it away, until reaching
desired sensor number k. Details are described in Alg. 1.

III. EXPERIMENTS

A. Experiment setup

FMG sensing was performed with a home-built sensing
system, as shown in Fig. 4(a). The system consisted of
three FMG armbands with sixteen FSRs (Force-Sensitive
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Fig. 5. The self-collected dataset of mechanical maintenance tasks.
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Fig. 6. A sample (wipe the table) of FMG signals collected. The colored
lines represent the 16 different channels recorded on the FMG armbands.

Resistors, RP-C18.3-LT, DFRobot), four AD7606 signal ac-
quisition and amplification modules, and one STM32F401
MCU. The force data is then transmitted from STM32 back
to the PC through a USB bus conversion chip (CH340,
HiLetgo) for real-time signal collection and post-processing.

Subjects were instructed to maintain a comfortable sitting
position. Three FMG armbands were placed on the upper
arms, forearms, and wrists, as shown in Fig. 4(b). The am-
plification module and STM32 were attached to the waists.
The human arm can move freely without any resistance.

As shown in Fig. 5, the experimental protocol consisted
of 11 mechanical maintenance tasks, which simulated the
actual arm movements of manufacturing workers.

Following ethical approval and informed consent, five
healthy subjects volunteered for the experiments. The sub-
jects had an average age of (mean ± SD) 22.2 ± 2.2 years
old, the height of 174.0 ± 3.4 cm, weight of 66.2 ± 6.2
kg. The upper arm circumference was 27.4 ± 1.6 cm, the
lower arm circumference was 25.7 ± 1.2 cm, and the waist
circumference was 15.5 ± 1.1 cm. Each subject was required
to repeat a specified task five times or 20 s, according to the
characteristics of various actions, with a 15-second rest as
an interval. The FMG signals were collected and saved by
the acquisition system during the experiment. A FMG signal
sample (wipe the table) is illustrated in Fig. 6.

TABLE I
COMPARISON OF ARM MOVEMENT RECOGNITION PERFORMANCE

AND INFERENCE TIME USING ALL FORCEMYOGRAPHY SENSORS.

Model Accuracy Time (s)

LSTM 0.879±0.132 0.159±0.000
ANN 0.951±0.023 0.156±0.001
CNN 0.947±0.040 0.156±0.001
GAM-Net (Ours) 0.966±0.030 0.156±0.000
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Fig. 7. Confusion Matrix of GAM-Net on mechanical maintenance dataset.
The category (class) names are simplified from their original ones.

B. Signal processing

We first clipped the signals at the beginning and end
of the signal to eliminate some unstable signals, then the
signals from all force sensors were smoothed by a 10-point
moving average filter. After that, Min-Max Normalization
is conducted to avoid the influence of signal amplitude. To
construct training and testing samples for arm movement
recognition, sliding windows were used to sample signals.
We fixed the length of sliding windows and sampling interval
to 150ms and 1 ms respectively.

Ten-fold cross-validation was performed for both the train
and test data separately, and a cross session evaluation using
trained model was performed. All the evaluations were intra-
subject-based. We divided the dataset into train and test split
in a ratio of 9:1. Classification accuracy (ACC) is used to
evaluate the performance on arm movement recognition. For
comparison with our GAM-Net, three widely-used strong ac-
tion recognition models, including Long short-term memory
(LSTM) [26], Artificial Neural Network (ANN) [27], and
Convolutional Neural Network (CNN) [28], were employed.

IV. RESULTS

A. Performance comparison on arm movement recognition

Tab. I shows the comparison of arm movement recognition
when all the sensor points are leveraged. All the arm move-
ment recognition accuracy and inference time are provided in
mean ± SD under five runs for validity. Tab. I demonstrates
that our model (GAM-Net) outperforms previous widely-
used models for FMG by a large margin (1.9% ACC) while
maintains a comparable inference time. The confusion matrix
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Fig. 8. Comparison of arm movement recognition performance for various
recognition models with corresponding optimized sensor subsets.
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Fig. 9. Comparison on arm movement recognition performance between
using sensors generated by our optimization algorithm (Ours) and random
selection (Random) with our recognition model (GAM-Net) is used.

of our proposed GAM-Net is illustrated in Fig. 7, which
shows the effectiveness of our model to recognize most of
the actions accurately though it sometimes may confuse the
cut the rope action with actions like screw with screwdriver.

B. Result for sensor placement optimization.

For each arm movement recognition model fc, we lever-
age Alg. 1 introduced in our method section to generate
the optimized sensor placement subset s∗k and calculate
the corresponding classification accuracy when the sensor
number k is given. Fig. 8 illustrates the performance of
arm movement recognition with corresponding optimized
sensor subsets under different sensors on various models.
The results are averaged for all five subjects and deviations
across subjects are shown in the shadow-like form. Among
them, our proposed GAM-Net model outperforms other
strong competitors. Surprisingly, our GAM-Net model can
reach a strong accuracy of 90.8% and 93.1% even when
the sensor number is limited to 3 and 4 respectively, which
proves that we can reduce the sensor placement redundancy
while maintaining a relatively high arm movement recog-
nition performance. For other deep-learning-based models,
including LSTM, ANN, and CNN, their performance will
slightly fluctuate and decrease with less sensors given. We
further make a comparison of recognition accuracy of the
sensor subset generated by our optimization algorithm (Alg.
1) and random selection in Fig. 9. The figure shows that
our algorithm can generate better results in nearly all cases.
Notice that the results for random selection is averaged for
ten runs to reduce randomness. Moreover, the optimized
armband sensor configurations are shown in Fig. 8.
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Fig. 10. Probability maps of optimized sensor placement for various models
among all the participants. Sensor points in deeper color indicate more
optimal selection averaged for various people.
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Fig. 11. Muscle and muscle groups of a right arm: left is Anterior three-
quarter view; right is Posterior three-quarter view. The FMG Armband is
shown in middle bottom. The optimized three-sensor placement with highest
selection probability of GAM-Net is illustrated.

C. Physiological verification of optimized sensor placement

As the sensor placement result is generated with a data-
driven optimization algorithm, we further verify whether
it makes sense from a perspective of physiology. Fig. 10
shows the qualitative result of optimized sensor placements
generated with the greedy-local-search optimization. For our
GAM-Net model, as is shown in Fig. 8 and Fig. 10, the
sensor point subset {A4, B1, C2} contributes most for the
final recognition performance. In Fig. 11, the muscle and
muscle groups of a right arm with the sensors of three
armbands is shown and the optimized placement result using
GAM-Net is illustrated. According to biological knowledge
[29] and analysis [30], A4 corresponds to the tendon of
flexor carpi radials in the middle medial position of the
wrist, which is tightly relevant to some actions of fingers and
wrist such as wrist flexion; B1 corresponds to brachioradialis,
which is linked with hand gestures such as hand flipping
and swing; and C2 correspond to the biceps brachii, which
is highly correlated with elbow flexion and movements of



the upper limb. During the continuous action of grinding,
drawing a circle with extruding gun and screwing screw,
these three muscles corresponds to {A4, B1, C2} all have
large deformation, thus generating large signal responses.

V. CONCLUSIONS AND FUTURE WORK

In this paper, the FMG armband modeling has been
constructed by considering both sensor signals and the con-
nectivity of sensors based on graph theory. Then, the op-
timization formulation and a local-greedy-search algorithm
of Forcemyography sensor placement of FMG armbands
have been introduced with application in arm movement
recognition. Thanks to the optimization algorithm and the
recognition model (GAM-Net), an optimal sensor placement
with only 4 sensors can achieve comparable recognition
performance with the setting when all 16 sensors are used.
What’s more, the optimized result of sensor placement has
been further verified from a physiological view.

For future work, tests with more diverse and a larger
number of subjects will provide more insights on the algo-
rithm generalization capability of FMG sensor optimization.
The arm movement recognition model can be extended to
attention-based architectures. Then, the attention scores may
help reveal the importance of each sensor node to the others.
Future work should address the fabrication of the special-
shaped armband to make it more suitable for wearing. Future
work may also include its applications such as exoskeletons,
making the FMG armband more practical.
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