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Abstract—The ability to produce large-scale maps for nav-
igation, path planning and other tasks is a crucial step for
autonomous agents, but has always been challenging. In this
work, we introduce BEV-SLAM, a novel type of graph-based
SLAM that aligns semantically-segmented Bird’s Eye View (BEV)
predictions from monocular cameras. We introduce a novel form
of occlusion reasoning into BEV estimation and demonstrate
its importance to aid spatial aggregation of BEV predictions.
The result is a versatile SLAM system that can operate across
arbitrary multi-camera configurations and can be seamlessly
integrated with other sensors. We show that the use of multiple
cameras significantly increases performance, and achieves lower
relative error than high-performance GPS.

The resulting system is able to create large, dense, globally-
consistent world maps from monocular cameras mounted around
an ego vehicle. The maps are metric and correctly-scaled, making
them suitable for downstream navigation tasks.

I. INTRODUCTION

Mobile autonomous agents require an information-rich rep-
resentation of their environment for navigation, planning and
localisation. Typically, a top-down orthographic projection
(also known as a Bird’s Eye View (BEV) map) is preferred,
since planning tasks are simplified in orthographic space.

However, it is challenging to build this representation from
sensors without prior knowledge of the environment. LiDAR
is metric and allows orthographic projection, but is sparse,
expensive and computationally demanding. Cameras offer an
alternative, as they are cheap, already equipped on many
vehicles and provide dense, high frame rate data with low
throughput. This motivates a body of research aiming to
produce BEV maps from monocular cameras alone. How-
ever, there is little focus on spatial aggregation of these
maps, or their application in other tasks such as mapping
and localisation. We present BEV-SLAM, a novel SLAM
system combining state-of-the-art computer vision research
with graph-based SLAM to produce complete BEV semantic
maps from multiple monocular cameras mounted around an
ego vehicle.

We use a CNN to map directly from images to a
semantically-labelled BEV map. This approach benefits from
depth reasoning implicit in the CNN, meaning that, unlike
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Fig. 1: Multiple occlusion-reasoned Bird’s Eye View predic-
tions from monocular cameras mounted around an ego vehicle.

many other SLAM systems, the results are appropriately scaled
and can be easily integrated with additional sensors or maps.

We focus on the maritime domain, where the strong priors
available in automotive, such as the uniformity of road struc-
tures, are unavailable. To account for the lack of available
data, we develop challenging synthetic datasets for semantic
BEV prediction and occlusion reasoning, which are used to
optimise the system.

BEV-SLAM is built around BEV alignment: we align ortho-
graphic BEV predictions using a custom alignment framework,
and use this as a motion cue in a pose graph. Loop closure
candidates are identified using feature-matching, but are sim-
ilarly verified using BEV alignment. Unlike the majority of
visual SLAM systems, which tend to be sparse in features for
feasibility, this provides a rich semantic representation of the
world for downstream navigation tasks, such as path planning.

We highlight challenges associated with spatial aggregation
of BEV maps due to the currently unsolved issue of temporal
inconsistency, and propose explicit occlusion reasoning as
a specific solution for BEV-SLAM. Following a thorough
analysis of performance in simulation, we then demonstrate
that BEV-SLAM is able to recreate trajectories from real-world
sequences.

Our contributions are as follows:



1) We develop graph-based BEV-SLAM, a versatile SLAM
system with the ability to incorporate multiple sensors.

2) We introduce occlusion reasoning into BEV estimation,
and demonstrate the importance of explicit occlusion
reasoning for spatial aggregation of BEV maps for
SLAM.

3) We present a maritime dataset to provide a challenging
test environment for BEV-SLAM, and make it publicly
available for training and validation of similar systems.

II. RELATED WORK

A. Bird’s Eye View Maps

Mobile autonomous systems require a compact,
semantically-rich, spatially-meaningful representation of
their environment which captures both the useful aspects of
geometry and the overall layout of the scene. The importance
of spatial reasoning motivates a body of research that aims
to produce overhead views from ground-level inputs, and
vice-versa (often called a world map, top-down map, or
Bird’s Eye View (BEV) map).

There are multiple routes to produce a complete BEV
map. The simplest are geometric approaches, using inverse
perspective mapping to perform the transformation from the
camera perspective space to the orthographic BEV space [1],
[2]. However, this results in “shadows” in the occluded regions
behind objects that lie above the ground plane, which can only
be resolved if the objects are visible from multiple angles. The
same issue also affects orthographic projections from LiDAR.
One solution is to use a Generative Adversarial Network
(GAN) [3], [4], trained with aerial imagery to produce realistic
overhead views, but it is challenging to ensure that geometry
is preserved [5].

To combat this issue and introduce spatial reasoning, learn-
ing approaches have been adopted to transform directly to
BEV. These can be divided by whether they require the camera
geometry to be provided explicitly [6]–[8], or can implicitly
learn the transformation [9]–[11]. BEV predictors have been
used as an intermediate representation for the estimation of,
for example, 3D bounding boxes [7]. However, building on
advances in 2D scene understanding, recent research [11]–
[13] has focused on extending semantic segmentation to BEV
such that a complete BEV map of the environment is a useful
endpoint in itself. Usually, the goal is to produce a semantic
occupancy grid, due to its suitability for sensor fusion and deep
learning [9]. Some examples use a two-step process [1], [11],
performing semantic segmentation in the image plane before
performing the transformation to BEV, while others adopt a
more streamlined end-to-end learning approach [8], [9].

One advantage of learning approaches is that they are able
to reason about objects that are wholly or partially occluded;
occlusion reasoning is recognised as a major stepping stone
for 3D scene understanding [6], [14], [15], but is challenging
using exclusively monocular cameras.

Roddick et al. [8] substantially improved upon previous end-
to-end deep learning approaches through the use of pyramid
occupancy networks with a multi-scale pyramid to transform

between the perspective camera and orthographic BEV coordi-
nate systems, outperforming the previous state-of-the-art [11].
Saha et al. [16] improved upon this and addressed temporal
aggregation of BEV maps from monocular cameras. However,
temporal consistency remains a concern; current approaches
rely upon the uniformity of the automotive environment to
aid temporal understanding, which does not extend to other
domains. Hu et al. [17] focused on future prediction using
instance segmentation, but, to our knowledge, no research
currently explores BEV-based mapping or localisation.

B. Visual SLAM

Since Simultaneous Localisation and Mapping (SLAM) is
considered a prerequisite for truly autonomous mobile sys-
tems, a substantial body of research exists to realize more
general solutions and improve mapping systems [18]. The-
oretically, SLAM is a solved problem [19]: Leonard et al.
[20] demonstrated in the early 1990s that SLAM solutions
exist in the infinite data limit. However, issues remain with
building information-dense maps for practical applications,
and realising hardware-tractable solutions. This motivates the
use of deep-learning-based sensors in a SLAM pipeline.

Monocular SLAM is a particularly challenging problem due
to the lack of three-dimensional cues and loss of scale. The
first solution was MonoSLAM [21], [22], using an Extended
Kalman Filter with points tracked between images. Kalman-
filter-based approaches build upon this technique, often fo-
cusing on improving mid-term data association to retrieve
structure from motion, such as in [23].

Global optimisation is required to improve upon these
methods; keyframe-based approaches estimate a world map
using only a few frames and use bundle adjustment to enforce
consistency. Alternatively, graph-based SLAM approaches,
where poses are represented as vertices and odometry mea-
surements as edges in a pose graph, perform periodic non-
linear optimisation to ensure a consistent world map.

ORB-SLAM [24], and its direct descendants ORB-SLAM2
[25] and ORB-SLAM3 [26], are perhaps the most complete
indirect visual SLAM implementations, and remain popular
because they can be configured with multiple sensor types,
such as monocular, stereo and RGB-D cameras. Here, ORB
features are tracked between keyframes, and long-term data
association is achieved using a visual bag-of-words. Though
ORB-SLAM estimates an output trajectory, it produces a
very sparse map that does not retain information useful for
downstream navigation tasks.

In contrast, LSD-SLAM [28] is a direct method which
constructs a pose graph based on keyframes with an inverse
depth map, and directly uses pixel intensities for tracking be-
tween images. However, LSD-SLAM struggles with occlusion
and moving objects, and is complicated by the transformation
from the photometric alignment to world space. LSD-SLAM
densifies the map by using more images, but neither ORB-
SLAM nor LSD-SLAM produce a complete dense world
representation. Later works from the TUM community, such
as Direct Sparse Mapping (DSM) [29] and Direct Sparse



Odometry (DSO) [30], which can include loop closure (LDSO)
[31], can predict accurate poses where point-detection-based
approaches fail, but still produce sparse maps. All of these
techniques also produce unscaled maps without the addition
of inertial sensors, stereo cameras or learning-based measure-
ments, making integration with other sensors challenging.

More recently, there has been a drive to create flexible
frameworks that allow multiple sensors and techniques to be
seamlessly combined. Plug-and-Play SLAM [32] and maplab
[33] are examples of multi-modal SLAM systems that give
the ability to combine different sensor configurations. Plug-
and-Play SLAM, for example, has been demonstrated with
wheel odometry, inertial sensors, LiDAR and RGB-D cameras.
These frameworks attempt to standardise SLAM solutions and
demonstrate the importance of modularity and customizability,
characteristics that we wish to build into BEV-SLAM.

III. METHODOLOGY

BEV-SLAM is developed using the common recursive
Bayesian SLAM formulation, where ego pose and map es-
timates are represented by the probability distribution

P (xk,m |Z0:k,U0:k,x0). (1)

In this case, x is the ego vehicle pose, m the BEV map,
Z landmark observations in orthographic BEV space, and U
alignment between subsequent BEV maps for timestep k. This
can be separated into a sensor model

P (zk | xk,m) (2)

and motion model

P (xk | xk−1,uk) (3)

in accordance with Bayes’ Theorem and the Markov assump-
tion.

We build a pose graph using the alignment of BEV map
predictions from monocular images to obtain an initial esti-
mate for the current pose from (3). Landmarks observed in the
BEV plane, and alignment between the corresponding maps,
can then be used to add additional edges to the graph. We
perform a pose graph optimisation to obtain pose estimates
x0:k, and combine the original BEV maps accordingly to
produce a top-down semantic map m ∈ RW×H×C for C
classes (semantic labels). Alternatively, BEV-SLAM can be
deployed in an online fashion, where (2) and (3) are computed
iteratively, and pose optimisation is performed periodically.

A system overview is presented in Fig. 2.

A. BEV Prediction

Pyramid occupancy networks have been shown to be the
state-of-the-art for BEV estimation [8], [16]. Since our goal is
to create globally consistent maps, we use a similar approach,
with key modifications for occlusion. The input image is
passed through a ResNet and feature pyramid at multiple
scales, then collapsed along the y-axis and expanded in the Z
direction. This is based on the observation that object height

in the image plane is a key indicator of distance. A multi-scale
transformer layer is applied to remove perspective distortion
(taking into account the focal length of the camera), and the
output decoded.

For training, we use a multi-scale dice loss across C classes
and N scales:

Ldice = 1− 1

|C|

C∑
c=1

2
∑N

i t̂i
c
tci∑N

i t̂i
c
+ tci + ϵ

(4)

where t̂i
c

is the ground truth occupancy and tci is the network
prediction (ϵ is a small constant to prevent division by zero).

B. Occlusion Reasoning

Though deep learning approaches to BEV prediction enable
more effective spatial reasoning than pure geometric methods,
consistency through time remains unsolved and is an active
area of research. This is especially true in occluded regions
in the input image, where predictions are inherently unpre-
dictable. This creates a problem for spatial aggregation of BEV
maps, as naı̈ve alignment will consistently produce inaccurate
odometry measurements.

We therefore propose a novel solution: an extra output
layer, enabling the network to predict an occlusion mask
in addition to the semantic map. The predicted occlusion
mask can then be used for the downstream alignment task, to
improve the accuracy and temporal consistency of odometry
measurements.

We introduce specific rules to encourage temporal consis-
tency: smaller classes are assumed to be entirely visible, even
if they are partially occluded, and we assume that we are able
to accurately predict the depth of larger classes. This is because
the network can reasonably infer shape and size provided part
of a small object is visible, and prior work has shown that
BEV predictors have sufficient spatial reasoning to accurately
predict depth.

Occlusion masks can be rendered directly in simulation
using ray-casting; in the real world, similar maps can be
obtained through the use of LiDAR.

Example BEV predictions with occlusion reasoning for
multiple cameras mounted around a vehicle are shown in
Fig. 1 (black indicates an area that is predicted as unknown
or occluded).

C. BEV Alignment

Given a pair of predicted semantic maps and occlusion
masks, we aim to find the optimal alignment and transform
it to an ego vehicle odometry measurement. Since BEV maps
are already in orthographic space, and we assume mounted
camera height to remain unchanged, the alignment problem
reduces to a Euclidian transform. Pitch and roll changes,
which are common in maritime, introduce distortions in BEV
predictions, but in practice can be normalised out if the images
are rotated to ensure a constant level horizon, using, for
example, horizon detection. We can therefore use the enhanced
correlation coefficient [34] to find a suitable alignment in
the BEV plane. The predicted occlusion reasoning is used



Fig. 2: Overview of BEV-SLAM system. Semantic maps best viewed in colour.

as a mask when calculating this metric, to ensure that only
temporally-consistent regions are used for alignment. The goal
is therefore to find the optimal alignment ∆x∗,∆y∗,∆θ∗ with

argmin
∆x,∆y,∆θ

∥∥∥∥[ ir
∥ir∥

− iw
∥iw∥

]
⊙Moccr ⊙Moccw

∥∥∥∥2 (5)

where ir and Moccr represent a zero-mean version of the
reference BEV map and the corresponding binary occlusion
mask respectively, and iw and Moccw are the warped maps,
transformed by ∆x,∆y and ∆θ. ∥·∥ denotes the L2 norm and
⊙ element-wise multiplication. Constant motion is used as an
initial estimate for the optimisation algorithm.

D. Multiple Cameras

Alignment can be ineffective when there is little geome-
try visible from a single camera’s viewpoint. However, mo-
tion cues can also come from additional cameras mounted
around the ego vehicle. To incorporate multiple sensors, the
optimal alignment (5) must be transformed into an SE2
(∆X,∆Y,∆Θ) odometry measurement in the ego vehicle
coordinate frame. The appropriate transformation matrix can
be obtained using the camera extrinsic matrix relative to the
ego vehicle, applying a correction to account for the centre of
rotation being at the ego vehicle centre:

M = G ·
[
R T −RθX

]
(6)

where Rθ =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 and X =

x0

y0
0

.

G is the camera extrinsic matrix, R and T are the
BEV alignment rotation and translation matrices respectively,
θ is the alignment angle, and (x0, y0) is the ego vehicle
centre of rotation in the BEV pixel coordinate frame.

This correction gives a transformation matrix M represent-
ing (∆X,∆Y,∆Θ) in the ego vehicle frame, which is then
added as an edge in a pose graph.

E. Loop Closure and Multiple Sensors

Potential loop closures are identified using a visual bag of
words with SIFT features on the input images, implemented
as a tree for efficient storage. When the likelihood exceeds
a set threshold, the loop closure is verified using alignment
in the BEV space from the algorithm described in III-C. BEV
maps are considered to be unrelated if the alignment algorithm
does not converge. Otherwise, a new edge is added to the pose
graph, and pose graph optimisation is performed.

Using the camera extrinsic matrices and the rotational
correction (6), loop closures can be identified across multiple
cameras: for example, a landmark can be observed from one
camera on one pass, and from the other side on the return
journey, and the two keyframes associated correctly.

A significant advantage of employing graph-based SLAM
is that additional sensors can be seamlessly integrated into the
system before pose graph optimisation. GPS measurements (in
the SE2 state space), for example, can be added as initial node
estimates. In our implementation, we used g2o [35] for pose
graph optimisation.

IV. EXPERIMENTS AND RESULTS

We first evaluate BEV-SLAM in a maritime domain using
synthetic data and compare to SOTA. We ablate our system
and demonstrate the efficacy of our proposed occlusion rea-
soning method. We then demonstrate BEV-SLAM running on
a real-world docking sequence, and on a publicly-available
automotive dataset for further comparison with SOTA.

A. Dataset Generation

A particular challenge for BEV network training is ob-
taining suitable ground truth data (both semantic maps and
occlusion masks). Existing research typically uses additional
sensors such as LiDAR to generate BEV ground truth, but this
is time-consuming, expensive to collect on a large scale, and
cannot always provide strong supervision.

Since equivalent datasets do not exist for maritime, a
maritime simulator was developed specifically for BEV-SLAM
research and dataset generation, rendered in Unity [36]. A



TABLE I: Mean Absolute and Relative Pose Errors (APE and RPE respectively) of output trajectories for BEV-SLAM with
and without multiple cameras, and comparison to GPS

Trajectory
A (165.7 m) B (242.6 m) C (322.9 m)

APE [m] RPE [m] APE [m] RPE [m] APE [m] RPE [m]
Low-cost GPS 3.598 4.719 3.880 5.272 3.835 4.777
High-cost GPS 1.265 1.807 1.237 1.867 1.227 1.750

Single-camera BEV-SLAM 2.831 0.161 3.764 0.125 4.280 0.720
Multi-camera BEV-SLAM 1.480 0.040 1.863 0.066 1.954 0.171

Multi-camera BEV-SLAM + Low-cost GPS 1.323 0.069 1.375 0.078 1.919 1.998
Multi-camera BEV-SLAM + High-cost GPS 1.064 0.093 1.130 0.102 1.223 0.784

TABLE II: Maritime semantic classes

Name Description
Navigable space Any area where the ego vehicle could manoeuvre

Large boat Yachts, cruisers, fishing vessels
Small boat Rowboats, small sailboats
Other boat Covered boats, boats on land

Pontoon Marina elements, walkways and attached ropes
Obstacle Any other object that intersects the water plane

dataset is provided and made publicly available for the benefit
of the research community, encouraging the development of
BEV systems in the maritime domain. The dataset contains
five 10-minute mounted camera sequences from around an
ego vehicle with corresponding BEV semantic maps and oc-
clusion masks in three pseudo-random procedurally-generated
environments. Ground truth poses for each camera and the
ego vehicle are also available, allowing the reconstruction of
ground-truth trajectories. In addition, training sets are avail-
able, which consist of 200,000 snapshots (images, semantic
maps and occlusion masks) taken from over 100 environments
to prevent overfitting to specific sequences or arrangements.
The top-down semantic classes provided in the dataset are
shown in Table II.

Three validation sequences have been collected from unseen
environments, each increasing in length. These sequences are
used for evaluation of BEV-SLAM in the maritime domain,
with the mean Absolute Pose Error (APE) and mean Relative
Pose Error (RPE) [37] of the predicted trajectories used as the
primary evaluation metrics. Ground-truth trajectories for the
three sequences are shown in Fig. 3.

B. Ablation Study

We test the system by removing elements to investigate the
effect of running the system with a single- or multi-camera
setup, and with and without the presence of GPS. Pose errors
for the three simulation trajectories are shown in Table I, after
applying detected loop closures.

Here, multi-camera BEV-SLAM uses four cameras mounted
around the ego vehicle in the configuration shown in Fig. 1.
Single-camera BEV-SLAM results are the mean errors across
all four cameras, tested individually.

To simulate GPS, we use ground-truth poses with added
zero-mean Gaussian noise. For low-cost GPS, standard devi-
ation σ = 3 m. For high-cost GPS, we use standard deviation

Fig. 3: Simulation trajectories (ground truth)

σ = 1 m, which represents a strong GPS signal with a high-
performance receiver (for example, the GA150 GPS Antenna).

The first observation is that multi-camera BEV-SLAM with
this camera configuration significantly outperforms the single-
camera equivalent, and both BEV-SLAM systems outperform
low-cost GPS.

High-cost GPS is able to outperform BEV-SLAM in terms
of absolute error, since there is no drift over time, but its
relative error is higher due to the addition of Gaussian noise.
A combination of multi-camera BEV-SLAM and high-cost
GPS achieves the lowest absolute pose error across all three
sequences, and results in significantly reduced relative error
compared to GPS alone.

C. Benchmarks

We compare BEV-SLAM to state-of-the-art ORB-SLAM2,
ORB-SLAM3 and LDSO. Since these methods use monocular
footage, we compare each with single camera BEV-SLAM for
four cameras mounted around the ego vehicle over simulated
sequence B. We then compare to multi-camera BEV-SLAM,
to demonstrate the advantage of the use of multiple cameras.

Initially, ORB-SLAM2 failed on three of the four cameras
(key points could not be found for a suitable initialisation).
Closer inspection revealed that this is because ORB-SLAM2
chooses features on the moving water surface, which cannot
later be used for re-localisation. The one camera sequence for
which ORB-SLAM2 was successful was from the starboard
camera, though the output trajectory was poor. Empirically,
this is an issue on real sequences too.



TABLE III: Mean relative pose error [m] comparison on
maritime simulation sequence B

Camera
Port Bow Starboard Stern

ORB-SLAM2 - - 0.709 -
ORB-SLAM2 (no water) 0.310 0.281 0.235 0.669

ORB-SLAM3 0.398 0.304 0.237 0.410
ORB-SLAM3 (no water) 0.290 0.277 0.186 0.110

LDSO 0.188 0.254 0.163 0.101
Single-camera BEV-SLAM 0.100 0.187 0.117 0.094
Multi-camera BEV-SLAM 0.066

TABLE IV: Absolute and relative pose errors [m] using
different occlusion reasoning methods

Trajectory
A (165.7 m) B (242.6 m) C (322.9 m)
APE RPE APE RPE APE RPE

No reasoning 2.346 0.075 2.699 0.120 2.362 0.279
Implicit 2.218 0.071 2.638 0.111 2.281 0.270
Explicit 1.480 0.040 1.863 0.066 1.954 0.171

To offer a fair comparison, we recreated a simulation
sequence, rendering the water surface black to encourage
ORB-SLAM2 to select features on the surrounding geometry.
This simulates perfect segmentation of the input image and
is artificially favourable towards feature-based approaches.
ORB-SLAM2 was then able to successfully run on all four
cameras: the mean RPEs of the output trajectories are shown in
Table III. ORB-SLAM3 was able to run with water rendered,
but results are shown for ORB-SLAM3 without water for
completeness. A full map comparison cannot be performed,
since ORB-SLAM uses sparse features and does not produce
a dense map.

We can observe from these results that BEV-SLAM outper-
forms SOTA in all cases, in addition to being able to produce a
dense map. Using multiple cameras reduces the relative pose
error of BEV-SLAM even further, because, in areas where
one camera may not be able to observe sufficient geometry
for alignment, another camera can provide a motion cue.

D. Occlusion

We demonstrate the effectiveness of our occlusion reasoning
approach for the BEV-SLAM application by comparing our
method to BEV-SLAM using a BEV network trained with no
occlusion reasoning, and one trained using implicit reasoning
[8]. We judge each method based on the mean APE and RPE
of recorded sequences after alignment and pose graph opti-
misation for three simulation sequences; results are shown in
Table IV. The results show a small improvement in trajectory
prediction using implicit reasoning, and a significant benefit
using our reasoning. This is because the unoccluded regions
in the input images produce more temporally consistent BEV
predictions. Using only these areas results in more accurate
BEV alignment and lower relative pose error, which leads
to lower absolute error overall. We therefore can conclude
that our occlusion reasoning approach is the most suitable for
SLAM applications.

TABLE V: Mean Relative Pose Errors (RPE) [m] of output
trajectories for Nuscenes sequences at different framerates for
different manoeuvres

2 Hz 12 Hz
Straight Turn Straight Turn

ORB-SLAM3 0.230 - 0.166 -
LDSO 0.108 0.131 0.076 0.096

BEV-SLAM 0.055 0.064 0.054 0.063

E. Automotive Evaluation

Although our main focus is to demonstrate feasibility in
the maritime domain, we train BEV-SLAM on Nuscenes
data and run on automotive Nuscenes sequences to easily
compare with state-of-the-art on a public dataset. We show
results using both keyframes (2 Hz) and all available frames
(12 Hz) to demonstrate that BEV-SLAM is better able to
handle low framerates than the competition. It was observed
that existing approaches often lose tracking when performing
turning manoeuvres, so we show results separately for straight
segments and turns. Mean Relative Pose Errors (RPEs) of
BEV-SLAM and its competitors are shown in Table V.

F. Qualitative Results

Fig. 4 shows the BEV-SLAM world map prediction (right)
and corresponding ground truth semantic map (left) for se-
quence B (an unseen environment).

Fig. 4: Ground truth semantic map for sequence B (left) and
BEV-SLAM prediction (right) with trajectory shown.

Due to the lack of ground-truth maritime data with suitable
trajectories, we are unable to quantitatively evaluate BEV-
SLAM in the real-world maritime domain. However, we are
able to provide a qualitative example for a docking sequence.

The ego boat was configured with three mounted cameras
(port, starboard and stern), and the SLAM system was trained
using ground truth data captured from a drone. The resulting
generated semantic map is shown in Fig. 5 with the predicted
trajectory shown.

V. CONCLUSIONS

We have introduced a novel approach to graph-based SLAM
using semantically-segmented Bird’s Eye View (BEV) predic-
tions to create a dense world map from monocular cameras



Fig. 5: Generated semantic map for real-world maritime dock-
ing sequence. Top-left: Example input images. Right: output
semantic map. Bottom-left: reference drone image.

mounted around an ego vehicle, and demonstrated its feasi-
bility in the maritime domain. Unlike other SLAM systems
(which tend to use sparse features), it can produce dense,
correctly-scaled semantic world maps ideal for navigation
tasks or as a visual aide for challenging manoeuvres. Future
work could focus on better integration of other sensor types
into the SLAM system, accounting for their uncertainties when
optimising the pose graph, leveraging additional information
they can provide, and dealing with moving classes.
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