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Abstract— Sample efficiency has been a key issue in reinforce-
ment learning (RL). An efficient agent must be able to leverage
its prior experiences to quickly adapt to similar, but new tasks
and situations. Meta-RL is one attempt at formalizing and ad-
dressing this issue. Inspired by recent progress in meta-RL, we
introduce BIMRL, a novel multi-layer architecture along with
a novel brain-inspired memory module that will help agents
quickly adapt to new tasks within a few episodes. We also utilize
this memory module to design a novel intrinsic reward that
will guide the agent’s exploration. Our architecture is inspired
by findings in cognitive neuroscience and is compatible with
the knowledge on connectivity and functionality of different
regions in the brain. We empirically validate the effectiveness
of our proposed method by competing with or surpassing the
performance of some strong baselines on multiple MiniGrid
environments.

I. INTRODUCTION

A major problem with most model-free RL methods is
their sample inefficiency and poor generalizability. Even for
simple tasks, these methods require thousands of interactions
with the environment. Furthermore, even after learning a
task, slight changes in the environment dynamics or the
underlaying task will force us to basically retrain the agent
from scratch. To combat these issues, a number of methods
have been proposed that utilize ideas from multi-task and
meta learning ([1], [2]). Some of these methods treat the
task-ID like an unobservable latent variable in the underlay-
ing POMDP and condition their policy on a learned, task
belief state [1]. However, these methods generally use some
simplifying assumptions that limits their generalizability. Our
proposed method, BIMRL, is similar in that it learns to
identify a suitable task-specific latent and uses it to quickly
adapt, but relaxes some of these assumptions. Similar to
some prior works ([1], [3]), we use variational methods to
estimate this latent variable. However, by introducing a new
factorization of the log-likelihood of trajectories, our method
learns a different context embedding that is more consistent
with POMDP assumptions and can also be interpreted in a
more meaningful way.

Another central issue with RL is the well-known
exploration-exploitation dilemma [1]. If an agent wants to
quickly adapt to a new task, it must be able to explore the
environment and obtain relevant experiences. Nonetheless,
with complex tasks and environments, conventional explo-
ration methods, such as epsilon-greedy exploration, are not
enough. Intrinsic rewards that encourage suitable exploration
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are currently one of the most successful approaches. Our
novel memory module provides an intrinsic reward to guide
the exploration; thus alleviating the problems that arise from
exploration across different tasks. Aside from this reward
our memory module, which consists of an episodic part that
resets after each episode, and a Hebbian part ([4]) which
retains information across different episodes of a particular
task, gives us a performance boost in memory-based tasks
while helping deal with catastrophic forgetting that comes
up in multi-task settings.
To summarize, our contributions are as follows:

1) Proposing a multi-layer architecture that bridges
model-based and model-free approaches by utilizing
predictive information on state-values. Each layer of
our architecture corresponds to a different part of the
Prefrontal Cortex (PFC) which is known to be respon-
sible for important cognitive functionalities such as
learning a world-model [5], planning [6], and shaping
exploratory behaviours [5]. One of the objectives in
this architecture is derived from our newly proposed
factorization of the log-likelihood of trajectories. This
factorization is more robust to violations of POMDP
assumptions and also takes the predictive coding ability
of the brain into consideration [7].

2) Introducing a neuro-inspired memory module compat-
ible with discoveries in cognitive neuroscience. This
module will help in memory-based tasks and give the
agent the ability to preserve information, both within
an episode and across different episodes of some task.
The design of this memory module is reminiscent of
Hippocampus (HP) as the main region assigned to
episodic memory in the brain [8].

3) Proposing a new intrinsic reward based on our memory
module. This reward does not disappear over time,
is task-agnostic, and is very effective in a multi-task
setting. It will encourage exploratory behaviour that
leads to faster task identification.

II. RELATED WORK
A. Meta Reinforcement Learning

Meta reinforcement learning is a promising approach for
tackling few-episode learning regimes. It aims to achieve
quick adaptation by learning inductive biases in the form of
meta-parameters. There are multiple approaches to meta-RL,
two of the most popular being gradient based methods and
metric based methods. Another popular family of approaches
use a recurrent neural network (RNN) [2]. Some previous
works try to extend this approach and use an RNN to extract



some context that will be used to inform the policy. Recently,
by observing the effectiveness of variational approaches for
estimating the log-likelihood of trajectories, some methods
proposed to use the estimated context (referred to as the
belief state in the literature) to inform the policy about its
current task ([1], [3]). This belief state should contain infor-
mation about environment dynamics as well as the reward
function of the task. Ideally, conditioning on this belief would
convert the POMDP into a regular MDP. However, these
methods typically impose some constraints on the underlay-
ing POMDP (for instance, [1], [3] consider Bayes-adaptive
MDPs which are a special case of the general POMDPs).
These restrictions may be violated in some scenarios. On
the contrary, our proposed method is more robust to such
violations.

B. Modular Architectures

Injecting a modular inductive bias into policies is a
promising strategy for improving out-of-distribution general-
ization in a systematic way. [9] proposed a modular structure
where each module can become an expert on a different
part of the state space. These modules will be dynamically
combined through attention mechanisms to form the overall
policy. [10] introduced an extension called the bidirectional
recurrent independent mechanism (BRIMs). BRIM is com-
posed of multiple layers of recurrent neural networks where
each module also receives information from the upper layer.
A modified version of BRIM is used in our architecture as
well.

C. Combining Model-Based & Model-Free

There has been efforts on trying to combine model-
based and model-free approaches. Dyna [11] and successor
representation [12] are two such attempts. There has also
been some investigations on whether our brains work in
a model-based or model-free manner, which has resulted
in some neuro-inspired computational models ([13]). We
propose a new way of combining these two approaches that
is inspired by the predictive capabilities of PFC [14].

D. Exploration

Another central issue in RL is efficient exploration of the
environment. Methods that encourage effective exploratory
behaviour through the use of an intrinsic reward are among
the most popular and effective ways of dealing with this
problem. Intrinsic rewards can be obtained from a novelty
or curiosity criterion ([15]). It is worth noting that effective
exploration becomes an even bigger issue in the meta-
learning setting ([3]).

III. METHODS

In this chapter we introduce our proposed method. We will
first derive a factorization for a trajectory’s log-likelihood.
Using this factorization, we will design a multi-layered
architecture with multiple loss functions. We will then shift
our focus and introduce our memory module. Finally, we will
give some intuitive interpretations of our proposed method

and mention some of the connections to different regions of
the human nervous system.

A. Likelihood Factorization

Our method builds upon VariBAD [1] and we use the same
terminology as is used there. Similar to VariBAD, we aim
to optimize the following ELBO loss corresponding to log-
likelihood of a trajectory 7:

ELBO, = E, [lE,w (m|z,) [log pe (T.g+ | m)] (1

—KL (g (m| ) ||po(m))]

where p is the trajectory distribution induced by our policy,
m is the belief state, and H' is the time horizon for a
task, which is set to be four times the horizon for an
episode. Notice that this objective is comprised of two parts.
The first part, By |z, [logpg (Ty+ | m)], is known as the
reconstruction loss and the second part is the KL-divergence
between the variational posterior gy and the prior over
the belief state, pg(m). Unlike VariBAD, we factorize the
reconstruction loss as follows:

log p (Tz+ | m,aq,... n) =logp(so | m) (2)
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It is worth mentioning that unlike previous methods which
use the Bayes Adaptive Markov Decision Process (BAMDP)
formulation and assume perfect observability given the belief
state (which will not hold in extreme partial observability
scenarios), our factorization uses the predictive information
in m and asserts that our belief should contain enough
information to predict the next n states and rewards, given
the next n actions. Contrary to VariBAD that conditions
the trajectory on the full history of actions, we condition
a trajectory on only the first n actions (hence, the added
fourth summation term in [2). This modification will result
in an added action simulation network which will also help
in learning better representations in the first level of the
hierarchical structure. This predictive coding capability is
compatible with those observed in the PFC ([7]).

logp a1 | sicj. ,+1,m)]

B. Brain Inspired Meta Reinforcement Learning (BIMRL)

Our proposed architecture is composed of a recurrent task
inference module responsible for updating our estimate of
belief state about the current task, followed by a hierarchical
structure similar to BRIM [10], that conditions on the in-
ferred belief state. As we will see, this hierarchical structure
is similar to PFC in how they function. The last layer of this
hierarchical structure is a controller whose hidden state will
be fed into an actor-critic network. We also have a memory
module that directly interacts with the controller. Figure
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Fig. 1: A bird’s-eye view of our model. The major components of BIMRL include the task inference module, the multi-layer

hierarchical structure and the memory module.

demonstrates how all these modules are put together. In what
follows, we will briefly introduce each parﬂ

1) Hierarchical Structure (BRIM): The task inference
module is a recurrent network that processes the last (ob-
servation, action, reward) and produces a belief state that
will be passed to each of the three layers in the hierarchical
structure as well as the memory module.

The first level of BRIM (as shown in Fig.[I) is responsible
for learning a world model. This layer uses the last observa-
tion, action and reward in addition to the current belief state
to predict dynamics, inverse dynamics and the rewards. It
does so using three simulation networks. This layer is trained
to maximize the trajectories log-likelihood as is formulated
in 2] Figure [2] illustrates this layer in more detail.

C\ Dynamic o

\
Simulation =)
\_/
Inverse Dynamic 4 \ [Env.Model
—>| } |
Module 1 Module 2 Module 3 Simulation | Loss il Loss
mys,a,r o —
Reward

—> f
Simulation =
N

b}

Fig. 2: First level of the hierarchical structure. Responsible
for learning a world-model.

The second level (the “Planning” box in Fig. [I) is respon-
sible for predicting the value of the next n steps. It will take
in the previous level’s hidden state (/1) as well as the current
state and the next n actions, and predicts the value for the
next n time-steps. It aims to minimize the following loss

"More details about the architectures and hyperparameters that were used
as well as the code can be found here
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where Gy, is the k-step TD return defined as
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In the above equation, y denotes the parameters of n-step
value decoder network, /4, is the output of the second level
and O shows the parameters of the critic head in the actor-
critic network.

The existence of this layer between the upper layer, re-
sponsible for learning the model of the environment, and the
lower layer, which directly affects decision making, allows
the following interpretations:

« Model-based approach: Model-based methods first
obtain a model of the environment and then plan their
next action using this model. In our proposed architec-
ture, the first layer aims to learn as much as possible
about the environment. The second layer receives this
information and predicts the value for the next n steps.
To do so accurately, this layer must be able to perform
some sort of planning. Therefore, in our model the two
explicit stages in model-based approaches are performed
implicitly by the networks in the first and second layer.

« Context-based RL: Methods such as VariBAD inform
the agent of its task by providing it with a context vector
obtained from a dynamics prediction network. The con-
text vector that we provide is even more informative as
it also contains the necessary information for predicting
the value of states in the next several steps.
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Finally, the third level of BRIM, known as the controller,
aggregates the information form the previous BRIM layer
and the most recent observations form the environment.
Additionally, the hidden state of this layer modulates access
to the memory, which will be discussed in the next section.
The aggregated information will then be used by shallow
actor and critic networks to determine the next action and
value. We use PPO [16], an on-policy learning algorithm, to
train our policy networks.

This hierarchical structure is reminiscent of certain parts
of the brain. The first layer is similar to the medial Prefrontal
Cortex (mPFC) as they are both responsible for learning
a predictive model of the environment [7]. Similarly, the
second layer corresponds to the Obitofrontal Cortex (OFC)
which, in some neuroscientific literature, is identified as
the main region responsible for multi-step planning in the
brain [6]. Lastly, a part of the nervous system that connects
PFC to HP (episodic memory) and the Striatum (which
corresponds to actor-critic networks [17]) is known as the
Anterior Cingulate Cortex (ACC) [18]. This region manages
the use of control or habitual behaviours based on the
degree of uncertainty about the task. It is also known as
one of the pathways for transferring information from PFC
to HP to guide the transition between the working memory
(corresponding to PFC [19]) and the episodic memory [8].
In our model this corresponds to the third layer which
modulates the memory and aggregates information in time
[18].

2) Memory: The memory module is itself composed of
two parts: an explicit episodic memory and a Hebbian
memory. At each time step, the output of these two parts are
combined using an attention mechanism and is then sent to
the controller (see Fig. [3). The hidden state of the controller
is used as the query for this attention mechanism and weights
the contribution of each module.

By concatenating the embedded observation of the agent
along with the output of the task inference module at each
time-step, we create the “event key” and the hidden state of
the controller is used as the “event value”. In what follows,
we will reference these event keys and values.
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Fig. 3: The interaction between the controller and the mem-
ory module

Explicit memory is a slot-based memory that stores the
event keys and values. At each time-step, the hidden state of

the last level of BRIM is used as the query and the explicit
memory is accessed using a multi-head attention mechanism.
At the end of each episode, we compute the normalized
“reference time” for each slot, which indicates how often
each stored event was called upon by the incoming queries,
on average. Equation (5) shows how it is calculated.
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In above equation r; is the reference time for the i-th slot,
s; is the time when this slot was added to the memory,
W! is attention weight attributed to the i-th slot at time ¢
and H is the episode length. As we will see, the reference
time is needed for updating the Hebbian memory. Figure [{]
demonstrates how the episodic memory works.
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The Hebbian memory works on the time scale of tasks,
i.e., it won’t be reset after each episode. Once an episode
is completed, the top k percent of slots with the largest
reference times are transferred to the Hebbian memory
through the process of memory consolidation [20]. These
transferred slots will update the Hebbain memory using the
Hebbian learning rule. Equation (6)) shows a general form of
this learning rule:

assoc max assoc S S assocC 1,8 2
AW =y W =W ) v ok = v- W™k = (6)

Here, ¥, is the correlation coefficient, y_ is the regularization
coefficient, w™* imposes a soft constraint on the maximum
connection weight, and W3**°¢ denotes the parameters of the
Hebbian network. As can be seen in the above equation,
this learning rule consists of multiple meta-parameters that
control the plasticity of synaptic connections. Inspired by the
phenomenon of meta-plasticity ([21]), a meta-learning mech-
anism is used so that these meta-parameters can be learned.
Using the Hebbian learning rule as learning mechanism in
the inner loop will also circumvent the issue of facing a
second order optimization problem.

This transfer of information from a dynamic memory
that grows into a fixed-size memory can also help with the
decontextualization of the event [22].

3) Intrinsic Reward: Our proposed intrinsic reward is
added to the sparse extrinsic reward of the environment
to encourage exploration, both on episodic and task-level
time scales. This reward is obtained by multiplying two
components. The first component, ri""*'", is a curiosity
based reward that encourages visiting surprising states. It is
a convex combination of reward, state, and action prediction



errors. This reward is scaled using a second component, .
We can think of this second part as a factor that adjusts
for the newness of the current observation. It is defined as
the distance between the most recent observation and the
k-th nearest event stored in the episodic memory. If the
agent encounters an observation that is unlike what has been
seen in the on-going episode, this coefficient will be large,
resulting in a high intrinsic reward. The following equations
fully define the intrinsic reward:

r;nlrinSiC (r171 »St—1,r—1 7m) = afr;:unosnya (7)
where
o = [|x; = NNix (x|,
rtcunoslty = 7Eq¢(m\r”) [Arewara X log po (11 | Si—1,a:—1,5:,m)

+Astate X log pe (S, | st—17at—17m)
+Aacti0n x log pg (at | Sty St—1 7m)] ,

2vstate + )vaction + )l'reward =1

Note that NNy x is the k-th nearest event to the current one,
among the records that are stored in the episodic memory,
X.

IV. EXPERIMENTS

A. Experimental Setup

For evaluation, we used MiniGrid [23], a set of
procedurally-generated, partially-observable environments in
which an agent can interact with multiple objects. At each
time-step, the agent receives its observation in the form of
a 7x7x3 tensor and can perform any of the available 7
actions (moving in different directions, picking up objects,
etc.). In the meta-training, the agent will see four episodes
of each task and has to learn to adapt and solve the task
within the time-span of those four episodes. At test time,
we report the performance on the last (fourth) episode of
each task. We used four sets of tasks: MultiRoom-N4-S5,
MultiRoom-N6, KeyCorridorS3R1, and KeyCorridorS3R2.
In the KeyCorridor set of tasks, the agent has to pick-up
an object that is behind a locked door. The key is hidden in
another room and the agent has to find it. The MultiRoom set
of tasks provide an environment with a series of connected
rooms with doors between them. The goal is to reach a green
square in the final room.

To compare our results, we used a number of baselines:
(VariBAD) [1], (HyperX) [3], and (R1?) [2]. We also pro-
posed a new strong baseline by augmenting VariBAD with
BeBold [24] (VariBAD+BeBold), a recently introduced
intrinsic reward that improves the performance in sparse-
reward environments.

B. Results

Fig. ] plots the average return of our model as well
as those of our baselines. As can be seen, some of the
baselines do not get any reward in the more challenging
tasks. This is because those tasks have larger state-spaces
and require performing several actions in a particular order.
This makes them difficult to solve for methods without a
suitable exploration strategy.

In all four sets of tasks, our method achieves the best
performance while converging faster and observing fewer
number of frames. In MultiRoom-N6, one of the more
difficult tasks, our method outperforms VariBAD+BeBold by
a significant margin. In this task, other baselines fail to get
any reward even after training for more than 2M frames.

C. Ablation study

To investigate the significance of each part of our proposed
architecture, we evaluated the performance of three ablated
versions of our model on the MultiRoom-N4-S5 set of
tasks. We examined a model without the memory module
(BIMRL w/o Mem), one in which the second level of hi-
erarchical structure (responsible for n-step value prediction)
was removed (BIMRL w/o Value pred), and one with
the vanilla VariBAD trajectory factorization instead of our
proposed factorization (BIMRL w/o N step pred). The
result of this ablation study is depicted in Fig. [ It can be
seen that all ablated versions are less sample-efficient, indi-
cating the usefulness of different parts of our model. Most
notably, the exclusion of the memory module significantly
reduces the convergence rate.
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BIMRL w/o Mem

0.8 — ==

Average Retum
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Fig. 6: Performance of ablated versions against that of the
full model

V. CONCLUSIONS

We introduced BIMRL, a novel, modular RL agent in-
spired by the human brain. BIMRL induces several useful
inductive biases which helps it meta-learn patterns across dif-
ferent tasks and to adapt quickly to new ones. It emphasizes
the significance of taking inspiration from biological systems
in designing artificial agents. For future work, one could
investigate adding another layer to the memory, in the form
of a life-long generative memory module. Additionally, more
extensive experiments on tasks other than those in MiniGrid,
particularly memory-based tasks, would shed more light on
the extent to which such multi-layered architectures can
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help with fast adaptation to new situations. Furthermore,
extending our architecture with new modules that make use
of textual instructions would allow the agent to test its
adaptation capabilities on a much larger set of tasks. This
provides yet another avenue for future research.
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