
Optimal Constrained Task Planning as Mixed Integer
Programming

Alphonsus Adu-Bredu1 Nikhil Devraj1 Odest Chadwicke Jenkins1

Abstract— For robots to successfully execute tasks as-
signed to them, they must be capable of planning the
right sequence of actions. These actions must be both
optimal with respect to a specified objective and satisfy
whatever constraints exist in their world. We propose
an approach for robot task planning that is capable of
planning the optimal sequence of grounded actions to
accomplish a task given a specific objective function while
satisfying all specified numerical constraints. Our approach
accomplishes this by encoding the entire task planning
problem as a single mixed integer convex program, which it
then solves using an off-the-shelf Mixed Integer Program-
ming solver. We evaluate our approach on several mobile
manipulation tasks in both simulation and on a physical
humanoid robot. Our approach is able to consistently
produce optimal plans while accounting for all specified
numerical constraints in the mobile manipulation tasks.
Open-source implementations of the components of our
approach as well as videos of robots executing planned
grounded actions in both simulation and the physical world
can be found at this url: https://adubredu.github.io/gtpmip

I. INTRODUCTION

The successful execution of manual tasks often re-
quires the satisfaction of certain physical constraints. For
instance, to retrieve a sugar canister from a seven-foot
high shelf in a kitchen, the average person would have
to stand close enough and stretch their hands far enough
to not only reach the sugar, but to grasp it stably and
lift it. Here, close enough and far enough are physical
constraints that need to be satisfied to guarantee the
success of their efforts to retrieve the sugar. Similarly, for
a robot to successfully perform this sugar retrieval task,
it would have to account for similar physical constraints
when deciding the right actions to take. While deciding
the right actions, this shrewd robot would also have to
bias its decisions towards actions that optimize certain
quantities like energy consumed or distance travelled.
We call this problem the Optimal Constrained Task
Planning problem.

The predominant way to solve a task planning prob-
lem is to formulate it as a symbolic AI planning prob-
lem, represent it in a graph structure and employ graph

1Alphonsus Adu-Bredu, Nikhil Devraj and Odest Chadwicke Jenk-
ins are with the Robotics Institute and Department of Electrical En-
gineering and Computer Science, University of Michigan, Ann Arbor,
MI, USA. [adubredu|devrajn|ocj]@umich.edu

Fig. 1: Given a constrained task planning problem, our approach
(GTPMIP) plans a sequence of coherent actions with optimal param-
eters needed to accomplish the task.

search algorithms to find paths from a start state to a
goal state. However, this approach is purely symbolic
and provides no avenues for incorporating numerical
constraints in the planning process or to bias the search
to choose actions that optimize numerical objective
functions [4], [5], [12]. As such, these approaches only
allow the specification of symbolic task goals and are
unable to support the specification of continuous goals. It
is often up to the human expert to introduce symbols that
aptly represent desired continuous goals. A few works
have proposed extensions to graph search algorithms to
enable them to handle constraints and objective func-
tions [7]. However, these approaches are only capable
of handling simple additive objective functions with soft
linear constraints.

In this work, we propose an approach for task plan-
ning that is capable of handling both linear and non-
linear constraints and optimizes for convex objective
functions to global optimality. We take a unique ap-
proach to the task planning problem by encoding the
entire task planning problem as a single Mixed Integer
Convex Program (MICP). By doing this, we gain the
flexibility of subjecting the problem to arbitrary action

ar
X

iv
:2

21
1.

09
63

2v
1

 [
cs

.R
O

]
 1

7
N

ov
 2

02
2

https://adubredu.github.io/gtpmip

constraints that need to be satisfied in order for the
resulting plan to be physically realizable by a robot.
We also escape the restriction of having to specify
planning goals symbolically as this encoding enables the
specification of continuous planning goals. We then use
an off-the-shelf Mixed Integer Programming solver to
solve the MICP to optimality, extract the grounded plan
and its optimal parameters and execute the plan with
a robot. The unique contributions of this work are as
follows:
• Firstly, we extend the Planning Domain Definition

Language (PDDL) to allow for the specification
of numerical action and task constraints, numerical
initial values of continuous task variables, numeri-
cal objective functions, numerical action dynamics
functions, numerical preconditions and numerical
effects. We call this extension the Hybrid PDDL
Description (HPD).

• Secondly, we propose a unique representation of
continuous actions as Funnels and propose an ap-
proach for representing the continuous plan space,
which we call the Hybrid Funnel Graph.

• Finally, we describe an approach for encoding the
Hybrid Funnel Graph as a single Mixed Integer
Convex Program which we solve using an off-the-
shelf MIP solver.

We evaluate our approach in simulation on several
2-D object rearrangement task planning problems sub-
ject to unique geometric constraints. We also demon-
strate our approach on real-world mobile manipulation
tasks involving kinematic constraints using the Digit
humanoid robot, as shown in Figure 1.

II. RELATED WORKS

A. Mixed Integer Programming

A Mixed Integer Program (MIP) is a mathematical
optimization problem with both integer and real-valued
variables [18]. The ability of MIPs to have both dis-
crete and continuous variables makes them ideal for
formulating sequential planning problems that involve
taking discrete actions which are subject to continuous
constraints [1], [6], [15], [24]. This work encodes the
optimal constrained task planning problem as a Mixed
Integer Convex Program (MICP).

B. Symbolic AI Planning

The state-of-the-art methods in STRIPS-style [8]
Symbolic AI Planning first decompose the planning
problem into a causal graph and employ graph search
techniques like A* [11] to find plans from some initial
node in the graph to a desired goal node [3], [12], [13].
Although these approaches thrive for purely symbolic
domains, they do not naturally allow for the incorpo-
ration of numerical constraints and objective functions

[16]. The formulation of AI Planning problems as In-
teger Programs has been explored a few times in the
planning and scheduling literature [25], [26].

In this work, we build up on Vossen et. al’s [26]
Integer Programming formulation by encoding the AI
Planning problem as a MIP and solving it using off-
the-shelf MIP solvers. This MIP encoding is conve-
nient because it naturally allows for the incorporation
of numerical constraints and objective functions into
the planning problem. This ability is essential because
real world problems often involve numerical constraints
and objectives. Metric-FF [14] is a symbolic planning
system that can account for numerical state variables.
However, unlike our approach, Metric-FF is incapable
of optimizing for convex objective functions, continuous
action dynamics and continuous task constraints.

C. Integrated Task and Motion Planning

The class of approaches that interleave symbolic AI
planning and continuous planning is called Task and
Motion Planning [2], [9], [22], [23]. Among these, ap-
proaches like Garrett et. al. [9] and Srivastava et. al. [22]
devise symbols to describe continuous constraints for
actions. These symbols are used as action preconditions
in the symbolic AI planning process and are evaluated
on demand. In addition to the chore of having to devise
symbolic abstractions for every continuous constraint,
these approaches are hampered by their requirement
of symbolic goal descriptions. They are incapable of
planning for continuous goal descriptions that can only
be evaluated by an objective function. By formulating
the planning problem as a Mixed Integer Convex Pro-
gram, our proposed approach is able to both reason
on the symbolic level using integer-valued variables
and integer inequalities and optimize for continuous
objective functions using the real-valued variables, and
convex equations and inequalities.

D. Combined symbolic and continuous planning as
Mathematical Programs

Works like Toussaint [23] and Li and Williams [19]
have sought to solve the combined symbolic and con-
tinuous planning problem by formulating them as Math-
ematical Programs. Toussaint [23] uses an iterative 3-
level Nonlinear Constrained Optimization to optimize
for continuous robot configurations over discrete action
sequences it acquires from running Monte Carlo Tree
Search. Our approach differs from Toussaint [23] in that,
we formulate the entire planning problem as a single
Mixed Integer Program, solving for both the discrete
action sequences and the continuous robot configura-
tions in a single run. Li and Williams [19] employ
hybrid flow graphs to represent the entire plan space
and formulate the planning problem as a Mixed Logic

Fig. 2: An overview of GTPMIP. Given a task, our approach represents the plan space as a Hybrid Funnel Graph, encodes the task and the
Hybrid Funnel Graph as a Mixed Integer Convex Program and solves it to produce an optimal action sequence which is executed by the robot.

Nonlinear Program in planning actions for autonomous
underwater vehicles in ocean exploration tasks. Our
representation of continuous actions as funnels and our
formulation of Hybrid Funnel Graphs to represent the
plan space are inspired by Li and Williams’s work.

III. PROBLEM FORMULATION

In this work, we tackle the problem of optimal task
planning under numerical constraints. Our goal is to gen-
erate a grounded plan made up of a logically consistent
sequence of actions, with each action associated with its
corresponding optimal continuous parameters. We will
use the task of package rearrangement within a ware-
house environment (The Warehouseman’s Problem [21])
by a mobile manipulator robot as a running example for
the remainder of this paper.

The inputs to our approach are:
• A set of initial symbolic propositions, I, that de-

scribe the initial symbolic state of the world. For
example, the set

I = {(hand-empty),(not (packed boxA))}

represents a world where the robot is not holding
any package and boxA has not been packed.

• A set of initial continuous variable values, X I
r

and X I
b , where X I

r represents the robot’s initial
configuration in SE(2) space and X I

b represents the
configurations of the packages, also in SE(2) space.

• A set of action primitives, A, that can be executed
by a robot. An action primitive is comprised of:

– Symbolic preconditions: A conjunction of
symbols whose truth-value must be true in
order for the action to be executable.

– Continuous preconditions: Continuous con-
straints on the continuous variables (Xr and
Xb) that must be satisfied in order for the action
to be executable.

– Action Dynamics: A dynamics function that
computes the state of the continuous variables
(Xr and Xb) after the action is executed.

– Symbolic effects: A conjunction of symbols
that represent the state of the world after the
action is executed.

– Continuous effects: The numerical values of
continuous variables (Xr and Xb) after the
action is executed.

• A set of task-specific numerical constraints H on
the continuous variables.

• A set of goal symbolic propositions, G, that must
hold true at the end of the plan execution. For
example, the symbolic propositions

G = {(hand-empty),(packed boxA)}

would represent a world where the robot is not
holding any package and boxA is packed.

• A set of goal continuous variable values, XG
r and

XG
b .

• An objective function J(Xr,Xb) to be optimized.

The output of our approach is a grounded plan π∗

made up of a sequence of logically consistent actions
{a1(X 1∗

r ,X 1∗
b), a2(X 2∗

r ,X 2∗
b), . . . , aN (XN∗

r ,XN∗
b)},

with each action associated with its corresponding
optimal continuous parameter values.

IV. METHODOLOGY

In this section, we describe each component of our ap-
proach, as illustrated in Figure 2. We name our approach
Grounded Task Planning as Mixed Integer Programming
(GTPMIP). As stated in the previous section, GTPMIP
takes as input a description of the optimal constrained
task planning problem including descriptions of action
primitives the robot is capable of executing. GTPMIP
then builds a Hybrid Funnel Graph from this description
to represent the entire plan space. Finally, it encodes the
Hybrid Funnel Graph and the planning problem as an
MICP, which it then solves using an off-the-shelf MIP
solver. Each of these components are described in the
following subsections.

Fig. 3: Qualitative results from the execution of plans generated by solving the package rearrangement problems in Tasks 1-5 with GTPMIP

A. Hybrid PDDL Description
Hybrid PDDL Description (HPD) is an extension of

PDDL that allows for the specification of task planning
problems with numerical action and task constraints,
numerical initial values of continuous task variables,
numerical objective functions, numerical action dynam-
ics functions, numerical preconditions and numerical
effects. Similar to PDDL, an HPD description of a
task planning problem is made up of two files; the
domain.hpd file and the problem.hpd file.

The domain.hpd file describes the action primitives
that the robot can execute. An action primitive has fields
• :action to specify the name of the action prim-

itive
• :parameters to specify the symbolic and con-

tinuous parameters the action takes.
• :precondition to specify a conjunction of

symbols whose truth-values must be true in order
for the action to be executable.

• :continuous precondition to specify con-
tinuous constraints on the continuous variables that
must be satisfied in order for the action to be
executable.

• :dynamics to specify dynamics functions that
compute the state of the continuous variables after
the action is executed.

• :continuous effect to specify the numerical
values of continuous variables after the action is
executed.

• :effect to specify a conjunction of symbols that
represent the state of the world after the action is
executed.

The problem.hpd file describes the initial symbolic
and continuous states as well as the goal symbolic and
continuous states of the task. It also describes the task-
specific constraints and the objective function to be

optimized.
PDDL+, which is also an extension to PDDL, allows

for the specification of numerical action effects. How-
ever, unlike HPD, PDDL+ is incapable of specifying nu-
merical task constraints, objective functions and action
dynamics functions.

B. Funnels and Hybrid Funnel Graphs

We represent action primitives as funnels. A funnel
is made up of three components; an input region, a
dynamics function and an output region. The input
region is the region of intersection of all the continuous
constraints that need to be satisfied before the action
can be executed (the continuous preconditions). The
dynamics function computes the state of the continuous
variables after the action is executed. We apply the
dynamics function on the peripheries of the input region
to result in a new region which we call the output region.
The geometric representation of this abstraction takes
the shape of a funnel as shown in Figure 4; hence
its name. The representation of action primitives as
funnels helps in determining which action primitives are
applicable given the state of the robot. If the values of
the continuous variables of the current state intersects
with the input region of a funnel and the symbolic
preconditions of the corresponding action hold true for
the symbolic propositions of current state, then the
action is applicable. The output region of the funnel also
determines the continuous state after the corresponding
action is executed. In addition to action funnels, No-op
funnels are identity operations which represent actions
that make no changes to the symbolic state of the world
and whose set of symbolic preconditions are equal to
their set of symbolic effects.

Given this representation of actions as funnels, we
build up the Hybrid Funnel Graph by alternating be-

tween state levels and action levels. A state level is a
set of all possible states (both symbolic and continuous)
at a specific time instance. An action level is a set of
all applicable funnels at a specific time instance. The
first state level is a set of all the symbolic propositions
I and continuous variables X I

b where X I
r that make up

the initial state. The continuous variables could take the
form of either singular continuous values or intervals of
continuous values that represent regions in the contin-
uous space (SE(2) space in our package rearrangement
problem formulation). We then compute all funnels that
are applicable given the symbolic and continuous state
variables in the first state level. These funnels constitute
the first action level. As noted in the previous paragraph,
a funnel is applicable to a state level if the continuous
state variables in the state level intersect with the input
region of the funnel and the symbolic preconditions of
the action corresponding to the funnel hold true for
the symbolic propositions of the state level. We also
include to the first action level, No-op funnels for each
symbolic proposition in the state level. The second state
level is then computed as the set of all symbolic effects
of actions and output regions of their corresponding
funnels in the first action level. These output regions are
computed by applying the funnel’s dynamics function to
the region of intersection of the continuous variables
of the first state level and the funnel’s input region.
Likewise, the second action level is computed in the
same manner as the first action level.

After the computation of each state level, we check
if the goal symbolic propositions G hold true in the
state level and if the goal continuous variable values
XG

b where XG
r intersect the continuous variable regions

in the state level. If both of these conditions are true, we
have a valid Hybrid Funnel Graph for the task and termi-
nate the graph building process. If not, we keep building
the graph by adding additional state and action levels.
Each action level represents a single time step in the
resulting plan. Hence the total number of action levels,
T , represents the total period of the entire resulting plan.
Note that, since the Hybrid Funnel Graph starts with the
initial state level and ends with the terminal state level,
the total number of state levels is greater than the total
number of action levels, T , by 1. This process is similar
to the process of building planning graphs in GraphPlan
[5] except that planning graphs in GraphPlan are made
up of only symbolic propositions and symbolic actions.
Hybrid Funnel Graphs are made up of both symbolic
propositions and continuous variables, hence its name.

Unlike with GraphPlan where the graph building pro-
cess is guaranteed to terminate if the planning problem
is valid, our approach to building Hybrid Funnel Graphs
is not guaranteed to terminate due to our inclusion of
continuous variables. However in this work we observe

Fig. 4: A funnel representation for the move action. The input region
is formed by the intersection of continuous precondition inequality
constraints (g1 to g4) on the robot position. The action dynamics
compute the next robot position, xt+1, yt+1 after the action is applied
to the poses in the input region. The output region represents the space
of resulting poses.

GTPMIP successfully terminate graph building in every
planning problem it is applied to.

C. Encoding as a Mixed Integer Convex Program

Before we encode the Hybrid Funnel Graph and the
planning problem as an MICP, we first define a set of
useful variables.
• Let T represent the total number of action levels in

our Hybrid Funnel Graph, which is also the total
planning period.

• Let F represent the set of all instantiated symbolic
propositions in our planning domain. Hence I ⊆ F
and G ⊆ F

• Let A represent the set of all instantiated actions
in our planning domain.

• Let pref represent the set of all actions that have
symbolic proposition f as a symbolic precondition.

• Let addf represent the set of all actions whose
symbolic effects affirm symbolic proposition f . (the
truth-value of f in the action’s symbolic effect is
True).

• Let delf represent the set of all actions whose
symbolic effects negate symbolic proposition f .
(the truth-value of f in the action’s symbolic effect
is False)

Next, we define integer variables. For all f ∈ F and
t ∈ 1 . . . T ,

pf,t =

{
1, if proposition f holds true at time t
0, otherwise

qa,t =

{
1, if action a is taken at time t
0, otherwise

Given these variable definitions, we now build the
constraints into our MICP.

The first set of constraints to be added are the initial
and terminal constraints.

The initial constraint,

pf,1 =

{
1, ∀f ∈ I
0, ∀f /∈ I

(1)

ensures that all initial symbolic propositions hold true
in the first state level.

The terminal constraint,

pf,T+1 = 1, ∀f ∈ G (2)

ensures that all goal symbolic propositions hold true in
the last state level.

The next set of constraints are the precondition con-
straints

qa,t ≤ pf,t, ∀a ∈ pref ,∀t ∈ 1 . . . T, f ∈ F (3)

These inequality constraints encode the implication con-
straint that if action a, which has symbolic proposition
f as its precondition, is taken in action level t, then f
should also hold true in state level t. This constraint is
called the precondition constraint because it ensures that
all preconditions of an action hold true before the action
can be taken.

The next set of constraints are the effect constraints

pf,t+1 ≤
∑

a∈addf

qa,t, ∀t ∈ 1 . . . T, f ∈ F (4)

These inequality constraints encode the implication con-
straint that if symbolic proposition f holds true in state
level t+ 1, then at least one action a which has f as a
positive effect should be taken in action level t.

The next set of constraints are the mutual exclusion
constraints

qa,t + qa′,t ≤ 1 (5)

for all t ∈ 1 . . . T and all a, a′ for which there exists an
f ∈ F such that a ∈ delf and a′ ∈ pref ∪ addf .
These inequality constraints ensure that two actions a
and a′ that cancel each other are not both taken in action
level t.

The next set of constraints are the task-specific nu-
merical constraints

qa,t ≤ h(X t
r ,X t

b), ∀h ∈ H, t ∈ 1 . . . T (6)

that ensure that if action a is taken in action level t,
the continuous variable parameters of a satisfy all the
task-specific numerical constraints H.

The final set of constraints are the initial and terminal
constraints

X 1
r = X I

r , X 1
b = X I

b (7)

and

X T+1
r = XG

r , X T+1
b = XG

b (8)

that ensure that the values of continuous variables at the
first and final levels are equal to the problem-specified
initial and goal continuous variable values respectively.

The objective function to be optimized

J(X t
r ,X t

b) ∀t ∈ 1 . . . T (9)

is a convex function on all continuous variables for the
entire planning period. For a warehouseman’s problem,
a suitable objective function would be to minimize the
total Euclidean distance the robot travels while rearrang-
ing the packages.

Putting together Equations 1 - 9, our entire MICP can
now be summarized as

min
X t

r ,X t
b ,qa,t

J(X t
r ,X t

b), ∀t ∈ 1 . . . T

subject to

pf,1 =

{
1, ∀f ∈ I
0, ∀f /∈ I

pf,T+1 = 1, ∀f ∈ G
qa,t ≤ pf,t, ∀a ∈ pref , ∀t ∈ 1 . . . T, f ∈ F

pf,t+1 ≤
∑

a∈addf

qa,t, ∀t ∈ 1 . . . T, f ∈ F

qa,t + qa′,t ≤ 1

qa,t ≤ h(X t
r ,X t

b), ∀h ∈ H, t ∈ 1 . . . T

X 1
r = X I

r , X 1
b = X I

b

X T+1
r = XG

r , X T+1
b = XG

b

p ∈ {0, 1}, q ∈ {0, 1},X ∈ SE(2)

(10)

We solve this MICP using an off-the-shelf MIP
solver which returns the grounded plan π∗ made
up of a sequence of logically consistent actions
{a1(X 1∗

r ,X 1∗
b), a2(X 2∗

r ,X 2∗
b), . . . , aT (X T∗

r ,X T∗
b)},

with each action associated with its corresponding
optimal continuous parameter values.

V. IMPLEMENTATION

A. Open-source software implementations

We provide open-source software implementations for
each of the components of our approach. We provide
• HPD.jl as a software package for reading and

parsing HPD files. It also contains example HPD
files for the warehouse rearrangement problem. url:
https://github.com/adubredu/HPD.jl

• HybridFunnelGraphs.jl as a software
package for building complete Hybrid Funnel
Graphs when given HPD files of an optimal
constrained Task Planning Problem. url:
https://github.com/adubredu/HybridFunnelGraphs.jl

• gtpmip.jl as a software package for encoding Hy-
brid Funnel Graphs and HPD files of an optimal
constrained task planning problem as an MIP and
solving the MIP to output the optimal plan. url:
https://github.com/adubredu/gtpmip.jl

https://github.com/adubredu/HPD.jl
https://github.com/adubredu/HybridFunnelGraphs.jl
https://github.com/adubredu/gtpmip.jl

• westbrick.jl as a simulator for a 2D ver-
sion of the Warehouse rearrangement problem. url:
https://github.com/adubredu/westbrick.jl

B. Solving the Mixed Integer Convex Program

Throughout our experiments, we use the Gurobi Op-
timization software [10] to solve all MICPs. We use
Gurobi because it was the fastest MIP solver amongst
all solvers considered.

VI. EXPERIMENTS

We evaluate the capabilities of GTPMIP on a series of
experiments both in simulation and on a physical robot.

A. Pure Symbolic Task Planning evaluation

First, we compare the symbolic task planning ca-
pabilities of GTPMIP to the state-of-the-art symbolic
planning approaches Fast-Downward [12], Pyperplan [4]
and Forward Search with A* [17]. We compare the
planning times of these approaches on purely symbolic
block stacking tasks with increasing problem size, with
Problem 1 having 4 blocks and Problem 5 having 9
blocks. Table I shows the average planning times of each
approach.

As can be seen from results in Table I, GTPMIP is
slightly faster than Fast Downward and Pyperplan on the
smaller Problems 1 - 4. GTPMIP however gets much
slower than the other symbolic planning algorithms as
the size of the problem increases in Problem 5. This
significant reduction in planning speed can be attributed
to the increase in number of variables and constraints
in the resulting MIP that GTPMIP solves. However,
the unique capabilities of GTPMIP that are lacking in
the other symbolic planning approaches are its ability
to account for numerical constraints and optimize for
numerical objective functions. This is demonstrated in
the next experiment.

B. Warehouse package rearrangement Problem

Next, we evaluate GTPMIP on a series of 5 tasks
to evaluate its ability to perform optimal task planning
under numerical constraints. Each task is setup with a
virtual robot in a 2D warehouse simulator. For each
Warehouse package rearrangement problem, the goal is
to plan for the optimal action sequence with optimal
continuous parameters that rearrange the packages by
satisfying a specific set of linear geometric constraints
on package placements in SE(2) space. The set of
constraints for the five tasks are listed in Table II.

We evaluate the time to build the Hybrid Funnel
Graph as well as the time to solve the resulting MICP
for each of these tasks. Quantitative experimental re-
sults for each task are presented in Table III, with
the corresponding qualitative results shown in Figure 3.

The experiments were run in westbrick.jl, a 2D
package rearrangement simulator we developed.

Videos of the robot executing the plans generated for
each task can be found on the project’s webpage at this
url: https://adubredu.github.io/gtpmip

C. Mobile Manipulation tasks with Physical Robot

Finally, we employ GTPMIP in planning for optimal
constrained tasks in the real world. We use the Digit [20]
humanoid robot platform to execute output plans. We
focus on 2 main tasks; the shelf-stocking task (pictured
in Figure 1) and the table serving task.

The shelf-stocking task requires that the robot stock
a shelf with a predefined set of grocery items at specific
positions on the shelf. The table serving task requires
that the robot collects a specified set of grocery items
from a shelf and distributes them to a dinner table in
predefined desired configurations.

The kinematic constraints we consider in these tasks
are the robot stance pose constraint and the grasp angle
constraint. The robot stance pose constraint constrains
the robot’s standing pose to a desired region in SE(2)
space from which the object to be grasped is kinemati-
cally reachable by the robot. The grasp angle constraint
ensures that the angle of approach of the robot’s grippers
results in a stable grasp.

Video demonstrations of the robot performing all
these tasks can be found on the project’s website at this
url: https://adubredu.github.io/gtpmip

VII. DISCUSSION

The primary assumption we made in this work is
that the entire environment was fully-observable; that
the robot had absolute knowledge about the poses of
all objects of interest, the best constraints to satisfy
and the right set of action primitives. However, robots
operating in most interesting real world settings do
not often have access to these capabilities. An exciting
avenue for future work would be to ease the expense
of predefining constraints. Could we learn to derive
numerical constraints from natural language or from
user demonstrations? Another potential avenue for future
focus would be to enable robots to autonomously learn
the right set of action primitives needed to complete a
given task.

VIII. CONCLUSION

We tackled the problem of optimal constrained task
planning by proposing an approach that encoded the
entire task planning problem as a single MICP and
solved it using an off-the-shelf MIP solver. We evaluated
our approach on a set of optimal constrained task plan-
ning problems and demonstrated its ability to generate
optimal plans including on a physical robot platform
under kinematic constraints.

https://github.com/adubredu/westbrick.jl
https://adubredu.github.io/gtpmip
https://adubredu.github.io/gtpmip

Algorithm Problem 1 Problem 2 Problem 3 Problem 4 Problem 5
Fast Downward [12] 0.102± 0.0003 0.104± 0.002 0.214± 0.001 0.218± 0.002 0.216± 0.008

Pyperplan [4] 0.167± 0.008 0.169± 0.012 0.169± 0.014 0.183± 0.012 0.190± 0.007
Forward Search [17] 0.0006± 0.004 0.0011± 0.001 0.0021± 0.0014 0.004± 0.002 0.008± 0.004

GTPMIP (ours) 0.039± 0.011 0.033± 0.0004 0.062± 0.009 0.172± 0.011 0.719± 0.014

TABLE I: Comparison of planning times (in seconds) of GTPMIP with those of state-of-the-art symbolic planners on purely symbolic block
stacking problems with increasing number of blocks. Problem 1 and Problem 2 have 4 blocks, Problem 3 has 5 blocks, Problem 4 has 6 blocks
and Problem 5 has 9 blocks.

Task Constraints

Task 1
x = 0.0 ∩ 0.0 ≤ y ≤ 4.0
0.0 ≤ x ≤ 4.0 ∩ y = 0.0
x = 4.0 ∩ 0.0 ≤ y ≤ 4.0

Task 2

x = 0.0 ∩ y = 5.0
x = 6.0 ∩ y = 5.0

4.5 ≤ y + 1.6x ≤ 5.0 ∩ . . .
0.0 ≤ x ≤ 3.0 ∩ 0.0 ≤ y ≤ 4.0
−5.0 ≤ y − 1.6x ≤ −4.5 ∩ . . .
3.0 ≤ x ≤ 6.0 ∩ 0.0 ≤ x ≤ 4.0

Task 3 x = 3.0 ∩ 0.0 ≤ y ≤ 6.0

Task 4
x = 0 ∩ 0.0 ≤ y ≤ 4.0
0.0 ≤ x ≤ 3.0 ∩ y = 4.0

0.0 ≤ 3.0 ∩ y = 0.0

Task 5
x = 0.0 ∩ 0.0 ≤ y ≤ 5.0
0.0 ≤ x ≤ 3.0 ∩ y = 4.0
x = 3.0 ∩ 0.0 ≤ y ≤ 5.0

TABLE II: The set of geometric constraints on package placements
for each of the Warehouse package rearrangement tasks.

Task HFG Building Time(s) MICP Solving Time(s)
Task 1 21.12± 1.230 0.26± 0.100
Task 2 87.41± 10.160 0.60± 0.084
Task 3 5.20± 0.140 0.12± 0.004
Task 4 29.92± 0.450 0.31± 0.044
Task 5 32.06± 0.330 0.30± 0.046

TABLE III: Times (in seconds) for building the Hybrid Funnel
Graphs(HFG) and for solving the resulting Mixed Integer Convex
Program for each of the tasks.

REFERENCES

[1] Bernardo Aceituno-Cabezas and Alberto Rodriguez. A global
quasi-dynamic model for contact-trajectory optimization. In
Robotics: Science and Systems (RSS), 2020.

[2] Alphonsus Adu-Bredu, Nikhil Devraj, Pin-Han Lin, Zhen Zeng,
and Odest Chadwicke Jenkins. Probabilistic inference in plan-
ning for partially observable long horizon problems. In 2021
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 3154–3161. IEEE, 2021.

[3] Alphonsus Adu-Bredu, Zhen Zeng, Neha Pusalkar, and
Odest Chadwicke Jenkins. Elephants don’t pack groceries: Robot
task planning for low entropy belief states. IEEE Robotics and
Automation Letters, 7(1):25–32, 2022.

[4] Yusra Alkhazraji, Matthias Frorath, Markus Grützner, Malte
Helmert, Thomas Liebetraut, Robert Mattmüller, Manuela Or-
tlieb, Jendrik Seipp, Tobias Springenberg, Philip Stahl, and Jan
Wülfing. Pyperplan. 2020.

[5] Avrim L. Blum and Merrick L. Furst. Fast planning through plan-
ning graph analysis. ARTIFICIAL INTELLIGENCE, 90:1636–
1642, 1995.

[6] Robin Deits and Russ Tedrake. Footstep planning on uneven
terrain with mixed-integer convex optimization. In 2014 IEEE-
RAS international conference on humanoid robots, pages 279–
286. IEEE, 2014.

[7] Stefan Edelkamp and Peter Kissmann. Optimal symbolic plan-

ning with action costs and preferences. In Twenty-First Interna-
tional Joint Conference on Artificial Intelligence. Citeseer, 2009.

[8] Richard E Fikes and Nils J Nilsson. Strips: A new approach to
the application of theorem proving to problem solving. Artificial
intelligence, 2(3-4):189–208, 1971.

[9] Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack
Kaelbling. Sampling-based methods for factored task and motion
planning. The International Journal of Robotics Research, 37(13-
14):1796–1825, 2018.

[10] Gurobi Optimization, LLC. Gurobi Optimizer Reference Man-
ual, 2022.

[11] Peter Hart, Nils Nilsson, and Bertram Raphael. A formal basis
for the heuristic determination of minimum cost paths. IEEE
Transactions on Systems Science and Cybernetics, 4(2):100–107,
1968.

[12] Malte Helmert. The fast downward planning system. Journal of
Artificial Intelligence Research, 26:191–246, 2006.

[13] Jörg Hoffmann. Ff: The fast-forward planning system. AI
magazine, 22(3):57–57, 2001.

[14] Jörg Hoffmann. The metric-ff planning system: Translat-
ing“ignoring delete lists”to numeric state variables. Journal of
artificial intelligence research, 20:291–341, 2003.

[15] François Robert Hogan and Alberto Rodriguez. Feedback control
of the pusher-slider system: A story of hybrid and underactuated
contact dynamics. arXiv preprint arXiv:1611.08268, 2016.

[16] Franc Ivankovic, Patrik Haslum, Sylvie Thiébaux, Vikas Shiv-
ashankar, and Dana Nau. Optimal planning with global nu-
merical state constraints. In Proceedings of the International
Conference on Automated Planning and Scheduling, volume 24,
pages 145–153, 2014.

[17] Steven M LaValle. Planning algorithms. Cambridge university
press, 2006.

[18] Jon Lee and Sven Leyffer. Mixed integer nonlinear program-
ming, volume 154. Springer Science & Business Media, 2011.

[19] Hui X Li and Brian C Williams. Generative planning for hybrid
systems based on flow tubes. In ICAPS, pages 206–213, 2008.

[20] Agility Robotics. Digit robot.
[21] R. Sharma and Y. Aloimonos. Coordinated motion planning: the

warehouseman’s problem with constraints on free space. IEEE
Transactions on Systems, Man, and Cybernetics, 22(1):130–141,
1992.

[22] Siddharth Srivastava, Eugene Fang, Lorenzo Riano, Rohan Chit-
nis, Stuart Russell, and Pieter Abbeel. Combined task and motion
planning through an extensible planner-independent interface
layer. In 2014 IEEE international conference on robotics and
automation (ICRA), pages 639–646. IEEE, 2014.

[23] Marc Toussaint. Logic-geometric programming: An
optimization-based approach to combined task and motion
planning. In IJCAI, pages 1930–1936, 2015.

[24] Andrés Klee Valenzuela. Mixed-integer convex optimization for
planning aggressive motions of legged robots over rough terrain.
PhD thesis, Massachusetts Institute of Technology, 2016.

[25] Menkes HL Van Den Briel and Subbarao Kambhampati. Opti-
plan: Unifying ip-based and graph-based planning. Journal of
Artificial Intelligence Research, 24:919–931, 2005.

[26] Thomas Vossen, Michael O Ball, Amnon Lotem, and Dana
Nau. On the use of integer programming models in ai planning.
Technical report, 1999.

	I Introduction
	II Related Works
	II-A Mixed Integer Programming
	II-B Symbolic AI Planning
	II-C Integrated Task and Motion Planning
	II-D Combined symbolic and continuous planning as Mathematical Programs

	III Problem Formulation
	IV Methodology
	IV-A Hybrid PDDL Description
	IV-B Funnels and Hybrid Funnel Graphs
	IV-C Encoding as a Mixed Integer Convex Program

	V Implementation
	V-A Open-source software implementations
	V-B Solving the Mixed Integer Convex Program

	VI Experiments
	VI-A Pure Symbolic Task Planning evaluation
	VI-B Warehouse package rearrangement Problem
	VI-C Mobile Manipulation tasks with Physical Robot

	VII Discussion
	VIII Conclusion
	References

