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Abstract— This paper reports on a new error-state Model
Predictive Control (MPC) approach to connected matrix Lie
groups for robot control. The linearized tracking error dynam-
ics and the linearized equations of motion are derived in the
Lie algebra. Moreover, given an initial condition, the linearized
tracking error dynamics and equations of motion are globally
valid and evolve independently of the system trajectory. By
exploiting the symmetry of the problem, the proposed approach
shows faster convergence of rotation and position simulta-
neously than the state-of-the-art geometric variational MPC
based on variational-based linearization. Numerical simulation
on tracking control of a fully-actuated 3D rigid body dynamics
confirms the benefits of the proposed approach compared to
the baselines. Furthermore, the proposed MPC is also verified
in pose control and locomotion experiments on a quadrupedal
robot MIT Mini Cheetah.

I. INTRODUCTION

The geometry of the configuration space of a robotics sys-
tem can naturally be modeled using matrix Lie (continuous)
groups [1], [2]. Moreover, Lie group techniques have been
successfully used to study the symmetry structures of control
and observer systems [3]–[6]. For example, the unmanned
aerial vehicles and the centroidal dynamics of legged robots
can be approximated by a single rigid body, whose motion
is on SE(3). The SE(3) manifold is different from Rn
Euclidean space, where most controllers are designed and
applied. Although one can represent the orientation of the
robot by the rotation matrix, many applications use the Euler
angles [7], or quaternions [8]. However, the Euler angles
are known for singularities in some configurations [9], and
quaternions have ambiguities in representing the attitudes
[10]. Geometric Model Predictive Control (MPC) [11], [12]
has been proposed to address these challenges. However,
these approaches do not exploit the existing symmetry of
pose control problem on SE(3) Lie group or assume the
current system trajectory is sufficiently close to the desired
trajectory. This assumption might not be satisfied in practice.

Geometric control techniques on manifolds attempt to
overcome the challenge in control by extracting the intrin-
sic property of the mechanical system [13], [14]. Locally
exponentially stable tracking controllers for quadrotors are
proposed in [15], [16] using the compatible error [13] on
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Fig. 1: The proposed error-state MPC framework. The tracking error is
defined on a matrix Lie group and linearized in the Lie algebra. A convex
MPC algorithm is derived via the linearized dynamics for tracking control.
The proposed algorithm is applied to a single rigid body system and verified
on a quadrupedal robot MIT Mini Cheetah.

SO(3) to overcome the problem caused by Euler angles
and quaternions. This research provides us with an abundant
reference to formulate the error dynamics on manifolds.

Nonlinear MPC (NMPC) has been proposed for rigid body
systems tracking control. An MPC for discrete dynamics on
SO(3) is developed in [17] for spacecraft attitude control.
Using the matrix logarithm map, the controller can generate
discontinuous control law that can achieve globally asymp-
totic stability. Similar techniques have also been applied
to SE(3) in [18]. To preserve the energy of the system,
an implicit dynamics equation obtained by the Lie group
Variational Integrator [19] needs to be solved in [17], [18]. A
nonlinear least-squares problem on SO(3) has been proposed
in [20] for control of a legged robot approximated as a single
rigid body. The Jacobian and Hessian at the tangent space
of the orientation manifold are derived to approximate the
least-squares problem. Differential Dynamics Programming
(DDP) is also applied to the Lie group, which can be
potentially applied in a receding horizon manner as MPC
for optimal control [21] and state estimation [22]. Moreover,
factor graphs have been applied to estimation and control
problems on Lie groups [23].

Convex MPC has also been proposed for tracking control
of rigid body dynamics. The Euler angle-based convex MPC
[24] has been proposed for locomotion planning on the
quadrupedal robot, which needs to assume zero pitch and
roll angle. A local control law has been proposed in [17],
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[18], where the linearized dynamics are defined by a local
diffeomorphism from the SE(3) manifold to Rn space. How-
ever, such a diffeomorphism is not unique and too abstract for
controller design. The Variational Based Linearization (VBL)
technique [25] is applied to generate linearized dynamics of
the single rigid body around a given trajectory and applied
to robot pose control [26]. A VBL-based MPC is proposed
in [12] for locomotion on discrete terrain using a gait library.
The result suggests that the VBL-based linearization can
preserve the Lagrangian, thus making the system more stable.
Other than linearizing at the reference trajectory, the work
of [11] linearizes the system at the current operating point to
obtain the Quadratic Programming (QP) problem for tracking
of legged robot trajectory. However, the linearized state
matrix of [11] depends on the orientation, which one can
avoid by exploiting the symmetry of the system as done in
this work. More recent work has been proposed to exploit the
symmetry of rigid body dynamics. The work of [27] studies
the equivariant system on Lie groups, which induces a state-
independent linearization scheme for quadrotors when taking
the angular velocities as state inputs.

In this paper, we develop a geometric error-state MPC for
tracking control of systems evolving on a Matrix Lie group,
specifically, on SE(3) for the rigid body motion control. In
particular, the main contributions of this work are as follows.

1) We derive the linearized tracking error dynamics and
the linearized equations of motion in the Lie algebra
(tangent space at the identity) that, given an initial
condition, are globally valid and evolve independently
of the system trajectory.

2) We develop a convex MPC algorithm for the tracking
control problem using the linearized error dynamics,
which can be solved efficiently using QP solvers.

3) The proposed controller is validated via numerical sim-
ulations and in experiments on quadrupedal robot pose
control and locomotion.

4) Implementation of the proposed MPC is avail-
able for download at https://github.com/
UMich-CURLY/Error-State-MPC.

The remainder of this paper is organized as follows. Section
II provides the mathematical preliminaries and definitions
used throughout the paper. Section III presents the error-
state convex MPC. Numerical simulation and experiments
are presented in Section IV and V, respectively. Discussions
about the experiments are presented in Section VI. Section
VII concludes the paper and discusses ideas for future
studies.

II. PROBLEM STATEMENT

This section provides a brief overview of the necessary
background used in the developed approach.

A. Mathematical preliminary
Let G be an n-dimensional matrix Lie group and g its

associate Lie algebra (hence, dim g = n) [28], [29]. For
convenience, we define the following isomorphism

(·)∧ : Rn → g, (1)

that maps an element in the vector space Rn to the tangent
space of the matrix Lie group at the identity. Then, for any
φ ∈ Rn, we can define the Lie exponential map as

exp(·) : Rn → G, exp(φ) = expm(φ∧), (2)
where expm(·) is the exponential of square matrices. For
every X ∈ G, the adjoint action, AdX : g → g, is a Lie
algebra isomorphism that enables change of frames

AdX(φ∧) = Xφ∧X−1. (3)
Its derivative at the identity gives rise to the adjoint map in
Lie Algebra as

adφ(η) = [φ∧, η∧], (4)

where φ∧, η∧ ∈ g and [·, ·] is the Lie bracket.
Consider the motion of an object whose state space is a Lie

group G. We define a left-invariant Lagrangian L : g → R
as

L(ξ) =
1

2
ξTJbξ,

where ξ is the twist in the body frame, and Jb is the
generalized inertia matrix in the body fixed principal axes.
We can then write the forced Euler-Poincaré equations [30]:

Jbξ̇ = ad∗ξJbξ + u, (5)
where u ∈ g∗ is the generalized control input force applied
to the body fixed principal axes, ad∗ is the coadjoint action,
and g∗ is the cotangent space. Please see [1] for more
background.

B. Rigid body dynamics

Now consider a 3D rigid body in SE(3), the state of the
robot can be represented by a rotation matrix

R ∈ SO(3) = {R ∈ R3×3 | RTR = I3,det(R) = 1},
and position p ∈ R3. We denote the identity matrix by I , and
I3 denotes the 3× 3 identity matrix. Then the homogeneous
representation of an element in SE(3) is given by

X =

[
R p
0 1

]
∈ SE(3). (6)

We define the twist as the concatenation of linear velocity v

and angular velocity ω in body frame, i.e., ξ :=

[
ω
v

]
∈ R6,

ξ∧ =

[
ω∧ v
0 0

]
∈ se(3). The inertia matrix is defined as

Jb :=

[
Ib 0
0 mI3

]
, (7)

where Ib is the moment of inertia in the body frame, and m
is the body mass. The matrix representation of the adjoint
map can be derived as

AdX =

[
R 0
p∧R R

]
, X =

[
R p
0 1

]
. (8)

Furthermore, the matrix representation of the adjoint in Lie
Algebra is

adξ =

[
ω∧ 0
v∧ ω∧

]
. (9)

https://github.com/UMich-CURLY/Error-State-MPC
https://github.com/UMich-CURLY/Error-State-MPC


Then the coadjoint map is

ad∗ξ = adT
ξ = −

[
ω∧ v∧

0 ω∧

]
. (10)

Finally, using (5) combined with the reconstruction equation
of X ∈ SE(3), i.e., Ẋ = Xξ∧, we arrive at the rigid body
equation of motion

Jbξ̇ +

[
ω∧ v∧

0 ω∧

]
Jbξ = u,[

Ṙ ṗ
0 0

]
=

[
R p
0 1

] [
ω∧ v
0 0

]
. (11)

C. Tracking error dynamics

Consider the trajectory on Lie group G , we define the
desired trajectory as Xd,t ∈ G and the actual state as Xt ∈ G,
both as function of time t. Given the twists ξt and desired
twists ξd,t, we have

d

dt
Xt = Xtξ

∧
t ,

d

dt
Xd,t = Xd,tξ

∧
d,t.

Similar to the left or right error defined in [14], we define
the error between Xd

t and Xt as

Ψt = X−1
d,tXt ∈ G. (12)

For the tracking problem, our goal is to drive the error
from the initial condition Ψ0 to the identity I ∈ G. Taking
derivative on both sides of (12), we have

d

dt
Ψt = Ψ̇t =

d

dt
(X−1

d,t )Xt +X−1
d,t

d

dt
Xt

= X−1
d,t

d

dt
Xt −X−1

d,t

d

dt
(Xd,t)X

−1
d,tXt

= X−1
d,tXtξ

∧
t −X−1

d,tXd,tξ
∧
d,tX

−1
d,tXt

= Ψtξ
∧
t − ξ∧d,tΨt.

Therefore,

Ψ̇t = Ψt(ξ
∧
t −Ψ−1

t ξ∧d,tΨt) = Ψt(ξt −AdΨ−1
t
ξd,t)

∧,
(13)

where AdΨ−1
t

describes the transport map in [14] that
enables the comparison of velocities from different reference
frames.

D. Tracking control problem

Given the rigid body dynamics (5) and tracking error
dynamics (13), we define the tracking control problem as
follows.

Problem 1. Find ut ∈ g∗ such that

min
ut

N(Ψtf , ξtf ) +

∫ tf

0

L(Ψt, ξt, ut) dt

s.t. Ψ̇t = Ψt(ξt −AdΨ−1
t
ξd,t)

∧

ξ̇t = J−1
b

(
ad∗ξtJbξt + ut

)
ut ∈ Ut, ξ(0) = ξ0,Ψ(0) = Ψ0,

where tf is the final time, N(·) is the terminal cost, L(·) is
the stage cost, and Ut is the set of feasible input at time t.

III. ERROR-STATE CONVEX MPC

A. System linearization

Problem 1 is nonconvex and evolves on a matrix Lie
group. To implement it in real-time efficiently, we linearize
and vectorize it in the following.

Recall that we can map the error from the Lie Algebra to
the group element by the group exponential map. We define
ψ∧t as an element of the Lie Algebra that corresponds to Ψt.
Thus by the exponential map, we have

Ψt = exp(ψt), Ψt ∈ G, ψ∧t ∈ g.

Given the first-order approximation of the exponential map,

Ψt = exp(ψt) ≈ I + ψ∧t ,

and a first-order approximation of the adjoint map

AdΨt ≈ AdI+ψ∧t ,

we can linearize (13) by dropping the second-order terms as

Ψ̇t ≈ (I + ψ̇∧t ) ≈ (I + ψ∧t )(ξt −Ad(I−ψ∧t )ξd,t)
∧, (14)

ψ̇t = −adξd,tψt + ξt − ξd,t. (15)

Equation (15) is the linearized velocity error in the Lie
algebra.

Remark 1. The reason behind lifting the problem to the Lie
algebra is that one can use the usual algebraic manipula-
tions and differential equations knowledge to formulate the
problem. This approach also enables us to use the existing
QP solvers, as we will see in the following sections.

The dynamics of ξt is described by (5), which is nonlinear.
To compute a locally linear approximation of the nonlinear
term, we adopt the following series expansion around the
operating point ξ̄

Jbξ̇ ≈ ad∗ξ̄Jbξ̄ +
∂ad∗ξJbξ

∂ξ
|ξ̄(ξ − ξ̄) + u. (16)

Thus, we have the linearized dynamics as

ξ̇ = Htξ + J−1
b u+ bt, (17)

where Ht and bt are as follows.

H := J−1
b ad∗ξ̄Jb + J−1

b

[
(Ibω̄)∧ mv̄∧

mv̄∧ 0

]
,

bt := −J−1
b

[
(Ibω̄)∧ mv̄∧

mv̄∧ 0

]
ξ̄.

(18)

Note that we obtained Ht via the chain rule, and its compact
form is attributed to those blocks with (·)∧ in the coadjoint

map. We define the system states as xt :=

[
ψt
ξt

]
. Then, the

linearized dynamics becomes

ẋt = Atxt +Btut + ht, (19)
where

At :=

[
−adξd,t I

0 Ht

]
, Bt :=

[
0
J−1
b

]
, ht :=

[
−ξd,t,
bt

]
.

Remark 2. The operating point ξ̄, for computing H and b,
need not to be the reference trajectory ξd,t. In the following



sections, we set the operating point at the current system
states when the controller is applied, which exhibits higher
stability as shown by [11].

B. Cost function for tracking control

In Rn Euclidean space, we could directly penalize the dif-
ference between the actual and desired velocities. However,
on Lie groups, the velocity vectors at different locations on
the manifold cannot be compared directly. Instead, we need
a transport map that moves the velocity to the same reference
frame. Therefore, our cost function is designed to regulate
the tracking error ψt and its derivative ψ̇t rather than the
difference between ξd,t and ξt.

Thus, our tracking error can be designed as yt :=

[
ψt
ψ̇t

]
.

Then, yt can be expressed by

yt = Ctxt − dt,

Ct :=

[
I 0

−adξd,t I

]
, dt =

[
0
ξd,t

]
.

(20)

Given some semi-positive definite matrices P , Q, and R, we
can now write the cost function as

N(ytf ) = yTtfPytf , L(yt, ut) = yTt Qyt + uTt Rut. (21)

C. The convex MPC problem

Given the cost function provided in the last section, we
derive the following linear quadratic tracking style problem
in the finite-time horizon.

Problem 2. Find ut ∈ g∗ such that

min
ut

N(ytf ) +

∫ tf

0

L(yt, ut) dt

s.t. ẋt = Atxt +Btut + ht

ut ∈ Ut, ξ(0) = ξ0, ψ(0) = ψ0.

Given the future twists ξd,t, initial error state ψ0, and
twist ξ0, we can define all the matrices. By discretizing the
system at time steps {tk}Nk=1 and applying the controller in
a receding horizon manner, we can derive the MPC problem
in discrete-time as follows.

Problem 3. Find uk ∈ g∗ such that

min
uk

yTNPyN +

N−1∑
k=1

yTkQyk + uTkRuk

s.t. xk+1 = Akxk +Bkuk + hk

uk ∈ Uk, x(0) = x0

k = 0, 1, . . . , N − 1.

In Problem 3, Ak, Bk, and hk can be obtained by zero-
order hold or Euler first-order integration. Problem 3 is a QP
problem that can be solved efficiently, e.g., using OSQP [31].

Remark 3. In the presented experiments and simulations,
for simplicity, we apply the Euler first-order integration, such
that

Ak = I +Atk∆t, Bk = Btk∆t, hk = htk∆t.

The comparison of different integration techniques in the
context of the proposed approach is an interesting future
research direction.

IV. NUMERICAL SIMULATIONS

In this section, we apply our controller on a fully actuated
three-dimensional rigid body with the dynamics as shown in
(11) for trajectory tracking. In this case, we do not consider
the gravity and the system matrices are the same as we
defined in Problem 2. The system inputs are the torque τ

and force f in the robot body frame u :=

[
τ
f

]
. We define a

spiral curve with constant twists

ξd = [0, 0, 1, 2, 0, 0.2]T.

The reference trajectory is integrated by ξd from the identity,
i.e., R0 = I, p0 = 0. We randomly sample 100 initial
orientations and positions around the identity and then apply
ours and two baseline controllers. One baseline controller is
the VBL-MPC proposed in [12]. The VBL-based method
uses the compatible error to parameterize the difference
between two orientations as

eR :=
1

2
(R−1Rd −R−1

d R)∨, (22)

where (·)∨ is the inverse of (·)∧ map. Another baseline is
our method with a simplified matrix, which is the version of
(15) that does not consider the effect of the adjoint map in
At and Ct. The orientation part of this simplified version is
the same as the local control law proposed in [17] and [18].

As the performance of MPC is strongly dependent on the
parameter tuning, we keep the comparison fair by using the
same stage quadratic cost Q and R. The terminal cost is
computed by the discrete-time Riccati equation

P = ATPA−(ATPB)(R+BTPB)−1(BTPA)+Q, (23)
which is intended to approximate the cost of the uncon-
strained problem in the infinite horizon with the pre-defined
stage cost Q and R. All methods use the same control
horizon N = 12 and the same constraints on the input. For
longer horizons, there is no noticeable improvement in the
tracking performance.

The reference trajectory and a sample trajectory of the
proposed controller are presented in Fig. 2. The tracking
errors are presented in Fig. 3. We can see that as the com-
patible error is used in VBL-based MPC, the convergence
rate is much lower when the initial orientation error is large.
This effect has also been shown in [15], where exponential
stability is only guaranteed when the initial orientation error
is less than 90°. For a rough explanation of this effect, we
plotted the scale of compatible error and the one obtained
by matrix logarithm in Fig. 4. When the orientation error
approaches 180°, the compatible error goes to 0. A more
theoretical explanation and proof can be found in [32].

The position error of VBL-based MPC converges fast as it
is decoupled from the orientation error. The histogram of the
accumulated error along the simulated trajectory is presented
in Fig. 5. It is obvious that our controller outperforms both
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Fig. 2: Simulation of a 3D rigid body tracking a spiral curve. The red, green, and blue denote the robot x, y, and z axis, respectively. The dashed line
is the reference trajectory, and the solid line indicates the system response with the corresponding controller. We chose one initial condition with a large
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Fig. 3: Tracking error of controllers in simulations with 100 randomly
sampled initial poses. Our controller outperforms both baselines in the
convergence rate of orientation error. The VBL-MPC deals with the position
in R3, thus outperforming the other two methods. The simplified version
of the proposed method is less accurate than the proposed method in both
position and orientation tracking.

baselines in the orientation tracking. Our controller also
outperforms the simplified version in both orientation and
position tracking, which demonstrates the success of the
linearization scheme.

V. VALIDATION ON QUADRUPEDAL ROBOT

We now conduct two experiments on the quadrupedal
robot Mini Cheetah [33] to evaluate the proposed MPC. Both
experiments use a single rigid body model to approximate
the torso motion.

A. Quadrupedal robot control

The centroidal dynamics of the legged robot can be
approximated by the rigid body equations of motion in (11).
As the leg of Mini Cheetah is modeled as point contact with
the ground, we assume only Ground Reaction Force (GRF)
is acted on the contact point. We denote the GRF at the k-th
leg as fb,k ∈ R3. The torque acted on the center of mass is
mapped from GRF by the lever arm of the legs. The vector
from the robot center of mass to the k-th contact point is
denoted as rb,k ∈ R3. Note that the GRF and lever arms are

Fig. 4: Comparison of different orientation errors. The compatible error for
orientation does not reserve the scale of error. When the initial orientation
error is large, the controller may not generate enough response, thus making
the convergence slow.

represented in the body frame; thus, we have the subscripts
b. The friction cone constraints are considered in the world
frame, denoted by subscript w as

fw = Rfb, |fw,x| ≤ µfw,z, |fw,y| ≤ µfw,z, fw,z > 0. (24)
The lever arm and GRF are illustrated in Fig. 1. Suppose the
robot has n legs on the ground. The continuous time error
dynamics (17) can be represented by

ẋt = Atxt +Btut + ht +

[
09×1

RT
t g

]
, (25)

where g denotes the gravity and Bt becomes

Bt =


03 ... 03

03 ... 03

I−1
b r∧b,1,t ... I−1

b r∧b,n,t
I
m ... I

m

 . (26)

To implement the convex QP algorithm, we assume that the
lever arm rb,k,t remains constant during the planning horizon.
We also assume the orientation R in the gravity term RTg in
(25) and friction constraints (24) remains constant. By zero-
order hold or Euler first-order integration, we can obtain the
discrete-time system matrix needed for Problem 3.

We compare the proposed controller with two baseline
controllers, the VBL-based MPC [12] and the Euler angle-
based MPC [24]. We do not use any feedforward term
obtained by a high-level planner to make the comparison
fair. The MPC stage cost and terminal cost settings are the



Fig. 5: Histogram of tracking error of the 100 trials of simulation with
randomly sampled initial poses. The horizontal axes indicate the sum of the
error at the sample time along the trajectory presented in Fig. 3. We can see
that the orientation error of our controller remains small in most cases, while
the VBL MPC has a long tail. The position tracking error remains small
for the VBL MPC in most cases. Our method outperforms the simplified
version.

same as the simulation. For real-time implementation, the
terminal cost matrix P is approximated by executing one step
of Riccati recursion every time before the MPC is applied.
By this method, P will converge to the steady state value
after a few iterations. For all these experiments, we choose
the friction coefficient µ = 0.6.

B. robot pose tracking

In this experiment, we apply several step orientation
signals for a robot to track. All four legs of robot are on
the ground so the Bt matrix in (26) has four blocks. Step
signals of pure robot roll angle and mixture of roll and yaw
angle are applied. The GRF planned by the MPC is mapped
to the joint torques τst by the spatial Jacobian J via

τst = −JTfw. (27)
The reference signals and snapshots of robot motion are
presented in Fig. 6 and 7. As terminal cost is well designed,
we use a small control horizon N = 4 and ∆t = 0.025s
in all the experiments. Each experiment is conducted three
times to eliminate the influence of random factors.

The details of the responses are presented in Fig. 8 and 9.
It can be seen that as no feedforward force at the equilibrium
is provided, all three controllers have steady-state error.
However, the geometric-based controller, i.e., proposed and
the VBL-based MPC, has a smaller steady-state error than
the Euler angle-based one. As the VBL-based MPC does
not conserve the scale of the error, the convergence rate is
much lower than our controller, which is obvious when the
opposite Euler angle signal is applied at the middle of the
reference profile. The convergence rate is consistent with the
numerical simulation.

C. Robot trotting

We also apply our controller to robot locomotion. All
controllers are based on the open-source software developed

Fig. 6: Reference signal for robot roll angle tracking. The robot roll angle
changes from 0 to -74.5 degrees from 1 sec to 11 seconds. The yaw and
pitch angle remains 0 along the reference trajectory. Then the robot leans
to the opposite side for 10 seconds.

Fig. 7: Reference signal for robot roll and yaw angle tracking. From 1 sec
to 11 seconds, the robot roll changes from 0 to -57.3 degrees, and the yaw
changes from 0 to 28.5 degrees. Then the robot leans to the opposite side
for 10 seconds.

by [34]. We use the parameters provided in the original
MPC. The control horizon and discrete timestep are set
to be N = 10 and ∆t = 0.0.25s. This control horizon
is the shortest one that ensure stable walking gaits. Ours
and baseline controllers are deployed to plan the robot’s
GRF given command twists. Then the GRF is applied to
the Whole Body Impulse Control (WBIC) [34] to obtain the
joint torques. The WBIC decomposes the cartesian space
task to joint space according to different hierarchies via the
Jacobian null space decomposition, making the joint space
motion much smoother than direct PD tracking. Unlike the
conventional whole-body controller, WBIC prioritizes the
GRF generation by penalizing the deviation of GRF from
the planned GRF. We increase this penalty by 1e4 times in
the original WBIC, so the GRF merely deviates from the
planned one.

We first apply a step signal in the yaw rate. Then we add a
step signal in forward motion in the robot frame, and the yaw
rate becomes a sinusoidal signal. The reference is presented
in Fig. 10 and the snapshots of the experiments are in Fig. 11.
The tracking result is shown in Fig. 10. We find that ours
and the VBL-MPC can better track the yaw rate than the
Euler angles-based MPC, as expected. All controllers can
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Fig. 8: Error convergence for roll tracking. When a new step signal is applied, our controller converges faster than the baseline methods and exhibits
smaller steady-state error. The VBL-MPC is slower due to the use of the compatible error. As only roll signal is applied, the errors defined on SE(3) and
Euler are the same. Thus, the Proposed MPC and Euler MPC have similar tracking performance.
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Fig. 9: Error convergence for roll and yaw tracking. When a new step signal is applied, our controller converges faster than the baseline methods and has
a smaller steady-state error. The Euler angle-based MPC has a larger steady-state error as both roll and yaw signals are applied.
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Fig. 10: Reference tracking for quadrupedal robot trotting. Each controller
is tested three times. The responses are too noisy; thus, the results are
smoothed using the moving average filter.

track the linear velocity well. The two baselines deal with
the linear velocity in R3 space. As every step the orientation
and position tracking errors are integrated from the current
state, it is reasonable that all controllers perform well.

VI. DISCUSSIONS

In the robot pose tracking experiments, the large steady-
state error is probably due to the friction of the mechanical
part. In the simulation environments of Mini Cheetah, we
noticed that the steady-state error is much smaller than
observed in the experiments. The Euler angle-based MPC has
larger steady-state errors than geometric-based ones, which

Fig. 11: Snapshots of the experiments on reference tracking in Mini Cheetah
trotting. The time corresponds to the reference signal in Fig. 10.

we believe is due to the loss of symmetry. The Euler angle
defines the rotation with respect to fixed axes, while the
torque generates simultaneous rotation around body axes.

We showed the advantage of the proposed MPC over the
variational-based MPC in terms of the convergence rate of
orientation error. This advantage is attributed to the quadratic
cost function designed in the Lie algebra. We compared the
difference intuitively by depicting scales of the compatible
and logarithm error. A preliminary result of the exponential
convergence rate of linear feedback controllers on Lie groups
by constructing the Lyapunov function in the Lie algebra has
been discussed in [32].

We derived the linearized dynamics in continuous time
and used the Euler first-order integration for implementation.



An integration scheme that preserves the Lagrangian can be
integrated with the proposed framework in future work.

VII. CONCLUSIONS

We developed a new error-state Model Predictive Control
approach on connected matrix Lie groups for robot control.
By exploiting the existing symmetry of the pose control
problem on SE(3) Lie group, we showed that the linearized
tracking error dynamics and equations of motion in the
Lie algebra are globally valid and evolve independently of
the system trajectory. In addition, we formulated a convex
MPC program for solving the problem efficiently using QP
solvers. The simulation and experimental results confirm that
the proposed approach provides faster convergence when
rotation and position are controlled simultaneously.

Future work includes the extension of the developed
controller with learning-aided state estimators [35] to enable
environmental awareness and more aggressive maneuvers.
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